12 research outputs found

    Asymptotic behavior of underlying NT paths in interior point methods for monotone semidefinite linear complementarity problems

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Superlinear convergence of an infeasible predictor-corrector path-following interior point algorithm for a semidefinite linear complementarity problem using the Helmberg-Kojima-Monteiro direction

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Behavioral Measures and their Correlation with IPM Iteration Counts on Semi-Definite Programming Problems

    Get PDF
    We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the (Renegar-) condition measure C(d) of the data instance, (iii) a measure of the near-absence of strict complementarity of the optimal solution, and (iv) the level of degeneracy of the optimal solution. We compute these measures for the SDPLIB suite problem instances and measure the correlation between these measures and IPM iteration counts (solved using the software SDPT3) when the measures have finite values. Our conclusions are roughly as follows: the aggregate geometry measure is highly correlated with IPM iterations (CORR = 0.896), and is a very good predictor of IPM iterations, particularly for problem instances with solutions of small norm and aspect ratio. The condition measure C(d) is also correlated with IPM iterations, but less so than the aggregate geometry measure (CORR = 0.630). The near-absence of strict complementarity is weakly correlated with IPM iterations (CORR = 0.423). The level of degeneracy of the optimal solution is essentially uncorrelated with IPM iterations

    Asymptotic Behavior of HKM Paths in Interior Point Method for Monotone Semidefinite Linear Complementarity Problem: General Theory

    Get PDF
    Abstract An interior point method (IPM) defines a search direction at an interior point of the feasible region. These search directions form a direction field which in turn defines a system of ordinary differential equations (ODEs). Thus, it is natural to define the underlying paths of the IPM as the solutions of the systems of ODEs. In Then we show that if the given SDLCP has a unique solution, the first derivative of its off-central path, as a function of √ µ, is bounded. We work under the assumption that the given SDLCP satisfies strict complementarity condition

    Conic Optimization: Optimal Partition, Parametric, and Stability Analysis

    Get PDF
    A linear conic optimization problem consists of the minimization of a linear objective function over the intersection of an affine space and a closed convex cone. In recent years, linear conic optimization has received significant attention, partly due to the fact that we can take advantage of linear conic optimization to reformulate and approximate intractable optimization problems. Steady advances in computational optimization have enabled us to approximately solve a wide variety of linear conic optimization problems in polynomial time. Nevertheless, preprocessing methods, rounding procedures and sensitivity analysis tools are still the missing parts of conic optimization solvers. Given the output of a conic optimization solver, we need methodologies to generate approximate complementary solutions or to speed up the convergence to an exact optimal solution. A preprocessing method reduces the size of a problem by finding the minimal face of the cone which contains the set of feasible solutions. However, such a preprocessing method assumes the knowledge of an exact solution. More importantly, we need robust sensitivity and post-optimal analysis tools for an optimal solution of a linear conic optimization problem. Motivated by the vital importance of linear conic optimization, we take active steps to fill this gap.This thesis is concerned with several aspects of a linear conic optimization problem, from algorithm through solution identification, to parametric analysis, which have not been fully addressed in the literature. We specifically focus on three special classes of linear conic optimization problems, namely semidefinite and second-order conic optimization, and their common generalization, symmetric conic optimization. We propose a polynomial time algorithm for symmetric conic optimization problems. We show how to approximate/identify the optimal partition of semidefinite optimization and second-order conic optimization, a concept which has its origin in linear optimization. Further, we use the optimal partition information to either generate an approximate optimal solution or to speed up the convergence of a solution identification process to the unique optimal solution of the problem. Finally, we study the parametric analysis of semidefinite and second-order conic optimization problems. We investigate the behavior of the optimal partition and the optimal set mapping under perturbation of the objective function vector
    corecore