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Abstract

An interior point method (IPM) defines a search direction at an interior point of the
feasible region. These search directions form a direction field which in turn defines a system
of ordinary differential equations (ODEs). Thus, it is natural to define the underlying
paths of the IPM as the solutions of the systems of ODEs. In [8], these off-central paths
are shown to be well-defined analytic curves and any of their accumulation points is a
solution to the given monotone semidefinite linear complementarity problem (SDLCP).
The off-central path of a simple example is also studied in [8] whose asymptotic behavior
near the solution of the example is analyzed. In this paper, which is an extension of [8], we
study the asymptotic behavior of off-central path for general SDLCP (using the dual HKM
direction), instead of for a given example. We give a necessary and sufficient condition
for when an off-central path is analytic as a function of

√
µ at the solution of the SDLCP.

Then we show that if the given SDLCP has a unique solution, the first derivative of its
off-central path, as a function of

√
µ, is bounded. We work under the assumption that the

given SDLCP satisfies strict complementarity condition.

1 Introduction.

The notion of central path was introduced by Sonnevend [9] in 1985 to interior point method
(IPM). Since then, people realize that IPM is actually a homotopy method following under-
lying paths (central and off-central paths) and that many remarkable properties of IPM are
attributed to the nice geometry of the underlying paths. Readers who are interested in basic
geometry of the underlying paths may refer to [1].

In [10, 11, 20, 19, 22] it was found that, for solving a linear program (LP) or a linear comple-
mentarity problem (LCP), the number of iterations needed by an interior point algorithm to
reduce the duality gap µ from µ0 to ε > 0 is equivalent to the integral of the curvature of the
central path from µ0 to ε. This equivalence relates a discrete analysis (complexity analysis)
to a continuous analysis (curvature of path) and thus opens a new way to estimate upper and
lower bounds of the complexity of IPM. In [15] (Mizuno, Meggido, Tsuchiya and Monteiro
also have papers on this topic), the authors showed that the complexity depends only on the

∗email address: cksim1@singnet.com.sg
†Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543.

1



constraint matrix, by observing those regions where the central path is straight or crossing
over.

Another important role the underlying paths play in the study of IPM is to show fast local
convergence. Classical proof of the local convergence of an iterative method, such as the
Newton’s method, for finding the solution of a system of equations relies on the nonsingularity
of the Jacobian matrix. However, the Jacobian matrix of the equation system defining the
central path in IPM may be singular at the optimal solution. Thus traditional approach of
local convergence analysis does not work for IPM. Fast local convergence of IPM has instead
been successfully proved by relating it to the boundedness of derivatives of the underlying
paths in [6, 16, 17, 13].

The study of fast local convergence is particularly important for semidefinite linear comple-
mentarity problem (SDLCP), with semidefinite program (SDP) as a special case, because, in
contrast to LCP, the exact solution of a SDLCP cannot be obtained from an approximate
solution by determining a complementary basis.

There are various ways in which the underlying paths, using different search directions, for
SDLCP are defined in the literature [4, 5, 7, 8]. In [8], a new definition of the underlying paths
of IPM for SDLCP, using ordinary differential equations (ODEs), is proposed. The motivation
for defining paths in this way is to relate paths to the vector field of search directions of the
IPM (see more details in [8]). In this paper, we use this definition of paths for SDLCP to study
the asymptotic behavior of the paths for general SDLCP. As mentioned in earlier paragraphs,
studying the asymptotic behavior of paths is important in the investigation of local convergence
of IPM for SDLCP.

Throughout what follows, we restrict ourselves to the dual HKM direction and assume that
SDLCP satisfies strict complementarity. The HKM direction and its dual are among the most
used directions in designing interior point algorithms, besides, the AHO and NT directions.
The asymptotic analyticity behavior of off-central paths for SDLCP using the AHO direction
has been studied in [5, 7]. In [4], the asymptotic analyticity behavior of off-central paths for
SDP using the HKM direction was studied in general. The authors in [4] show that the off-
central paths are analytic as a function of

√
µ in the limit. The off-central path that the authors

in [4, 5, 7] are defined by algebraic equations and are not directly related to search directions of
the IPM , while in [8] and this paper, it is defined using ODEs obtained from search directions.
In [8], the asymptotic analyticity behavior of off-central paths, using the dual HKM direction,
is investigated for a simple example. In this paper, we attempt to investigate the asymptotic
behavior of off-central paths, using the dual HKM direction, for general SDLCP.

In [8], it is shown, through an example, that there are two sets of off-central paths: paths in
one set are analytic at µ = 0 and those in the other set are not. For that example, the authors
found a condition which characterizes analytic and non-analytic paths. For general problems,
similar conditions have not been found. In this paper, we show that a path (X(µ), Y (µ)) is
analytic with respect to

√
µ if and only if an off-diagonal submatrix of Y (or X) is analytic

with respect to
√

µ and the submatrix is equal to O(µ) as µ → 0. This result is interesting on
its own.

Another phenomenon observed in [8], again by an example, is that the first derivative of an
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off-central path with respect to µ is unbounded as µ → 0. A natural question is whether the
first order derivative of an off-central path with respect to

√
µ is bounded as µ → 0. One may

guess that the first order derivatives of those non-analytic paths are likely to be unbounded
near µ = 0 even as a function of

√
µ. Our study in this paper shows a fact contrary to this

intuition.

In Section 2, we first define SDLCP and off-central paths for SDLCP. We also describe in
detail a reformulation of the ODE system that described an off-central path for SDLCP. The
main result in Section 3 is a necessary and sufficient condition for when an off-central path, as
a function of

√
µ (where µ is the parameter of the path, and proportional to the duality gap

between the primal and dual variables), is analytic at the solution of SDLCP. This condition is
not intuitively obvious and may provide some insight into the study of asymptotic analyticity
behavior of off-central paths. We also derive in this section a weak sufficient condition for
convergence of off-central path. In Section 4, we show that if the given SDLCP has a unique
solution, then the first derivative of any off-central path, as a function of

√
µ, is bounded.

Finally, we give some concluding remarks and future directions in Section 5.

1.1 Notation.

The space of symmetric n × n matrices is denoted by Sn. Given matrices X and Y in <p×q,
the standard inner product is defined by X • Y ≡ Tr(XT Y ), where Tr(·) denotes the trace
of a matrix. If X ∈ Sn is positive semidefinite (resp., positive definite), we write X � 0
(resp., X � 0). The cone of positive semidefinite (resp., positive definite) symmetric matrices
is denoted by Sn

+ (resp., Sn
++). Either the identity matrix or operator will be denoted by I.

‖ · ‖ for a vector in <n refers the Euclidean norm and for a matrix in <p×q, it refers to the
Frobenius norm.
For a matrix X ∈ <p×q, we denote its component at the ith row and jth column by Xij . Also,
Xi· denotes the ith row of X and X·j the jth column of X. In case X is partitioned into blocks
of submatrices, then Xij refers to the submatrix in the corresponding (i, j) position.
Given square matrices Ai ∈ <ni×ni , i = 1, . . . ,m, diag(A1, . . . , Am) is a square matrix with Ai

as its diagonal blocks arranged in accordance to the way they are lined up in diag(A1, . . . , Am).
All the other entries in diag(A1, . . . , Am) are taken to be zero.

Given functions f : Ω −→ E and g : Ω −→ <++, where Ω is an arbitrary set and E is a
normed vector space, and a subset Ω̃ ⊆ Ω. We write f(w) = O(g(w)) for all w ∈ Ω̃ to mean that
‖f(w)‖ ≤ Mg(w) for all w ∈ Ω̃ and a constant M > 0; Moreover, for a function U : Ω −→ Sn

++,
we write U(w) = Θ(g(w)) for all w ∈ Ω̃ if U(w) = O(g(w)) and U(w)−1 = O(g(w)) for all
w ∈ Ω̃. The latter condition is equivalent to the existence of a constant M > 0 such that

1
M

I � 1
g(w)

U(w) � MI ∀ w ∈ Ω̃.

The subset Ω̃ should be clear from the context whenever it is used. Usually, Ω̃ = (0, w̄) for a
small w̄ > 0.
If {u(ν) : ν > 0} and {v(ν) : ν > 0} are real sequences with v(ν) > 0, then u(ν) = o(v(ν))
means that limν→0

u(ν)
v(ν) = 0. If u(ν) is a matrix or a vector, then u(ν) = o(v(ν)) means that

limν→0
‖u(ν)‖
v(ν) = 0.
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A function f = (f1, . . . , fm) from an open subset O of <k to <m is analytic at a point x =
(x1, . . . , xk) ∈ O if each fi, i = 1, . . . ,m, can be written as a convergent power series expansion
about (x1, . . . , xk) in an open neighborhood of x. Furthermore, if x0 ∈ <k is on the boundary
of O, we say f is analytic at x0 (or can be extended analytically to x0), and we let f(x0) =
limx→x0 f(x), if there exists an analytic function g which is analytic at x0 and coincides with
f wherever both are defined.
Note that the above also applies if an argument of f is a symmetric matrix, in which case, we
consider the variable to lie in an Euclidean space of appropriate dimension. If the range of f
is in the space of matrices, we also consider it to be in an appropriate Euclidean space when
considering analyticity, so that the above applies.

2 Formulation and Reformulation of ODEs for Off-Central Path.

Let us consider the following SDLCP:

XY = 0
A(X) + B(Y ) = q

X, Y ∈ Sn
+

(1)

where A,B : Sn −→ <ñ are linear operators mapping Sn to the space <ñ, where ñ :=
n(n + 1)/2. Hence A and B have the form A(X) = (A1 • X, . . . , Añ • X)T , resp. B(Y ) =
(B1 • Y, . . . , Bñ • Y )T , where Ai, Bi ∈ Sn for all i = 1, . . . , ñ.

We have the following assumption on SDLCP throughout the paper:

Assumption 2.1

(a) SDLCP is monotone, i.e. A(X) + B(Y ) = 0 for X, Y ∈ Sn ⇒ X • Y ≥ 0.

(b) There exists X1, Y 1 � 0 such that A(X1) + B(Y 1) = q.

(c) {A(X) + B(Y ) : X, Y ∈ Sn} = <ñ.

The above assumptions are basic assumptions used in the literature when SDLCP is studied in
the context of IPM. Besides Assumption 2.1, we also need another assumption in this paper,
given below:

Assumption 2.2 There exists a strictly complementary solution, (X∗, Y ∗), to SDLCP (1).

The analysis of the asymptotic behavior of an off-central path for a general SDLCP is considered
to be difficult without this assumption (Assumption 2.2). However, we note that there have
been some work done in this area for special classes of SDLCP without the assumption. See
for example [3].

Let us now define the off-central path for SDLCP passing through a point (X0, Y 0), X0, Y 0 � 0,
satisfying A(X) + B(Y ) = q.

Definition 2.1 The solution (X(µ), Y (µ)), µ > 0, to

HP (XY ′ + X ′Y ) =
1
µ

HP (XY ), (2)

A(X ′) + B(Y ′) = 0, (3)
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with the initial condition (X(1), Y (1)) = (X0, Y 0), X0, Y 0 � 0, is the off-central path for
SDLCP, corresponding to P , passing through (X0, Y 0).
Here HP (U) := 1

2(PUP−1 + (PUP−1)T ), and P ∈ <n×n is an invertible matrix.

Assuming P is an analytic function of X, Y and PXY P−1 is always symmetric (such P include
the well-known directions like the HKM (and its dual) and NT directions), it is proved in [8]
that the above definition is well-defined, and (X(µ), Y (µ)), X(µ), Y (µ) � 0, is unique, analytic
and exists over µ ∈ (0,∞). The motivation for defining an off-central path as in Definition 2.1
is also given in [8].
The following theorem, which we quote from [8], will be referred to in this paper. We state it
here for easy reference.

Theorem 2.1 Let (X(µ), Y (µ)), µ > 0, be the off-central path for SDLCP passing through
(X0, Y 0), then λmin(X(µ)Y (µ)) = λmin(X0Y 0)µ and λmax(X(µ)Y (µ)) = λmax(X0Y 0)µ.
Here λmin(·) and λmax(·) are the minimum and maximum eigenvalue of the given matrix,
respectively.

Remark 2.1 The central path (Xc(µ), Yc(µ)) for SDLCP, which satisfies Xc(µ)Yc(µ) = µI,
is a special example of off-central path for SDLCP. When µ = 1, it satisfies Tr(Xc(1)Yc(1)) =
n. Therefore, we also require the initial data (X0, Y 0) when µ = 1 in (2)-(3) to satisfy
Tr(X0Y 0) = n. In this case, it is easy to see, using (2), that the parameter µ in the ODE
system (2)-(3) actually represents the duality gap, X(µ) • Y (µ), at the point (X(µ), Y (µ)) on
the path.

Using the operation ⊗s and the map svec (with inverse smat), whose properties are given on
pp. 775-776 and the appendix of [14], we can rewrite (2)-(3) as

svec(A1)T svec(B1)T

...
...

svec(Añ)T svec(Bñ)T

P ⊗s P−T Y PX ⊗s P−T


(

svec(X ′)
svec(Y ′)

)
=

1
µ

(
0

svec(HP (XY ))

)
, (4)

where ñ = n(n + 1)/2.

As was mentioned in the Introduction section, we consider only the dual HKM direction in
this paper. This corresponds to P = Y 1/2[18]. Therefore, (4) becomes(

A B
I X ⊗s Y −1

)(
svec(X ′)
svec(Y ′)

)
=

1
µ

(
0

svec(X)

)
, (5)

where A =

 svec(A1)T

...
svec(Añ)T

 and B =

 svec(B1)T

...
svec(Bñ)T

.

As µ → 0, (X(µ), Y (µ)) will tend to the boundary of the feasible region, thus, they are expected
to be singular at the limit. Therefore, the left-hand matrix in (5) is not invertible, and may not
be defined, in the limit as µ → 0 on an off-central path for SDLCP. Hence using (5) is not likely
to yield results on the asymptotic behavior of off-central paths for SDLCP. To overcome this,
we will make a transformation to (5). We wish that in the transformed system the coefficient
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matrix on the left-hand side will be invertible at µ = 0, and the original and new systems have
the same solution for µ > 0. If such a new system can be formulated and its solution can be
shown to be analytic (with respect to µ or

√
µ) at the µ = 0, then the solution of the original

system can be analytically extended to µ = 0. Therefore, the system of ODEs obtained after
the transformation will provide us an appropriate platform to answer the question when an
off-central path (X(µ), Y (µ)) converges and is analytic at its limit point.

We only attempt to study the analyticity of the off-central path at its limit point with respect
to
√

µ instead of µ in this paper because
√

µ naturally appears in the off diagonal entries of
X(µ), Y (µ), as shown in (6) and (7) below. This leads us to naturally investigate asymptotic
behavior of X(µ), Y (µ) w.r.t

√
µ first.

In what follows, we occasionally suppress the dependence of a vector or matrix on its parameters
for the sake of clarity, and whether these matrices or vectors are dependent on a parameter
and the parameter involved should be clear from the context.

Let (X∗, Y ∗) be a strictly complementary solution to SDLCP (1), which exists by Assumption
2.2.
Since X∗ and Y ∗ commutes, they are jointly diagonalizable by some orthogonal matrix. So,
using a suitable orthogonal similarity transformation of the matrices in SDLCP (1), we may
assume, without loss of generality, that

X∗ =

(
Λ∗

11 0
0 0

)
, Y ∗ =

(
0 0
0 Λ∗

22

)
,

where Λ∗
11 = diag(λ∗1, . . . , λ

∗
m) � 0 and Λ∗

22 = diag(λ∗m+1, . . . , λ
∗
n) � 0. Here λ∗1, . . . , λ

∗
n are real

numbers greater than zero.

Hereafter, whenever we partitioned a matrix S ∈ Sn, we do it in a similar way, i.e., S is always

partitioned as

(
S11 S12

ST
12 S22

)
, where S11 ∈ Sm, S22 ∈ Sn−m and S12 ∈ <m×(n−m).

In order to transform the ODE system (5) into a more “manageable” system of ODEs, we will
perform a variable transformation. For this purpose, we first prove a few lemmas below. These
lemmas are adapted from [7].

Lemma 2.1 On an off-central path, X(µ), Y (µ) are bounded near µ = 0.

Proof. This can be easily seen using X(µ) • Y (µ) = (X0 • Y 0)µ = nµ (where the second
equality follows from Remark 2.1) and from (X(µ) − X1) • (Y (µ) − Y 1) ≥ 0, which follows
from Assumption 2.1(a) and (b). QED

Lemma 2.2 ([7] Lemma 3.10) Y11(µ) and X22(µ) are equal to O(µ) and ‖X12(µ)‖ and ‖Y12(µ)‖
are equal to O(

√
µ).

Proof. Now, A(X(µ)−X∗) + B(Y (µ)− Y ∗) = 0 implies, by Assumption 2.1(a), that (X(µ)−
X∗) • (Y (µ)− Y ∗) ≥ 0. Hence X(µ) • Y ∗ + X∗ • Y (µ) ≤ X(µ) • Y (µ) = Tr(X(µ)Y (µ)).

Note that by (2), we can see easily that Tr(X(µ)Y (µ)) = Tr(X0Y 0)µ = nµ. Hence, X(µ) •
Y ∗+X∗ •Y (µ) = O(µ). That is,

∑n
i=m+1 λ∗i xii(µ)+

∑m
i=1 λ∗i yii(µ) = O(µ), where xii(µ), yii(µ)
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are the diagonal elements of X(µ) and Y (µ) respectively. This implies that X22(µ) = O(µ)
and Y11(µ) = O(µ).

Also, we have ‖X12(µ)‖2 ≤ Tr(X11(µ))Tr(X22(µ)) (by Lemma 2.2 of [7]), together with the
fact that X(µ) is bounded near µ equal to zero (by Lemma 2.1) and X22(µ) = O(µ), implies
that ‖X12(µ)‖ = O(

√
µ).

Similarly, we can show that ‖Y12(µ)‖ = O(
√

µ). QED

Lemma 2.3 ([7] Lemma 3.11) X11(µ) and Y22(µ) are equal to Θ(1), and X22(µ) and Y11(µ)
are equal to Θ(µ).

Proof. Now, det
(

X(µ)Y (µ)
µ

)
=
∏n

i=1
λi(X(µ)Y (µ))

µ ≥ λmin(X0Y 0)n, where the inequality follows
from Theorem 2.1.

On the other hand, det
(

X(µ)Y (µ)
µ

)
= 1

µn det(X(µ))det(Y (µ)) ≤ det(X11(µ)) det
(

X22(µ)
µ

)
×

det(Y22(µ)) det
(

Y11(µ)
µ

)
(where the inequality follows from Theorem 2.4 in [7]). Therefore,

we have λmin(X0Y 0)n ≤ det(X11(µ))det
(

X22(µ)
µ

)
det(Y22(µ))det

(
Y11(µ)

µ

)
. Taking log on both

sides of the inequality, we have

n log λmin(X0Y 0) ≤ log det(X11(µ)) + log det
(

X22(µ)
µ

)
+ log det(Y22(µ))

+ log det
(

Y11(µ)
µ

)
.

Since X22(µ) and Y11(µ) are equal to O(µ) (by the previous lemma) and X(µ), Y (µ) are
bounded (by Lemma 2.1), we must have, from the above logarithmic inequality, that X11(µ)
and Y22(µ) are equal to Θ(1) and X22(µ) and Y11(µ) are equal to Θ(µ). QED

The above lemmas show that for (X(µ), Y (µ)) on an off-central path, we have

X(µ) =

(
X11

√
µX̃12√

µX̃T
12 µX̃22

)
(6)

and

Y (µ) =

(
µỸ11

√
µỸ12√

µỸ T
12 Y22

)
, (7)

where X11, Y22, X̃22 and Ỹ11 are equal to Θ(1), and ‖X̃12(µ)‖, ‖Ỹ12(µ)‖ are equal to O(1).

Letting X̃(µ) =

(
X11 X̃12

X̃T
12 X̃22

)
and Ỹ (µ) =

(
Ỹ11 Ỹ12

Ỹ T
12 Y22

)
, we can then write

X(µ) =

(
I 0
0
√

µI

)
X̃(µ)

(
I 0
0
√

µI

)

and

Y (µ) =

( √
µI 0
0 I

)
Ỹ (µ)

( √
µI 0
0 I

)
.
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Lemma 2.4 X̃(µ) and Ỹ (µ) are positive definite for all µ > 0, and any of their accumulation
points are also positive definite.

Proof. Now, from the above relations between X̃, X and Ỹ , Y , it is clear that X̃(µ), Ỹ (µ) are
positive definite for all µ > 0.
It can be seen easily that

X(µ)Y (µ) = µ

(
I 0
0

√
µI

)
X̃(µ)Ỹ (µ)

(
I 0
0

√
µI

)−1

.

That is, X(µ)Y (µ) is similar to µX̃(µ)Ỹ (µ). Thus, by Thereom 2.1, λmin(X̃(µ)Ỹ (µ)) =
λmin(X0Y 0) and λmax(X̃(µ)Ỹ (µ)) = λmax(X0Y 0). With X̃(µ), Ỹ (µ) bounded and positive
definite for µ in (0, µ0] for any µ0 > 0, we deduce that any of their accumulation points are
also positive definite. QED

Let X1(t) = X(t2), Y1(t) = Y (t2). Similarly, let X̃1(t) = X̃(t2) and Ỹ1(t) = Ỹ (t2). Then
X1, X̃1 and Y1, Ỹ1 are related by

X1(t) =

(
I 0
0 tI

)
X̃1(t)

(
I 0
0 tI

)
(8)

and

Y1(t) =

(
tI 0
0 I

)
Ỹ1(t)

(
tI 0
0 I

)
. (9)

To study the analyticity of (X(µ), Y (µ)) w.r.t
√

µ at µ = 0, it is the same as studying the
analyticity of (X1(t), Y1(t)) when t = 0. The following proposition shows that it suffices to do
this by studying the analyticity of (X̃1(t), Ỹ1(t)) at t = 0.

Proposition 2.1 X1(t) is analytic at t = 0 if and only if X̃1(t) is analytic at t = 0. Similarly,
Y1(t) is analytic at t = 0 if and only if Ỹ1(t) is analytic at t = 0.

Proof. By (8), we have (X1)11(t) = (X̃1)11(t), (X1)12(t) = t(X̃1)12(t), (X1)22(t) = t2(X̃1)22(t).
If X̃1 is analytic, it is obvious that X1 is also analytic. Now we consider submatrix (X1)22 as
example. If X1 is analytic at t = 0, then (X1)12 can be represented as a power series near t = 0,
say (X1)12(t) = U0 +

∑∞
i=1 Uit

i. Now, using the fact that X̃1 is bounded near t = 0, which
follows from Lemma 2.2, we have (X1)12(0) = 0. Thus, U0 = 0. Then, (X̃1)12(t) =

∑∞
i=1 Uit

i−1,
which is analytic near t = 0. The other parts can be shown similarly. QED

Therefore, by this proposition, we need only study the analyticity of X̃1(t) and Ỹ1(t) at t = 0
to conclude the property for X1(t) and Y1(t). An advantage for using X̃1(t) and Ỹ1(t) rather
than X1(t) and Y1(t) is because their accumulation points are positive definite, by Lemma 2.4
- which is a desirable property, unlike that of X1(t) and Y1(t).

Hence, we are going to express the system of ODEs (5) in terms of X̃1 and Ỹ1.

In terms of X1 and Y1, (5) becomes

1
2

(
A B
I X1 ⊗s Y −1

1

)(
svec(X ′

1)
svec(Y ′

1)

)
=

1
t

(
0

svec(X1)

)
. (10)
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Let us reiterate again that if we consider X1 and Y1 on an off-central path, then the matrix
on the extreme left in (10) is not invertible and may not even be defined as t tends to zero
(since Y −1

1 does not exist in the limit) and hence it is not possible to analyze the asymptotic
behavior of X1(t) and Y1(t) if we just use (10). This provides the motivation for us to express
(10) in terms of X̃1 and Ỹ1, after which we will see that further analysis is possible.

From here till Proposition 2.3, we describe how we obtain from (10) an ODE system in terms
of X̃1 and Ỹ1.

Note that since

X1(t) =

(
I 0
0 tI

)
X̃1(t)

(
I 0
0 tI

)
,

we have

X ′
1(t) =

(
0 0
0 I

)
X̃1(t)

(
I 0
0 tI

)
+

(
I 0
0 tI

)
X̃ ′

1(t)

(
I 0
0 tI

)
+(

I 0
0 tI

)
X̃1(t)

(
0 0
0 I

)
.

Therefore,

svec(X ′
1(t)) = 2

((
0 0
0 I

)
⊗s

(
I 0
0 tI

))
svec(X̃1(t)) +((

I 0
0 tI

)
⊗s

(
I 0
0 tI

))
svec(X̃ ′

1(t)). (11)

Similarly,

svec(Y ′
1(t)) = 2

((
I 0
0 0

)
⊗s

(
tI 0
0 I

))
svec(Ỹ1(t)) +((

tI 0
0 I

)
⊗s

(
tI 0
0 I

))
svec(Ỹ ′

1(t)). (12)

We first consider the second equation in (10):

1
2

(
svec(X ′

1) + (X1 ⊗s Y −1
1 )svec(Y ′

1)
)

=
1
t
svec(X1). (13)

By (8), (9) and using the properties of ⊗s, we have

(X1 ⊗s Y −1
1 )

((
tI 0
0 I

)
⊗s

(
tI 0
0 I

))
=

((
I 0
0 tI

)
⊗s

(
I 0
0 tI

))
(X̃1 ⊗s Ỹ −1

1 ). (14)

Substituting the expressions of (X ′
1, Y

′
1), (11)-(12), and (14) into (13), we have

1
2

((
I 0
0 tI

)
⊗s

(
I 0
0 tI

))(
svec(X̃ ′

1) + (X̃1 ⊗s Ỹ −1
1 )svec(Ỹ ′

1)
)

=
1
t

((
I 0
0 tI

)
⊗s

(
I 0
0 tI

))
svec(X̃1)−

((
0 0
0 I

)
⊗s

(
I 0
0 tI

))
svec(X̃1)

−
((

I 0
0 tI

)
⊗s

(
I 0
0 tI

))
(X̃1 ⊗s Ỹ −1

1 )
(( 1

t I 0
0 0

)
⊗s I

)
svec(Ỹ1).
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Taking the inverse of the first matrix, we obtain

1
2

(
svec(X̃ ′

1) + (X̃1 ⊗s Ỹ −1
1 )svec(Ỹ ′

1)
)

=
1
t

[((
I 0
0 0

)
⊗s I

)
svec(X̃1)− (X̃1 ⊗s Ỹ −1

1 )
((

I 0
0 0

)
⊗s I

)
svec(Ỹ1)

]
. (15)

For any t > 0, the equation (13) is equivalent to

1
2

(
(X1 ⊗s Y −1

1 )−1svec(X ′
1) + svec(Y ′

1)
)

=
1
t
svec(Y1).

Similar to the above manipulation, we can derive

1
2

(
(X̃1 ⊗s Ỹ −1

1 )−1svec(X̃ ′
1) + svec(Ỹ ′

1)
)

=
1
t

[
−(X̃1 ⊗s Ỹ −1

1 )−1
((

0 0
0 I

)
⊗s I

)
svec(X̃1) +

((
0 0
0 I

)
⊗s I

)
svec(Ỹ1)

]
.

Multiplying (X̃1 ⊗s Ỹ −1
1 ) on both sides, and then comparing with (15), we obtain(

svec(X̃ ′
1) + (X̃1 ⊗s Ỹ −1

1 )svec(Ỹ ′
1)
)

=
1
t

[((
I 0
0 −I

)
⊗s I

)
svec(X̃1)− (X̃1 ⊗s Ỹ −1

1 )
((

I 0
0 −I

)
⊗s I

)
svec(Ỹ1)

]
. (16)

This equation is equivalent to the second equation in (10) for all t > 0. The nice thing in this
equation is that all matrices in it are nonsingular at t = 0. Thus the only singularity in the
equation is explicitly shown up in 1/t.

Now, we turn to consider the first equation in (10):

Asvec(X ′
1) + Bsvec(Y ′

1) = 0. (17)

Substituting (11) and (12) into it, we obtain

A
((

I 0
0 tI

)
⊗s

(
I 0
0 tI

))
svec(X̃ ′

1) + B
((

tI 0
0 I

)
⊗s

(
tI 0
0 I

))
svec(Ỹ ′

1)

= −2
[
A
((

0 0
0 I

)
⊗s

(
I 0
0 tI

))
svec(X̃1) + B

((
I 0
0 0

)
⊗s

(
tI 0
0 I

))
svec(Ỹ1)

]
.(18)

Now the coefficients of svec(X̃ ′
1) and svec(Ỹ ′

1) together may not be of full row rank at t = 0.
Thus, we shall “eliminate” some t on both sides so that the equivalent (when t > 0) new
equation will have coefficients of svec(X̃ ′

1) and svec(Ỹ ′
1) together of full row rank at t = 0.

To match the block structures of X and Y , it is convenient to have special form of A and B
as follows:

(A B) =

 U
V
W

 , (19)
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where U ∈ <i1×2ñ, V ∈ <i2×2ñ and W ∈ <i3×2ñ are such that

Uk· =

( (
svec

(
(Ak)11 (Ak)12

(Ak)T
12 (Ak)22

))T (
svec

(
(Bk)11 (Bk)12
(Bk)T

12 (Bk)22

))T )
, 1 ≤ k ≤ i1,

Vk· =

( (
svec

(
0 (Ak)12

(Ak)T
12 (Ak)22

))T (
svec

(
(Bk)11 (Bk)12
(Bk)T

12 0

))T )
, i1 + 1 ≤ k ≤ i1 + i2,

Wk· =

( (
svec

(
0 0
0 (Ak)22

))T (
svec

(
(Bk)11 0

0 0

))T )
, i1 + i2 + 1 ≤ k ≤ ñ.

for some i1, i2 and i3.

Lemma 2.5 below (the lemma is inspired by a similar result in [7], see also [4]) shows that this
special form of (A B) is valid without loss of generality. Thus, the use of this special form
does not sacrifice generality.

Lemma 2.5 There exists an invertible matrix T such that

T (A B) =

T

 svec(A1)T svec(B1)T

...
...

svec(Añ)T svec(Bñ)T

 =

 Ũ
Ṽ
W̃

 , (20)

where Ũ ∈ <i1×2ñ, Ṽ ∈ <i2×2ñ and W̃ ∈ <i3×2ñ are such that

Ũk· =

( (
svec

(
(Ãk)11 (Ãk)12
(Ãk)T

12 (Ãk)22

))T (
svec

(
(B̃k)11 (B̃k)12
(B̃k)T

12 (B̃k)22

))T )
, 1 ≤ k ≤ i1,

Ṽk· =

( (
svec

(
0 (Ãk)12

(Ãk)T
12 (Ãk)22

))T (
svec

(
(B̃k)11 (B̃k)12
(B̃k)T

12 0

))T )
, i1 + 1 ≤ k ≤ i1 + i2,

W̃k· =

( (
svec

(
0 0
0 (Ãk)22

))T (
svec

(
(B̃k)11 0

0 0

))T )
, i1 + i2 + 1 ≤ k ≤ ñ.

Here 0 ≤ i1, i2, i3 ≤ ñ - how i1, i2 and i3 are defined is clear from the proof of the lemma.

Proof. For the sake of proving the lemma, assume without loss of generality that the entries
in svec(Ai)T are rearranged resulting in the row vector ( ̂(Ai)11 ̂(Ai)12 ̂(Ai)22), where ̂(Ai)11
comprises of the entries in svec(Ai)T corresponding to the upper left hand block (Ai)11 of
Ai, ̂(Ai)12 entries of svec(Ai)T corresponding to the upper right hand block (Ai)12 of Ai and̂(Ai)22 entries of svec(Ai)T corresponding to the lower right hand block (Ai)22 of Ai. Similarly,
assume that svec(Bi)T is written as ( ̂(Bi)11 ̂(Bi)12 ̂(Bi)22).
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Let

i1 = rank


̂(A1)11 ̂(B1)22
...

...̂(Añ)11 ̂(Bñ)22

 ,

i2 = rank


̂(A1)11 ̂(A1)12 ̂(B1)12

̂(B1)22
...

...
...

...̂(Añ)11 ̂(Añ)12 ̂(Bñ)12
̂(Bñ)22

− i1,

i3 = rank

 svec(A1)T svec(B1)T

...
...

svec(Añ)T svec(Bñ)T

− (i1 + i2),

where i1 + i2 + i3 is equal to ñ, by Assumption 2.1(c). Then the lemma holds by applying the
technique of block Gaussian elimination method to svec(A1)T svec(B1)T

...
...

svec(Añ)T svec(Bñ)T

 .

Namely, we first eliminate to zero, (ñ− i1) rows in
̂(A1)11 ̂(B1)22
...

...̂(Añ)11 ̂(Bñ)22

 .

Then, we eliminate to zero, i3 rows in the corresponding (ñ− i1) rows in
̂(A1)12 ̂(B1)12
...

...̂(Añ)12
̂(Bñ)12

 ,

to obtain the required result. QED

Remark 2.2 It should be noted, by construction, that in the above

i1 = rank(Ũ1),

where Ũ1 ∈ <i1×2ñ is defined by

(Ũ1)k· =

( (
svec

(
(Ãk)11 0

0 0

))T (
svec

(
0 0
0 (B̃k)22

))T )
, 1 ≤ k ≤ i1.

i2 = rank(Ṽ1),
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where Ṽ1 ∈ <i2×2ñ is defined by

(Ṽ1)k· =

( (
svec

(
0 (Ãk)12

(Ãk)T
12 0

))T (
svec

(
0 (B̃k)12

(B̃k)T
12 0

))T )
, i1 + 1 ≤ k ≤ i1 + i2.

i3 = rank(W̃1),

where W̃1 ∈ <i3×2ñ is defined by

(W̃1)k· =

( (
svec

(
0 0
0 (Ãk)22

))T (
svec

(
(B̃k)11 0

0 0

))T )
, i1 + i2 + 1 ≤ k ≤ ñ.

Here i1 + i2 + i3 = ñ.

From now onwards, we can assume, without loss of generality, that A =

 svec(A1)T

...
svec(Añ)T

 and

B =

 svec(B1)T

...
svec(Bñ)T

 are given by (19). In these forms, again, (A B) have full row rank and

Au + Bv = 0 ⇒ uT v ≥ 0. (21)

Let us make use of these new structures of A and B.

Now, for each i = 1, . . . , ñ, observe that

svec(Ai)T

((
I 0
0 tI

)
⊗s

(
I 0
0 tI

))
=

(
svec

(
(Ai)11 t(Ai)12
t(Ai)T

12 t2(Ai)22

))T

.

Together with form (19) for A, we can see easily that

A
((

I 0
0 tI

)
⊗s

(
I 0
0 tI

))
= diag(I, tI, t2I)A(t),

where

A(t)k· =



(
svec

(
(Ak)11 t(Ak)12
t(Ak)T

12 t2(Ak)22

))T

for 1 ≤ k ≤ i1(
svec

(
0 (Ak)12

(Ak)T
12 t(Ak)22

))T

for i1 + 1 ≤ k ≤ i1 + i2(
svec

(
0 0
0 (Ak)22

))T

for i1 + i2 + 1 ≤ k ≤ ñ

. (22)
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Remark 2.3 Note that in this and the next section, diag(I, tI, t2I) or diag(I, tI, t2I, C), where
C is a matrix, whenever it appears, has its first diagonal block the identity matrix of dimension
i1, its second diagonal block a multiple of the identity matrix of dimension i2, and its third
diagonal block a multiple of the identity matrix of dimension ñ− i1 − i2 = i3.

In a similar fashion, we have

B
((

tI 0
0 I

)
⊗s

(
tI 0
0 I

))
= diag(I, tI, t2I)B(t),

where

B(t)k· =



(
svec

(
t2(Bk)11 t(Bk)12

t(Bk)T
12 (Bk)22

))T

for 1 ≤ k ≤ i1(
svec

(
t(Bk)11 (Bk)12

(Bk)T
12 0

))T

for i1 + 1 ≤ k ≤ i1 + i2(
svec

(
(Bk)11 0

0 0

))T

for i1 + i2 + 1 ≤ k ≤ ñ

. (23)

Therefore, we have the following lemma:

Lemma 2.6 With the matrices A and B in the form of (19), we have

A
((

I 0
0 tI

)
⊗s

(
I 0
0 tI

))
= diag(I, tI, t2I)A(t)

and

B
((

tI 0
0 I

)
⊗s

(
tI 0
0 I

))
= diag(I, tI, t2I)B(t),

where A(t) and B(t) are defined in (22) and (23) respectively.

Proof. As above. QED

From Lemma 2.6, we see that using the new structures of A and B in (19), we are able to “fac-

tor” out t and t2 from various blocks inA
((

I 0
0 tI

)
⊗s

(
I 0
0 tI

))
and B

((
tI 0
0 I

)
⊗s

(
tI 0
0 I

))
,

while maintaining the “monotonicity” and “full row rank” properties of (A B) in (A(t) B(t)).
This proves to be important in rewriting the ODE system (10) into a better form.

Lemma 2.6 can also be used to reformulate the right hand side of (18).

A
((

0 0
0 I

)
⊗s

(
I 0
0 tI

))
=

diag(I, tI, t2I)A(t)

((
I 0
0 1

t I

)
⊗s

(
I 0
0 1

t I

))((
0 0
0 I

)
⊗s

(
I 0
0 tI

))
=

diag(I, tI, t2I)A(t)

((
0 0
0 1

t I

)
⊗s I

)
.
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Also,

B
((

I 0
0 0

)
⊗s

(
tI 0
0 I

))
= diag(I, tI, t2I)B(t)

((
1
t I 0
0 0

)
⊗s I

)
.

Therefore, for any t > 0, the equation (18) is equivalent to

1
2
A(t)svec(X̃ ′

1) +
1
2
B(t)svec(Ỹ ′

1)

= −1
t
A(t)

((
0 0
0 I

)
⊗s I

)
svec(X̃1)−

1
t
B(t)

((
I 0
0 0

)
⊗s I

)
svec(Ỹ1). (24)

As we assume the special structure of A and B in the form of (19), the reformulated equation
of AX + BY = q have the following special form.

Proposition 2.2 With A and B in the form of (19) and A(t) and B(t) defined by (22) and
(23) respectively, the linear equation in the SDLCP (1) is equivalent to

A(t)svec(X̃1(t)) + B(t)svec(Ỹ1(t)) =

 q1

0
0

 (25)

and we let q = (qT
1 , 0, 0)T from now onwards.

Proof. Since Asvec(X1(t)) + Bsvec(Y1(t)) = q, we have

A
((

I 0
0 tI

)
⊗s

(
I 0
0 tI

))
svec(X̃1(t)) + B

((
tI 0
0 I

)
⊗s

(
tI 0
0 I

))
svec(Ỹ1(t)) = q.

Hence, by Lemma 2.6,

diag(I, tI, t2I)
(
A(t)svec(X̃1(t)) + B(t)svec(Ỹ1(t))

)
= q.

This implies that q is equal to (qT
1 , 0, 0)T where q1 ∈ <i1 , which can be seen by letting t tends

to zero in above. Therefore,

A(t)svec(X̃1(t)) + B(t)svec(Ỹ1(t)) =

 q1

0
0

 . (26)

QED

We shall further simplify the right-hand side of (24). By the structure of A(t) in (22), we have
the following:

(
A(t)

((
0 0
0 I

)
⊗s I

))
k·

=


t

(
svec

(
0 1

2(Ak)12
1
2(Ak)T

12 t(Ak)22

))T

for 1 ≤ k ≤ i1

1
2A(t)k· + t

(
svec

(
0 0
0 1

2(Ak)22

))T

for i1 + 1 ≤ k ≤ i1 + i2

A(t)k· for i1 + i2 + 1 ≤ k ≤ ñ

.
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By the structure of B(t) in (23), an analogous structure for B(t)
((

I 0
0 0

)
⊗s I

)
also holds.

Now, by Proposition 2.2, we have, for k = i1 + 1, . . . , ñ,

A(t)k·svec(X̃1(t)) + B(t)k·svec(Ỹ1(t)) = 0.

Therefore,

2
t
A(t)

((
0 0
0 I

)
⊗s I

)
svec(X̃1) +

2
t
B(t)

((
I 0
0 0

)
⊗s I

)
svec(Ỹ1)

from the right-hand side of (24) equals

G(t)svec(X̃1(t)) +H(t)svec(Ỹ1(t)),

where

G(t)k· :=



(
svec

(
0 (Ak)12

(Ak)T
12 2t(Ak)22

))T

for 1 ≤ k ≤ i1(
svec

(
0 0
0 (Ak)22

))T

for i1 + 1 ≤ k ≤ i1 + i2

0 for i1 + i2 + 1 ≤ k ≤ ñ

(27)

and

H(t)k· :=



(
svec

(
2t(Bk)11 (Bk)12

(Bk)T
12 0

))T

for 1 ≤ k ≤ i1(
svec

(
(Bk)11 0

0 0

))T

for i1 + 1 ≤ k ≤ i1 + i2

0 for i1 + i2 + 1 ≤ k ≤ ñ

. (28)

Now we can present the main result of this section: a reformulated ODE system for the off-
central paths.

Proposition 2.3 The off-central path for SDLCP, (X(µ), Y (µ)), µ > 0, is the solution of the
system of ODEs (5) with (X(1), Y (1)) = (X0, Y 0), if and only if (X̃1(t), Ỹ1(t)), t > 0, is the
solution to the following system of ODEs(

A(t) B(t)
I X̃1 ⊗s Ỹ −1

1

)(
svec(X̃ ′

1)
svec(Ỹ ′

1)

)
= (29) −G(t) −H(t)

1
t

(
I 0
0 −I

)
⊗s I −1

t (X̃1 ⊗s Ỹ −1
1 )

((
I 0
0 −I

)
⊗s I

) ( svec(X̃1)
svec(Ỹ1)

)
,

with (X̃1(1), Ỹ1(1)) = (X0, Y 0).
Here X(µ)(= X1(t)), X̃1(t) and Y (µ)(= Y1(t)), Ỹ1(t) are related by (8) and (9) respectively,
where µ = t2.
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Proof. The ODE system (29) follows from (24) and (16) which are equivalent to the ODE
system (10) and thus equivalent to (5) for µ > 0 (t > 0). QED

The importance of this proposition is that the coefficient matrix on the left-hand side is non-
singular for all t ≥ 0 (even at t = 0), as will be shown in Proposition 2.4 below. This enable
us to investigate the asymptotic behavior of off-central paths as t → 0 (or µ → 0).

We observe, in the following proposition, an important property of the matrix

(
A(t) B(t)

I X̃1 ⊗s Ỹ −1
1

)
on the left-hand side of the system of equations (29).

Proposition 2.4

(
βA(t) βB(t)

I X̃1 ⊗s Ỹ −1
1

)
, where β 6= 0, β ∈ <, is invertible for all t ≥ 0 and

X̃1, Ỹ1 positive definite.

Proof. To prove the proposition, it suffices to show that(
βA(t) βB(t)

I X̃1 ⊗s Ỹ −1
1

)(
u
v

)
= 0 ⇒ u = v = 0,

for t ≥ 0 and X̃1, Ỹ1 positive definite.

A sufficient condition for the above to hold is to show that

A(t)u + B(t)v = 0 ⇒ uT v ≥ 0 (30)

Now, for t > 0, (30) is true by Lemma 2.6 and since (21) holds.

Therefore, we need only show (30) for the case t = 0.

Suppose A(0)u + B(0)v = 0. We want to show that uT v ≥ 0. (The idea to prove this follows
the proof of Theorem 3.13 in [7].)

Let u = svec

(
U11 U12

UT
12 U22

)
and v = svec

(
V11 V12

V T
12 V22

)
.

We have A svec

(
U11 0
0 0

)
+ B svec

(
0 0
0 V22

)
= 0 since A(0)u + B(0)v = 0.

Also, A svec

(
W1 Z1

ZT
1 U22

)
+ B svec

(
V11 Z2

ZT
2 W2

)
= 0 for some W1 ∈ Sm, W2 ∈ Sn−m and

Z1, Z2 ∈ <m×(n−m). This is possible because A(0)u + B(0)v = 0 and by Remark 2.2.

Letting X(s) =

(
W1 Z1

ZT
1 U22

)
+ s

(
U11 0
0 0

)
and Y (s) =

(
V11 Z2

ZT
2 W2

)
+ s

(
0 0
0 V22

)
, we

have A svec(X(s))+B svec(Y (s)) = 0 for all s ∈ <. Therefore, by (21), X(s)•Y (s) ≥ 0 for all
s ∈ <. Expanding X(s)•Y (s), we have W1•V11+U22•W2+2Z1•Z2+s(U11•V11+U22•V22) ≥ 0
for all s ∈ <. This must imply that U11 • V11 + U22 • V22 = 0.

We are done if we can show that U12 • V12 ≥ 0. This is true since there exist W3 ∈ Sm and

W4 ∈ Sn−m such that A svec

(
W3 U12

UT
12 0

)
+B svec

(
0 V12

V T
12 W4

)
= 0 (the reason for this is

because A(0)u + B(0)v = 0 and by Remark 2.2) and then by (21).
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Therefore, we have uT v =

(
U11 U12

UT
12 U22

)
•
(

V11 V12

V T
12 V22

)
≥ 0. QED

Note that the matrix

(
A(t) B(t)

I X̃1 ⊗s Ỹ −1
1

)
in (29) is invertible at any accumulation point of

(X̃1(t), Ỹ1(t)). (This follows from Proposition 2.4 since any accumulation point of X̃1(t) and
Ỹ1(t) is positive definite, by Lemma 2.4.) This fact implies that the matrix is still well-defined
and invertible at the limit as t tends to zero and this enables us to study the asymptotic
behavior of (X̃1(t), Ỹ1(t)).

Using (29), we can give a necessary and sufficient condition for (X̃1(t), Ỹ1(t)) of an off-central
path to be analytic at t = 0. This will be studied in the next section.

3 Asymptotic Analyticity Behavior of Off-Central Path.

First, we have the following technical proposition:

Proposition 3.1 Let (X̃∗
1 , Ỹ ∗

1 ) be an accumulation point of (X̃1(t), Ỹ1(t)) of an off-central
path as t approaches zero. Then

(Ỹ ∗
1 )12 = 0 ⇐⇒

(Ỹ ∗
1 )−1

(
I 0
0 −I

)
Ỹ ∗

1 X̃∗
1 + X̃∗

1 Ỹ ∗
1

(
I 0
0 −I

)
(Ỹ ∗

1 )−1 =

(
2(X̃∗

1 )11 0
0 −2(X̃∗

1 )22

)

Proof. ( ⇒ ) Clear.

( ⇐ ) Suppose

(Ỹ ∗
1 )−1

(
I 0
0 −I

)
Ỹ ∗

1 X̃∗
1 + X̃∗

1 Ỹ ∗
1

(
I 0
0 −I

)
(Ỹ ∗

1 )−1 =

(
2(X̃∗

1 )11 0
0 −2(X̃∗

1 )22

)
.

Then we have(
I 0
0 −I

)
Ỹ ∗

1 X̃∗
1 Ỹ ∗

1 + Ỹ ∗
1 X̃∗

1 Ỹ ∗
1

(
I 0
0 −I

)
= 2Ỹ ∗

1

(
(X̃∗

1 )11 0
0 −(X̃∗

1 )22

)
Ỹ ∗

1 .

Now, ((
I 0
0 −I

)
Ỹ ∗

1 X̃∗
1 Ỹ ∗

1 + Ỹ ∗
1 X̃∗

1 Ỹ ∗
1

(
I 0
0 −I

))
11

=

2
(
(Ỹ ∗

1 )11(X̃∗
1 )11(Ỹ ∗

1 )11 + (Ỹ ∗
1 )12(X̃∗

1 )T
12(Ỹ

∗
1 )11 + (Ỹ ∗

1 )11(X̃∗
1 )12(Ỹ ∗

1 )T
12 + (Ỹ ∗

1 )12(X̃∗
1 )22(Ỹ ∗

1 )T
12

)
and

2

(
Ỹ ∗

1

(
(X̃∗

1 )11 0
0 −(X̃∗

1 )22

)
Ỹ ∗

1

)
11

= 2(Ỹ ∗
1 )11(X̃∗

1 )11(Ỹ ∗
1 )11 − 2(Ỹ ∗

1 )12(X̃∗
1 )22(Ỹ ∗

1 )T
12.

Equating them together, we have

(Ỹ ∗
1 )12(X̃∗

1 )T
12(Ỹ

∗
1 )11 + (Ỹ ∗

1 )11(X̃∗
1 )12(Ỹ ∗

1 )T
12 + 2(Ỹ ∗

1 )12(X̃∗
1 )22(Ỹ ∗

1 )T
12 = 0.
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Hence,

(Ỹ ∗
1 )12(X̃∗

1 )T
12 + (Ỹ ∗

1 )11(X̃∗
1 )12(Ỹ ∗

1 )T
12(Ỹ

∗
1 )−1

11 = −2(Ỹ ∗
1 )12(X̃∗

1 )22(Ỹ ∗
1 )T

12(Ỹ
∗
1 )−1

11 .

Therefore, (Ỹ ∗
1 )12 • (X̃∗

1 )12 = −Tr((Ỹ ∗
1 )12(X̃∗

1 )22(Ỹ ∗
1 )T

12(Ỹ
∗
1 )−1

11 ) ≤ 0.

On the other hand, consider X1(t) and Y1(t) where X1(t), X̃1(t) and Y1(t), Ỹ1(t) are related
by (8) and (9) respectively. Let {tk} be a sequence tending to zero such that (X1(tk), Y1(tk))
approaches (X∗, Y ∗) and (X̃1(tk), Ỹ1(tk)) approaches (X̃∗

1 , Ỹ ∗
1 ). Note that (X∗, Y ∗) is a solution

to SDLCP (1). (Hence X∗ • Y ∗ = 0.) Also, (X∗)11 = (X̃∗
1 )11 and (Y ∗)22 = (Ỹ ∗

1 )22.
Note also that since (X1(tk), Y1(tk)) and (X∗, Y ∗) satisfy A(X) + B(Y ) = q, we have, by
Assumption 2.1(a) (or (21)), (X1(tk)−X∗) • (Y1(tk)− Y ∗) ≥ 0.
Therefore, X1(tk) • Y1(tk) ≥ X1(tk) • Y ∗ + X∗ • Y1(tk), where we have used X∗ • Y ∗ = 0.
Note that X1(tk) • Y1(tk) = t2kX̃1(tk) • Ỹ1(tk), X1(tk) • Y ∗ = t2k(X̃1(tk))22 • (Ỹ ∗

1 )22 and X∗ •
Y1(tk) = t2k(X̃

∗
1 )11 • (Ỹ1(tk))11, by (8), (9) and (Y ∗)22 = (Ỹ ∗

1 )22, (X∗)11 = (X̃∗
1 )22. Hence

X̃1(tk) • Ỹ1(tk) ≥ (X̃1(tk))22 • (Ỹ ∗
1 )22 + (X̃∗

1 )11 • (Ỹ1(tk))11.
Letting tk tends to zero, we have X̃∗

1 • Ỹ ∗
1 ≥ (X̃∗

1 )22 • (Ỹ ∗
1 )22 + (X̃∗

1 )11 • (Ỹ ∗
1 )11.

Since X̃∗
1 • Ỹ ∗

1 = (X̃∗
1 )11 •(Ỹ ∗

1 )11 +2(X̃∗
1 )12 •(Ỹ ∗

1 )12 +(X̃∗
1 )22 •(Ỹ ∗

1 )22, we have (X̃∗
1 )11 •(Ỹ ∗

1 )11 +
2(X̃∗

1 )12 • (Ỹ ∗
1 )12 + (X̃∗

1 )22 • (Ỹ ∗
1 )22 ≥ (X̃∗

1 )22 • (Ỹ ∗
1 )22 + (X̃∗

1 )11 • (Ỹ ∗
1 )11. This implies that

(X̃∗
1 )12 • (Ỹ ∗

1 )12 ≥ 0.

Combining with (Ỹ ∗
1 )12•(X̃∗

1 )12 ≤ 0 obtained earlier, we have Tr((Ỹ ∗
1 )12(X̃∗

1 )22(Ỹ ∗
1 )T

12(Ỹ
∗
1 )−1

11 ) =
−(Ỹ ∗

1 )12 • (X̃∗
1 )12 = 0 which means that (Ỹ ∗

1 )12 = 0, since (X̃∗
1 )22, (Ỹ ∗

1 )11 are symmetric,
positive definite. Hence we are done. QED

With this technical proposition, the following proposition follows almost immediately.

Proposition 3.2 Let (X̃1(t), Ỹ1(t)) be a solution to the system of ODEs (29) for t > 0.
Suppose X̃1(t) and Ỹ1(t) converges as t −→ 0. Then limt→0(Ỹ1)12(t) = 0.

Proof. Suppose X̃1(t) and Ỹ1(t) converge as t −→ 0.
Let X̃1(t) −→ X̃∗

1 � 0, Ỹ1(t) −→ Ỹ ∗
1 � 0 as t −→ 0. We must have((

I 0
0 −I

)
⊗s I

)
svec(X̃∗

1 )− (X̃∗
1 ⊗s (Ỹ ∗

1 )−1)

((
I 0
0 −I

)
⊗s I

)
svec(Ỹ ∗

1 )

is equal to zero. (If not, then from (29), we see that there exists at least one element
of (svec(X̃ ′

1)
T , svec(Ỹ ′

1)
T )T that behaves like 1/t for all t close to zero. This implies that

(X̃1(t), Ỹ1(t)) is unbounded as t → 0, which contradicts its convergence.)
Therefore,((

I 0
0 −I

)
⊗s I

)
svec(X̃∗

1 )− (X̃∗
1 ⊗s (Ỹ ∗

1 )−1)

((
I 0
0 −I

)
⊗s I

)
svec(Ỹ ∗

1 ) = 0.

Using the properties of ⊗s, we have

svec

(
(X̃∗

1 )11 0
0 −(X̃∗

1 )22

)
− 1

2

((
X̃∗

1

(
I 0
0 −I

))
⊗s (Ỹ ∗

1 )−1+(
(Ỹ ∗

1 )−1

(
I 0
0 −I

))
⊗s X̃∗

1

)
svec(Ỹ ∗

1 ) = 0,
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which implies that

(Ỹ ∗
1 )−1

(
I 0
0 −I

)
Ỹ ∗

1 X̃∗
1 + X̃∗

1 Ỹ ∗
1

(
I 0
0 −I

)
(Ỹ ∗

1 )−1 =

(
2(X̃∗

1 )11 0
0 −2(X̃∗

1 )22

)
.

Hence (Ỹ ∗
1 )12 = 0, by Proposition 3.1. Therefore, limt→0(Ỹ1)12(t) = 0. QED

We are now ready to state a necessary and sufficient condition for X̃1(t) and Ỹ1(t) to be analytic
at t = 0. We have the following theorem:

Theorem 3.1 Let (X̃1(t), Ỹ1(t)) be a solution to the system of ODEs (29) for t > 0. Then
X̃1(t), Ỹ1(t) converge as t → 0 and are analytic at t = 0 if and only if (Ỹ1)12(t) converges to
zero as t → 0 and is analytic at t = 0.

Proof. (⇒) Suppose X̃1(t) and Ỹ1(t) converge as t → 0 and are analytic at t = 0. Therefore,
by Proposition 3.2, limt→0(Ỹ1)12(t) = 0. This, together with the analyticity of (Ỹ1)12(t) at
t = 0, implies our required result.

(⇐) Suppose (Ỹ1)12(t) = tW1(t) for t (> 0) near 0, where W1(t) is analytic at t = 0.

From (29), we have (
svec(X̃ ′

1)
svec(Ỹ ′

1)

)
=
F1(t, X̃1, Ỹ1)

t
,

where

F1(t, X̃1, Ỹ1) =

(
A(t) B(t)

I X̃1 ⊗s Ỹ −1
1

)−1

× −tG(t) −tH(t)(
I 0
0 −I

)
⊗s I −(X̃1 ⊗s Ỹ −1

1 )

((
I 0
0 −I

)
⊗s I

) ( svec(X̃1)
svec(Ỹ1)

)
.

We want to show that F1(t, X̃1(t), Ỹ1(t)) can be written as tã0(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)),
where ã0 as a function of (t, X̃1, (Ỹ1)11, (Ỹ1)22) is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22) with X̃1,
(Ỹ1)11, (Ỹ1)22 � 0.

Now, it is clear that

B̃0(t, X̃1, (Ỹ1)11, (Ỹ1)22) :=

 A(t) B(t)

I X̃1 ⊗s

(
(Ỹ1)11 (Ỹ1)12(t)

(Ỹ1)T
12(t) (Ỹ1)22

)−1


−1

is defined and analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 � 0, since (Ỹ1)12(t) is
analytic at t = 0 and (Ỹ1)12(0) = 0, and by Proposition 2.4.

Next, let us consider −tG(t) −tH(t)(
I 0
0 −I

)
⊗s I −(X̃1(t)⊗s Ỹ −1

1 (t))

((
I 0
0 −I

)
⊗s I

) ( svec(X̃1(t))
svec(Ỹ1(t))

)
.

20



Clearly, −tG(t)svec(X̃1(t))−tH(t)svec(Ỹ1(t)) is equal to tc̃(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)), where

c̃(t, X̃1, (Ỹ1)11, (Ỹ1)22) := −G(t)svec(X̃1)−H(t)svec

(
(Ỹ1)11 (Ỹ1)12(t)

(Ỹ1)T
12(t) (Ỹ1)22

)

is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 � 0.

Consider

smat

(((
I 0
0 −I

)
⊗s I

)
svec(X̃1(t))− (X̃1(t)⊗s Ỹ −1

1 (t))

((
I 0
0 −I

)
⊗s I

)
svec(Ỹ1(t))

)
which is equal to

1
4

[
2

(
(X̃1)11(t) 0

0 −(X̃1)22(t)

)
− Ỹ −1

1 (t)

(
I 0
0 −I

)
Ỹ1(t)X̃1(t)− X̃1(t)Ỹ1(t)

(
I 0
0 −I

)
Ỹ −1

1 (t)

]
.

Let

D(t) := Ỹ −1
1 (t)

(
I 0
0 −I

)
Ỹ1(t)X̃1(t) + X̃1(t)Ỹ1(t)

(
I 0
0 −I

)
Ỹ −1

1 (t)−

2

(
(X̃1)11(t) 0

0 −(X̃1)22(t)

)
.

We have

Ỹ1(t)D(t)Ỹ1(t) =

(
I 0
0 −I

)
Ỹ1(t)X̃1(t)Ỹ1(t)+

Ỹ1(t)X̃1(t)Ỹ1(t)

(
I 0
0 −I

)
− 2Ỹ1(t)

(
(X̃1)11(t) 0

0 −(X̃1)22(t)

)
Ỹ1(t).

(31)

Let Ỹ1(t) := Ŷ1(t) + Ȳ1(t), where

Ŷ1(t) :=

(
(Ỹ1)11(t) 0

0 (Ỹ1)22(t)

)
, Ȳ1(t) :=

(
0 (Ỹ1)12(t)

(Ỹ1)T
12(t) 0

)
.

Then, noting that(
I 0
0 −I

)
Ŷ1(t)X̃1(t)Ŷ1(t) + Ŷ1(t)X̃1(t)Ŷ1(t)

(
I 0
0 −I

)
=

2Ŷ1(t)

(
(X̃1)11(t) 0

0 −(X̃1)22(t)

)
Ŷ1(t),

we observe, by writing Ỹ1 = Ŷ1 + Ȳ1 in the above expression (31) for Ỹ1(t)D(t)Ỹ1(t) and
simplifying, that

Ỹ1(t)D(t)Ỹ1(t) =

(
I 0
0 −I

)[
Ȳ1(t)X̃1(t)Ȳ1(t) + Ȳ1(t)X̃1(t)Ŷ1(t) + Ŷ1(t)X̃1(t)Ȳ1(t)

]
+

[
Ȳ1(t)X̃1(t)Ȳ1(t) + Ȳ1(t)X̃1(t)Ŷ1(t) + Ŷ1(t)X̃1(t)Ȳ1(t)

]( I 0
0 −I

)
−

2Ȳ1(t)

(
(X̃1)11(t) 0

0 −(X̃1)22(t)

)
Ȳ1(t)− 2Ȳ1(t)

(
(X̃1)11(t) 0

0 −(X̃1)22(t)

)
Ŷ1(t)−

2Ŷ1(t)

(
(X̃1)11(t) 0

0 −(X̃1)22(t)

)
Ȳ1(t).

(32)
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Note that written this way, every term in the expression for Ỹ1(t)D(t)Ỹ1(t) has at least a Ȳ1(t).
Therefore, with (Ỹ1)12(t) = tW1(t) for t (> 0) near 0 and W1(t) analytic at t = 0, we have
Ỹ1(t)D(t)Ỹ1(t) = tD0(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)), where D0 written as a function of (t, X̃1,
(Ỹ1)11, (Ỹ1)22) is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 � 0.

Now since

(
(Ỹ1)11 (Ỹ1)12(t)

(Ỹ1)T
12(t) (Ỹ1)22

)−1

exists and is analytic as a function of (t, (Ỹ1)11, (Ỹ1)22)

at (0, (Ỹ1)11, (Ỹ1)22) with (Ỹ1)11, (Ỹ1)22 � 0, D(t) can also be written as tD̃0(t, X̃1(t), (Ỹ1)11(t),
(Ỹ1)22(t)), where

D̃0(t, X̃1, (Ỹ1)11, (Ỹ1)22) :=(
(Ỹ1)11 (Ỹ1)12(t)

(Ỹ1)T
12(t) (Ỹ1)22

)−1

D0(t, X̃1, (Ỹ1)11, (Ỹ1)22)

(
(Ỹ1)11 (Ỹ1)12(t)

(Ỹ1)T
12(t) (Ỹ1)22

)−1

is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 � 0.

Hence, F1(t, X̃1(t), Ỹ1(t)) = t ã0(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)), where ã0 as a function of (t, X̃1,
(Ỹ1)11, (Ỹ1)22) is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 � 0, is true.

Therefore, we have (t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)), for t (> 0) near 0, satisfies the following
system of ODEs, (

svec(X̃ ′
1)

svec(Ỹ ′
1)

)
= ã0(t, X̃1, (Ỹ1)11, (Ỹ1)22),

where its right-hand side is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 � 0.

Therefore, from Theorem 4.1 of [2], pp. 15 and Theorem 2.1 of [8], we have (X̃1(t), (Ỹ1)11(t),
(Ỹ1)22(t)) can be extended and is analytic at t = 0, which together with the analyticity of
(Ỹ1)12(t) at t = 0, implies our required result. QED

From the sufficiency proof of Theorem 3.1, we observe that a sufficient condition for X̃1(t),
Ỹ1(t), and hence an off-central path, (X(µ), Y (µ)), to converge as t (or µ) tends to zero is
(Ỹ1)12(t) = O(tα), that is, Y12(µ) = O(µ0.5(1+α)), for any α > 0. Therefore, we have the
following corollary:

Corollary 3.1 Let (X(µ), Y (µ)) be an off-central path for SDLCP (1), µ > 0, under Assump-
tions 2.1 and 2.2. Suppose Y12(µ) = O(µ0.5(1+α)) for some α > 0, then (X(µ), Y (µ)) converges
as µ → 0.

Proof. Suppose Y12(µ) = O(µ0.5(1+α)) for some α > 0.
Then (Ỹ1)12(t) = O(tα). Therefore, from the sufficiency proof of Theorem 3.1, the key being

expression (32), we see that

(
svec(X̃ ′

1)
svec(Ỹ ′

1)

)
= O(tα−1), where α − 1 > −1. This implies that

X̃1(t), Ỹ1(t) must converge as t → 0. Hence, X(µ), Y (µ) converge as µ → 0. QED

Using Theorem 3.1, we have the main theorem for the section:

Theorem 3.2 Let (X(µ), Y (µ)) be an off-central path for SDLCP (1), µ > 0, under Assump-
tions 2.1 and 2.2. Then X(µ), Y (µ) converge as µ tends to zero and are analytic as a function
of t =

√
µ at t = 0 if and only if limµ→0 Y12(µ)/µ exists and the analyticity of Y12(µ)/µ as a

function of t =
√

µ can be extended to t = 0.
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Proof. (⇒) Suppose X(µ), Y (µ) converge as µ tends to zero and are analytic as a function
of t =

√
µ at t = 0. The result follows from Proposition 2.1, Theorem 3.1 and the fact that

(Y1)12(t) = t(Ỹ1)12(t), where (Y1)12(t) = Y12(t2).

(⇐) Suppose limµ→0 Y12(µ)/µ exists and the analyticity of Y12(µ)/µ as a function of t =
√

µ

can be extended to t = 0. Then (Ỹ1)12(t) is analytic at t = 0 and (Ỹ1)12(0) = 0. The result
then follows from Theorem 3.1 and Proposition 2.1. QED

From Theorem 3.2, we see that the asymptotic analyticity of an off-central path for SDLCP as
a function of

√
µ depends only on the asymptotic analyticity of one of its off-diagonal entries.

This is a rather surprising result. From [8], we know that not all off-central paths are analytic
at the solution of SDLCP. The above theorem gives a criteria as to when an off-central path
for general SDLCP is analytic at the solution.

To end this section, we remark that similar theorem as Theorem 3.2 can also be stated for
HKM direction.

4 Boundedness of First Derivative of Off-Central Path.

In [8], the authors show through a simple example that most off-central paths for SDLCP,
(X(µ), Y (µ)), have unbounded first derivatives as µ tends to zero. This suggests an undesirable
consequence on the local convergence behavior of IPM, using the dual HKM direction, on
SDLCP given the close relation between the boundedness of derivatives of off-central paths
and the local behavior of interior point path-following algorithm when iterates are near the
solution of SDLCP. It turns out that an off-central path for SDLCP, (X(µ), Y (µ)), does not
behave too badly if we perform a slight transformation on the parameter µ. We show in
this section that if we consider (X1(t), Y1(t)) = (X(t2), Y (t2)), where t =

√
µ, then the first

derivatives of X1(t) and Y1(t) are bounded as t approaches zero. Note that we consider only
the case when SDLCP (1) has a unique solution. That is, we have an additional assumption
on SDLCP (1):

Assumption 4.1 SDLCP (1) has a unique solution (X∗, Y ∗), which is strictly complemen-
tary.

In this section, we assume, without loss of generality, that the SDLCP (1) that we consider
has already undergone the various equivalent transformations that we made in Section 2.

Hence, the unique solution (X∗, Y ∗) can be written as

((
X∗

11 0
0 0

)
,

(
0 0
0 Y ∗

22

))
, where

X∗
11, Y

∗
22 � 0.

By uniqueness of the solution to the given SDLCP, we have the following lemma:

Lemma 4.1 If (U11, V22) ∈ Sm × Sn−m is such that

 (A1)11 • U11 + (B1)22 • V22
...

(Ai1)11 • U11 + (Bi1)22 • V22

 = q1,

then U11 = X∗
11 and V22 = Y ∗

22.

Proof. Suppose (U11, V22) ∈ Sm × Sn−m is such that

 (A1)11 • U11 + (B1)22 • V22
...

(Ai1)11 • U11 + (Bi1)22 • V22

 = q1.
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Then

X = s

(
X∗

11 0
0 0

)
+ (1− s)

(
U11 0
0 0

)
, Y = s

(
0 0
0 Y ∗

22

)
+ (1− s)

(
0 0
0 V22

)

satisfy Asvec(X)+Bsvec(Y ) = q - the feasibility condition, and the complementarity slackness
condition for SDLCP. Furthermore, they satisfy positive semidefiniteness for some s 6= 1.
Hence, (X, Y ) is a solution to SDLCP for some s 6= 1 and by Assumption 4.1, U11 = X∗

11 and
V22 = Y ∗

22. QED

The above lemma plays an important role in the proof of the boundedness of the first derivatives
of X1(t) and Y1(t) for t close to zero.

We have in Section 2 an ODE system for (X1(t), Y1(t)) given by

1
2

(
A B
I X1 ⊗s Y −1

1

)(
svec(X ′

1)
svec(Y ′

1)

)
=

1
t

(
0

svec(X1)

)
.

To analyze the behavior of X ′
1 and Y ′

1 as t → 0, let us first invert the matrix on the left-hand
side of (10) (or the above system).

The inverse of the matrix on the extreme left of (10) (or the above system) is given by(
−(X1 ⊗s Y −1

1 )G−1
1 I + (X1 ⊗s Y −1

1 )G−1
1 A

G−1
1 −G−1

1 A

)
,

where G1 := B −A(X1 ⊗s Y −1
1 ).

Therefore, (10) can be written as(
svec(X ′

1)
svec(Y ′

1)

)
= 2

(
svec(X1) + (X1 ⊗s Y −1

1 )G−1
1 Asvec(X1)

−G−1
1 Asvec(X1)

)
. (33)

Let us now simplify the right-hand side of (33). We have

2(svec(X1) + (X1 ⊗s Y −1
1 )G−1

1 Asvec(X1))
= 2svec(X1) + 2(B(X1 ⊗s Y −1

1 )−1 −A)−1Asvec(X1)

= svec(X1) + (B(X1 ⊗s Y −1
1 )−1 −A)−1

 q1

0
0

− (B(X1 ⊗s Y −1
1 )−1 −A)−1Bsvec(Y1)+

svec(X1) + (B(X1 ⊗s Y −1
1 )−1 −A)−1Asvec(X1)

= svec(X1) + (B(X1 ⊗s Y −1
1 )−1 −A)−1

 q1

0
0

−
(B(X1 ⊗s Y −1

1 )−1 −A)−1(B(X1 ⊗s Y −1
1 )−1 −A)svec(X1) + svec(X1)

= svec(X1) + (B(X1 ⊗s Y −1
1 )−1 −A)−1

 q1

0
0

 ,

where the second equality follows from the feasibility condition (Asvec(X1) + Bsvec(Y1) =
(qT

1 , 0, 0)T ) of SDLCP.
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Similarly, we have

−2G−1
1 Asvec(X1) = svec(Y1)− (B −A(X1 ⊗s Y −1

1 ))−1

 q1

0
0

 .

Therefore, (33) becomes

(
svec(X ′

1)
svec(Y ′

1)

)
=

1
t


(B(X1 ⊗s Y −1

1 )−1 −A)−1

 q1

0
0

+ svec(X1)

−(B −A(X1 ⊗s Y −1
1 ))−1

 q1

0
0

+ svec(Y1)


. (34)

Observe that since (B(X1⊗sY −1
1 )−1−A)−1 and (B−A(X1⊗sY −1

1 ))−1 in (34) are undefined as
t approaches zero, the behavior of X ′

1(t), Y
′
1(t) as t approaches zero cannot be analyzed using

(34). We have the following proposition to remedy this:

Proposition 4.1

(B(X1 ⊗s Y −1
1 )−1 −A)−1

 q1

0
0

 =

((
I 0
0 tI

)
⊗s

(
I 0
0 tI

))
(X̃1 ⊗s Ỹ −1

1 )G̃−1
1

 q1

0
0


and

(B −A(X1 ⊗s Y −1
1 ))−1

 q1

0
0

 =

((
tI 0
0 I

)
⊗s

(
tI 0
0 I

))
G̃−1

1

 q1

0
0

 ,

where G̃1 := B(t)−A(t)(X̃1 ⊗s Ỹ −1
1 ).

Proof. We have, by Lemma 2.6 and (14),((
I 0
0 tI

)
⊗s

(
I 0
0 tI

))
(X̃1 ⊗s Ỹ −1

1 )G−1
1 = (B(X1 ⊗s Y −1

1 )−1 −A)−1diag(I, tI, t2I). (35)

Similarly,((
tI 0
0 I

)
⊗s

(
tI 0
0 I

))
G−1

1 = (B −A(X1 ⊗s Y −1
1 ))−1diag(I, tI, t2I). (36)

The results then follow from (35) and (36) above. QED

Therefore, using Proposition 4.1, (34) becomes

(
svec(X ′

1)
svec(Y ′

1)

)
=

1
t



((
I 0
0 tI

)
⊗s

(
I 0
0 tI

))
(X̃1 ⊗s Ỹ −1

1 )G̃−1
1

 q1

0
0

+ svec(X1)

−
((

tI 0
0 I

)
⊗s

(
tI 0
0 I

))
G̃−1

1

 q1

0
0

+ svec(Y1)


,(37)
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where G̃1 := B(t)−A(t)(X̃1 ⊗s Ỹ −1
1 ).

Note that it is advantageous to use (37) to analyze the behavior of X ′
1 and Y ′

1 near t equals
to zero since G̃1 is invertible for all t ≥ 0 and X̃1, Ỹ1 positive definite, by Proposition 2.4.
Hence the vector on the right-hand side of (37) is defined in the limit as t tends to zero for
(X1(t), Y1(t)) of an off-central path.

We are now ready to state and prove the main theorem in this section:

Theorem 4.1 Under Assumptions 2.1 and 4.1, given an off-central path for SDLCP (1),
(X(µ), Y (µ)). Let X1(t) = X(t2) and Y1(t) = Y (t2). We have X ′

1(t), Y
′
1(t) are bounded near

t = 0.

Proof. We observe from (37) and using Lemma 2.2 that besides the upper left block of X ′
1(t),

namely, (X ′
1)11(t) and the lower right block of Y ′

1(t), namely (Y ′
1)22(t), the rest of X ′

1(t) and
Y ′

1(t) are bounded, near t equals to zero. Hence, to show the boundedness of X ′
1(t) and Y ′

1(t)
near t equals to zero, we need only show that (X ′

1)11(t) and (Y ′
1)22(t) are bounded near t equals

to zero.

Now we know by Remark 2.2 that (A(0) B(0)) has full row rank. Therefore, there exists a ñ×ñ
submatrix of (A(0) B(0)) which is nonsingular. By the Implicit Function Theorem, given any

U0, V0 ∈ Sn such that A(0)svec(U0) + B(0)svec(V0) =

 q1

0
0

, there exists a bounded open

neighborhood U of (0, U s
0 , V s

0 ), where U s
0 , V s

0 consist of those entries in svec(U0), svec(V0) re-
spectively, not corresponding to the columns of the nonsingular submatrix of (A(0) B(0)), and
analytic functions U and V defined in U such that for every (t, U s, V s) ∈ U , U = U(t, U s, V s)

and V = V (t, U s, V s) satisfy A(t)svec(U) + B(t)svec(V ) =

 q1

0
0

.

Since U, V are analytic functions of (t, U s, V s), they can, in particular, be written as

U(t, U s, V s) = U(0, U s, V s) + tU1(t, U s, V s), V (t, U s, V s) = V (0, U s, V s) + tV1(t, U s, V s),(38)

where U1 and V1 are bounded in U .

Now, U(0, U s, V s) and V (0, U s, V s) satisfy A(0)svec(U) + B(0)svec(V ) =

 q1

0
0

. Hence,

by the uniqueness property Lemma 4.1, we have U11(0, U s, V s) = X∗
11 = constant and

V22(0, U s, V s) = Y ∗
22 = constant. In particular, U11(t, U s, V s) = X∗

11 + t(U1)11(t, U s, V s)
and V22(t, U s, V s) = Y ∗

22 + t(V1)22(t, U s, V s) for all (t, U s, V s) ∈ U .

Using the above arguments, let us now consider (X̃1(t), Ỹ1(t)), where X1(t), X̃1(t) and Y1(t), Ỹ1(t)
are related by (8) and (9) respectively.
Suppose (X̃∗

1 , Ỹ ∗
1 ), X̃∗

1 , Ỹ ∗
1 � 0, is an accumulation point of (X̃1(t), Ỹ1(t)) as t approaches zero.

Let X̃1(tk) → X̃∗
1 and Ỹ1(tk) → Ỹ ∗

1 .

Since (X̃∗
1 , Ỹ ∗

1 ) satisfiesA(0)svec(U)+B(0)svec(V ) =

 q1

0
0

, therefore, there exists a bounded

open neighborhood U of (0, (X̃∗
1 )s, (Ỹ ∗

1 )s) such that we can write U(tk, X̃s
1(tk), Ỹ s

1 (tk)) =
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U(0, X̃s
1(tk), Ỹ s

1 (tk))+tkU1(tk, X̃s
1(tk), Ỹ s

1 (tk)) and V (tk, X̃s
1(tk), Ỹ s

1 (tk)) = V (0, X̃s
1(tk), Ỹ s

1 (tk))+
tkV1(tk, X̃s

1(tk), Ỹ s
1 (tk)) for k large, by (38).

Now (A(t) B(t)), for t sufficiently small, has a nonsingular submatrix, whose columns occupy
the same positions in (A(t) B(t)) as that of the nonsingular submatrix in (A(0) B(0)).

Therefore, with A(tk)svec(X̃1(tk)) + B(tk)svec(Ỹ1(tk)) =

 q1

0
0

, by uniqueness, we have

U(tk, X̃s
1(tk), Ỹ s

1 (tk)) = X̃1(tk), V (tk, X̃s
1(tk), Ỹ s

1 (tk)) = Ỹ1(tk) for k large.
Hence, we have

(X̃1)11(tk) = U11(tk, X̃s
1(tk), Ỹ s

1 (tk)) = X∗
11 + tk(U1)11(tk, X̃s

1(tk), Ỹ s
1 (tk))

and

(Ỹ1)22(tk) = V22(tk, X̃s
1(tk), Ỹ s

1 (tk)) = Y ∗
22 + tk(V1)22(tk, X̃s

1(tk), Ỹ s
1 (tk))

for k large.

Let us now consider g(t, X̃1, Ỹ1) := (X̃1 ⊗s Ỹ −1
1 )G̃−1

1

 q1

0
0

 in (37).

Observe that g is analytic for all t ≥ 0 and X̃1, Ỹ1 positive definite. Therefore, we can write
g(t, X̃1, Ỹ1) = g(0, X̃1, Ỹ1)+tg1(t, X̃1, Ỹ1) for t close to zero and X̃1, Ỹ1 � 0, where g1 is bounded
on bounded sets.

Now, let g(0, X̃1, Ỹ1) be equal to svec

(
W11(X̃1, Ỹ1) W12(X̃1, Ỹ1)
W T

12(X̃1, Ỹ1) W22(X̃1, Ỹ1)

)
.

In other words,

svec

(
W11(X̃1, Ỹ1) W12(X̃1, Ỹ1)
W T

12(X̃1, Ỹ1) W22(X̃1, Ỹ1)

)
= (X̃1 ⊗s Ỹ −1

1 )(B(0)−A(0)(X̃1 ⊗s Ỹ −1
1 ))−1

 q1

0
0


= (B(0)(X̃1 ⊗s Ỹ −1

1 )−1 −A(0))−1

 q1

0
0

 .

Hence,

−A(0)svec

(
W11(X̃1, Ỹ1) W12(X̃1, Ỹ1)
W T

12(X̃1, Ỹ1) W22(X̃1, Ỹ1)

)
+

B(0)(X̃1 ⊗s Ỹ −1
1 )−1svec

(
W11(X̃1, Ỹ1) W12(X̃1, Ỹ1)
W T

12(X̃1, Ỹ1) W22(X̃1, Ỹ1)

)
=

 q1

0
0

 .

Therefore, by the uniqueness property Lemma 4.1 again, we have W11(X̃1, Ỹ1) = −X∗
11.

Hence (smat(g(tk, X̃1(tk), Ỹ1(tk))))11 = −X∗
11 + tk(smat(g1(tk, X̃1(tk), Ỹ1(tk))))11 for k large.

We therefore have, from (37) and (X1)11(t) = (X̃1)11(t), that

(X ′
1)11(tk) =

1
tk

((smat(g(tk, X̃1(tk), Ỹ1(tk))))11 + (X1)11(tk))

= (smat(g1(tk, X̃1(tk), Ỹ1(tk))))11 + (U1)11(tk, X̃s
1(tk), Ỹ s

1 (tk))
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is bounded for k large.

Similarly, we can show that the same boundedness property holds for (Y ′
1)22(tk) for large k.

Therefore, by a contradiction argument, we show that (X ′
1)11(t), (Y ′

1)22(t) must be bounded
for all t close to zero, and we are done. QED

5 Conclusion and Future Directions.

In this paper we study the asymptotic behavior of off-central path for SDLCP, using the dual
HKM direction. A purpose of this paper is to provide a framework upon which the asymptotic
behavior of off-central path for SDLCP, using the dual HKM direction, can be analyzed, using
(29) and (37), which can reveal more about the properties of off-central path than (10) near
t = 0. From a practical point of view, we are left with the following open questions:

1. Given a problem in a specific class of SDLCP, how to determine if its paths are all
analytic, all non-analytic, or a mixture?

2. If a problem has both analytic and non-analytic paths, what are conditions to distinguish
them?

We do not attempt to answer these questions directly in this paper. In Section 3, we give
a necessary and sufficient condition for when an off-central path is analytic as a function of√

µ at the solution of SDLCP. This condition is closely related to the analysis of asymptotic
analytic behavior of paths for the example in [8]. In [8], we obtain an algebraic condition
for asymptotic analyticity of paths for the example consider there. Here, we are unable to
obtain a similar algebraic condition and further analysis needs to be done in future to obtain
a more practical necessary and sufficient condition for asymptotic analyticity. The asymptotic
analyticity of off-central paths as a function of µ will also be investigated as future work. In
Section 4, we show that the off-central path for SDLCP, when viewed as a function of t =

√
µ,

has bounded first derivative as t approaches zero. Here, we assume that SDLCP has a unique
solution which is strictly complementary. Whether the same result holds without uniqueness
assumption is still an open question. In [8], it indicates, through an example, that the usual
interior point path-following algorithm, based on paths as a function of µ (where µ represents
the duality gap between the primal and dual variables), may not converge fast to the solution
of the SDLCP in general, since the first derivatives of the paths for the example are unbounded
as µ tends to zero. The result in this section suggests that it may be worthwhile to investigate
and design interior point path-following algorithm, using underlying paths as a function of√

µ, instead of µ, whose iterates possibly converge rapidly to the unique solution of SDLCP.
Similar study on such new interior point path-following algorithm has been done for LCP in
[12, 13, 21], where a parametrization different from the usual one is used for the underlying
paths, as in this paper.
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