184 research outputs found

    Parameterized (in)approximability of subset problems

    Full text link
    We discuss approximability and inapproximability in FPT-time for a large class of subset problems where a feasible solution SS is a subset of the input data and the value of SS is S|S|. The class handled encompasses many well-known graph, set, or satisfiability problems such as Dominating Set, Vertex Cover, Set Cover, Independent Set, Feedback Vertex Set, etc. In a first time, we introduce the notion of intersective approximability that generalizes the one of safe approximability and show strong parameterized inapproximability results for many of the subset problems handled. Then, we study approximability of these problems with respect to the dual parameter nkn-k where nn is the size of the instance and kk the standard parameter. More precisely, we show that under such a parameterization, many of these problems, while W[\cdot]-hard, admit parameterized approximation schemata.Comment: 7 page

    Computing the partition function for graph homomorphisms

    Full text link
    We introduce the partition function of edge-colored graph homomorphisms, of which the usual partition function of graph homomorphisms is a specialization, and present an efficient algorithm to approximate it in a certain domain. Corollaries include efficient algorithms for computing weighted sums approximating the number of k-colorings and the number of independent sets in a graph, as well as an efficient procedure to distinguish pairs of edge-colored graphs with many color-preserving homomorphisms G --> H from pairs of graphs that need to be substantially modified to acquire a color-preserving homomorphism G --> H.Comment: constants are improved, following a suggestion by B. Buk

    Improving bounds on large instances of graph coloring

    Get PDF
    This thesis explores new methods, using both vertex cover and exact graph coloring algorithms in addition to our implementation of the state of the art, to develop a hybrid algorithm that on most instances is able to tighten the bounds or determine the optimal number of colors outright

    On Coloring Resilient Graphs

    Full text link
    We introduce a new notion of resilience for constraint satisfaction problems, with the goal of more precisely determining the boundary between NP-hardness and the existence of efficient algorithms for resilient instances. In particular, we study rr-resiliently kk-colorable graphs, which are those kk-colorable graphs that remain kk-colorable even after the addition of any rr new edges. We prove lower bounds on the NP-hardness of coloring resiliently colorable graphs, and provide an algorithm that colors sufficiently resilient graphs. We also analyze the corresponding notion of resilience for kk-SAT. This notion of resilience suggests an array of open questions for graph coloring and other combinatorial problems.Comment: Appearing in MFCS 201
    corecore