28,199 research outputs found

    Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    Get PDF
    We study analytically and numerically decoding properties of finite rate hypergraph-product quantum LDPC codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several non-trival lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models, and a minimum weight decoding threshold of approximately 7%.Comment: 14 pages, 5 figure

    Asymmetric Evaluations of Erasure and Undetected Error Probabilities

    Full text link
    The problem of channel coding with the erasure option is revisited for discrete memoryless channels. The interplay between the code rate, the undetected and total error probabilities is characterized. Using the information spectrum method, a sequence of codes of increasing blocklengths nn is designed to illustrate this tradeoff. Furthermore, for additive discrete memoryless channels with uniform input distribution, we establish that our analysis is tight with respect to the ensemble average. This is done by analysing the ensemble performance in terms of a tradeoff between the code rate, the undetected and the total errors. This tradeoff is parametrized by the threshold in a generalized likelihood ratio test. Two asymptotic regimes are studied. First, the code rate tends to the capacity of the channel at a rate slower than n−1/2n^{-1/2} corresponding to the moderate deviations regime. In this case, both error probabilities decay subexponentially and asymmetrically. The precise decay rates are characterized. Second, the code rate tends to capacity at a rate of n−1/2n^{-1/2}. In this case, the total error probability is asymptotically a positive constant while the undetected error probability decays as exp⁡(−bn1/2)\exp(- b n^{ 1/2}) for some b>0b>0. The proof techniques involve applications of a modified (or "shifted") version of the G\"artner-Ellis theorem and the type class enumerator method to characterize the asymptotic behavior of a sequence of cumulant generating functions.Comment: 28 pages, no figures in IEEE Transactions on Information Theory, 201

    Slepian-Wolf Coding for Broadcasting with Cooperative Base-Stations

    Full text link
    We propose a base-station (BS) cooperation model for broadcasting a discrete memoryless source in a cellular or heterogeneous network. The model allows the receivers to use helper BSs to improve network performance, and it permits the receivers to have prior side information about the source. We establish the model's information-theoretic limits in two operational modes: In Mode 1, the helper BSs are given information about the channel codeword transmitted by the main BS, and in Mode 2 they are provided correlated side information about the source. Optimal codes for Mode 1 use \emph{hash-and-forward coding} at the helper BSs; while, in Mode 2, optimal codes use source codes from Wyner's \emph{helper source-coding problem} at the helper BSs. We prove the optimality of both approaches by way of a new list-decoding generalisation of [8, Thm. 6], and, in doing so, show an operational duality between Modes 1 and 2.Comment: 16 pages, 1 figur

    Optimal Iris Fuzzy Sketches

    Full text link
    Fuzzy sketches, introduced as a link between biometry and cryptography, are a way of handling biometric data matching as an error correction issue. We focus here on iris biometrics and look for the best error-correcting code in that respect. We show that two-dimensional iterative min-sum decoding leads to results near the theoretical limits. In particular, we experiment our techniques on the Iris Challenge Evaluation (ICE) database and validate our findings.Comment: 9 pages. Submitted to the IEEE Conference on Biometrics: Theory, Applications and Systems, 2007 Washington D
    • 

    corecore