609 research outputs found

    Unitary reflection groups for quantum fault tolerance

    Full text link
    This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leave invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, {\it J Phys A: Math Theor} {\bf 41}, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type B3B_3 and G2G_2 (for single qubits), D5D_5 and A4A_4 (for two qubits), E7E_7 and E6E_6 (for three qubits), the complex reflection groups G(2l,2,5)G(2^l,2,5) and groups No 9 and 31 in the Shephard-Todd list. The relevant fault tolerant subsets of the Clifford groups (the Bell groups) are generated by the Hadamard gate, the π/4\pi/4 phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004 {\it New J. of Phys.} {\bf 6}, 134]. Links to the topological view of quantum computing, the lattice approach and the geometry of smooth cubic surfaces are discussed.Comment: new version for the Journal of Computational and Theoretical Nanoscience, focused on "Technology Trends and Theory of Nanoscale Devices for Quantum Applications

    Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates

    Full text link
    Peres/Mermin arguments about no-hidden variables in quantum mechanics are used for displaying a pair (R, S) of entangling Clifford quantum gates, acting on two qubits. From them, a natural unitary representation of Coxeter/Weyl groups W(D5) and W(F4) emerges, which is also reflected into the splitting of the n-qubit Clifford group Cn into dipoles C±\pmn . The union of the three-qubit real Clifford group C+ 3 and the Toffoli gate ensures a orthogonal representation of the Weyl/Coxeter group W(E8), and of its relatives. Other concepts involved are complex reflection groups, BN pairs, unitary group designs and entangled states of the GHZ family.Comment: version revised according the recommendations of a refere

    The complex Lorentzian Leech lattice and the bimonster

    Get PDF
    We find 26 reflections in the automorphism group of the the Lorentzian Leech lattice L over Z[exp(2*pi*i/3)] that form the Coxeter diagram seen in the presentation of the bimonster. We prove that these 26 reflections generate the automorphism group of L. We find evidence that these reflections behave like the simple roots and the vector fixed by the diagram automorphisms behaves like the Weyl vector for the refletion group.Comment: 24 pages, 3 figures, revised and proof corrected. Some small results added. to appear in the Journal of Algebr

    Automorphisms and opposition in twin buildings

    Full text link
    We show that every automorphism of a thick twin building interchanging the halves of the building maps some residue to an opposite one. Furthermore we show that no automorphism of a locally finite 2-spherical twin building of rank at least 3 maps every residue of one fixed type to an opposite. The main ingredient of the proof is a lemma that states that every duality of a thick finite projective plane admits an absolute point, i.e., a point mapped onto an incident line. Our results also hold for all finite irreducible spherical buildings of rank at least 3, and as a consequence we deduce that every involution of a thick irreducible finite spherical building of rank at least 3 has a fixed residue
    • …
    corecore