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Summary

In this dissertation, we define a new way to view off-central path for semidefi-

nite linear complementarity problem (SDLCP) and second order cone program-

ming (SOCP). They are defined using a system of ordinary differential equations

(ODEs). Asymptotic behaviour of these off-central paths is directly related to the

local convergence behaviour of path-following interior point algorithm [26, 22].

In Chapter 2, we consider off-central path for SDLCP. We show the existence

of off-central path (starting from any interior point) for general direction for all

µ > 0. Also, as is expected, any accumulation point of an off-central path is a

solution to the SDLCP. We then restrict our attention to the dual HKM direction

and show using a ”nice” example that not all off-central paths are analytic w.r.t
√

µ at the limit when µ = 0. We derive a simple necessary and sufficient condition

to when an off-central path is analytic w.r.t
√

µ at µ = 0. It also turns out that

for this example, an off-central path is analytic w.r.t
√

µ at µ = 0 if and only

if it is analytic w.r.t µ at µ = 0. Using the example on the predictor-corrector

algorithm, we show that if an iterate lies on an off-central path which is analytic

at µ = 0, then after the predictor and corrector step, the next iterate will also

lie on an off-central path which is analytic at µ = 0. This implies that if we

have a suitably chosen initial iterate, then using the feasible predictor-corrector

algorithm, the iterates will converge superlinearly to the solution of SDLCP. Next,

we work on the general SDLCP. Assuming strict complementarity and carefully

transforming the system of ODEs defining the off-central path to an equivalent
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Summary iv

set of ODEs, we are able to extract more asymptotic properties of the off-central

path. More importantly, we give a necessary and sufficient condition to when an

off-central path in general is analytic w.r.t
√

µ at µ = 0.

In Chapter 3, we consider off-central path for multiple cone SOCP. We first define

off-central path for SOCP for general direction and then restrict our attention to

the AHO direction. We show using an example that off-central path defined using

the AHO direction may not exist if we start from some interior point. Based

on this example, we then give a region, which is possibly the largest, in which

off-central path, starting from any point in this region, is well-defined for all

µ > 0. By further restricting the region to a smaller one and assuming strict

complementarity, we are able to show that any off-central path in this smaller

region converges to a strictly complementary optimal solution. We prove this by

giving a characterization of the relative interior of the optimal solution set and

then relate it to the set of strict complementary optimal solutions. The usefulness

of strict complementarity on asymptotic analyticity of off-central path is shown

for 1-cone SOCP.



Chapter 1

Introduction

In path-following interior point algorithms, the central path plays an important

role. These algorithms (for example, the predictor-corrector algorithm) are such

that the iterates try to ”follow” the central path closely. Ideally, we would want

the iterates to stay on the central path (which leads to the optimal solution of the

optimization problem under consideration). However, this is usually not practical.

Hence there arises a need to study ”nearby” paths on which the iterates lie, besides

the central path, that also lead to the optimal solution. In this respect, there are

a number of papers in the literature, [17, 21, 9, 10, 24, 13, 5, 11, 12, 15] and the

references therein, that discuss these so-called off-central paths.

In [15], the authors considered the existence and uniqueness of off-central paths for

nonlinear semidefinite complementarity problems, which include the semidefinite

linear complementarity problem and semidefinite programming as special cases.

The nonlinear semidefinite complementarity problem that they considered is to

find a triple (X,Y, z) ∈ Sn × Sn ×<m such that

F (X,Y, z) = 0, XY = 0, X, Y ∈ Sn
+,

where F : Sn
+ × Sn

+ × <m −→ Sn × <m is a continuous map. Here Sn stands for

the space of n × n symmetric matrices while Sn
+ stands for the space of n × n

1



CHAPTER 1. INTRODUCTION 2

symmetric positive semidefinite matrices.

By representing the complementarity condition, XY = 0, X, Y ∈ Sn
+, in several

equivalent forms, the authors defined interior-point maps using which off-central

paths are defined. An example of an interior-point map considered in [15] is

H : Sn
+ × Sn

+ ×<m −→ Sn ×<m × Sn defined by

H(X,Y, z) =


 F (X,Y, z)

X1/2Y X1/2


 .

Clearly, (X,Y, z) is a solution of the nonlinear semidefinite complementarity prob-

lem if and only if it satisfies H(X,Y, z) = 0. Under appropriate assumptions on

F (which we will not elaborate here), it was shown that, given M in a certain set

in Sn
++, H(X,Y, z) = (0, µM) has a unique solution for every µ ∈ (0, 1]. These

solutions, as µ varies, define an off-central path, which is based on the given

interior-point map H, for the nonlinear semidefinite complementarity problem.

In [17], the authors also considered the question of existence and uniqueness of

off-central paths, but for a more specified algebraic system:

A(X) + B(Y ) = q + µq̄

1
2
(XY + Y X) = µM

X, Y ∈ Sn
++

(1.1)

where M ∈ Sn
++ is fixed. Here A,B are linear operators from Sn to <ñ, where

ñ = n(n+1)
2

.

Their result about existence and uniqueness of the off-central path (X,Y )(.) as a

function of µ > 0 is not new. It was proven in [12, 15] by means of deep results

from nonlinear analysis. However, the proof in [17] is more elementary, essentially

relying only on the Implicit Function Theorem.

The study of off-central paths is especially important in the limit as the paths

approach the optimal solution. For example, the analyticity of these paths at the

limit point, when µ = 0, has an effect on the rate of convergence of path-following
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algorithms (See [26]). For linear programming and linear complementarity prob-

lem, the asymptotic behaviour of off-central paths is discussed in [21, 24, 13, 5].

As for second order cone programming (SOCP), as far as we know, there have not

been any discussion on the local behaviour of off-central path at the limit point

in the literature.

Here we will discuss, in more detail, the literature on the limiting behaviour

of off-central paths for semidefinite programming (SDP) and semidefinite linear

complementarity problem (SDLCP).

A semidefinite linear complementarity problem is to find a pair (X,Y ) ∈ Sn
+ ×Sn

+

such that

XY = 0

A(X) + B(Y ) = q,

where A,B are linear operators from Sn to <ñ, ñ = n(n+1)
2

.

As noted earlier, the complementarity condition, XY = 0, X, Y ∈ Sn
+, can be rep-

resented in several equivalent forms. The reason we need to work on these equiva-

lent forms instead of the original complementarity condition, XY = 0, X, Y ∈ Sn
+,

itself is because we have to ensure that the search directions in interior-point algo-

rithms are symmetric (see, for example, [25]). The common equivalent forms used

are (XY + Y X)/2 = 0, X1/2Y X1/2 = 0, Y 1/2XY 1/2 = 0 and W 1/2XY W 1/2 = 0

where W is such that WXW = Y . The first equivalent form results in the AHO

direction, while the second and third equivalent forms result in the HKM direction

and its dual and the last equivalent form results in the NT direction.

In [17], the authors considered off-central paths for SDLCP corresponding to the

AHO direction. To them, an off-central path is the solution to the following set
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of algebraic equations

A(X) + B(Y ) = q + µq̄

1

2
(XY + Y X) = µM

X, Y ∈ Sn
++

where M ∈ Sn
++ is fixed and µ > 0.

Assuming strict complementarity solution of the SDLCP, the authors were able

to show, in [17], that the off-central path is analytic at µ = 0, with respect to µ,

for any M ∈ Sn
++. In the same spirit, the authors in [10] shows the same result,

but for the case of SDP and also assuming strict complementarity.

The authors of [10] also show in another paper, [9], the asymptotic behaviour of

off-central paths for SDP corresponding to another direction (the HKM direction),

different from the AHO direction. They considered an off-central path which is

the solution to the following system of algebraic equations

A(X) = b + µ∆b

A∗y + Y = C + µ∆C

X1/2Y X1/2 = µM

X, Y ∈ Sn
++

where M ∈ Sn
++, ∆b ∈ <m and ∆C ∈ Sn are fixed.

Assuming strict complementarity, the authors in [9] show that an off-central path,

as a function of
√

µ, can be extended analytically beyond 0 and as a corollary,

they show that the path converges as µ tends to zero.

There are also some work done in the literature that study the analyticity at

the limit point of off-central paths, without assuming strict complementarity, for

certain class of SDP. See, for example, [16]. However, it is generally believed that

it is difficult to analyse the analyticity of off-central paths at the limit point for

general SDLCP or SDP without assuming strict complementarity.
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In our current work, we have a different viewpoint to define off-central path for

SDLCP/SDP and SOCP. We use the concept of direction field. We will only

consider the 2-dimensional case to describe this concept, since higher dimensions

are similar. Let us consider the 2-dimensional plane. At each point on the plane or

an open subset of the plane, we can associated with it a 2-dimensional vector. The

set of such 2-dimensional vectors then constitutes a direction field on the plane or

open subset (One can similarly imagine a direction field defined in <n for general

n ≥ 3). To be meaningful, however, the direction field must be such that we can

”draw” smooth curves on the plane or in the open subset with each element of a

direction field along the tangent line to a curve. An area of mathematics where

direction field arises naturally is in the area of differential equations. The solution

curves to a system of ordinary differential equations made up the smooth curves

that we are considering. The first derivatives of these curves are then elements of

a direction field.

The concept of direction field can be applied to the predictor-corrector algorithm

for SDLCP and SOCP. It induces a system of ordinary differential equations

(ODEs) whose solution is the off-central path for SDLCP and SOCP (Notice the

difference between our definition of off-central path as compared to that in the

literature described earlier where off-central path is the solution to an algebraic

system of equations. There are also works done in the literature concerning linear

programming where off-central path is defined as a solution of ODE system, see

for example, [24] and the references therein). We believe that our definition of

off-central path is more natural since it is directly derived from algorithmic aspect

of SDLCP and SOCP, that is, from the search directions in path-following interior

point algorithm.

In our current work, we are going to study the off-central paths defined in the

”ODE” way for SDLCP and SOCP. This study is directly related to the asymptotic

behaviour of path-following interior point algorithm.
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1.1 Notations

The space of symmetric n×n matrices is denoted by Sn. Given matrices X and Y

in <p×q, the standard inner product is defined by X •Y ≡ Tr(XT Y ), where Tr(·)
denotes the trace of a matrix. If X ∈ Sn is positive semidefinite (resp., definite),

we write X º 0 (resp., X Â 0). The cone of positive semidefinite (resp., definite)

matrices is denoted by Sn
+ (resp., Sn

++). Either the identity matrix or operator

will be denoted by I.

‖ · ‖ for a vector in <n refers the Euclidean norm and for a matrix in <p×q, it

refers to the maximum norm. ‖ · ‖F for a matrix in <p×q refers to the Frobenius

norm.

For a matrix X ∈ <p×q, we denote its component at the ith row and jth column

by Xij. In case X is partitioned into blocks of submatrices, then Xij refers to the

submatrix in the corresponding (i, j) position.

Given a square matrix X with real eigenvalues, λi(X) refers to the ith eigenvalue

of X arranged in decreasing order, λmax(X) refers to the maximum eigenvalue of

X while λmin(X) refers to the minimum eigenvalue of X.

Given square matrices Ai ∈ <ni×ni , i = 1, . . . ,m, diag(A1, . . . , Am) is a square

matrix with Ai as its diagonal blocks arranged in accordance to the way they

are lined up in diag(A1, . . . , Am). All the other entries in diag(A1, . . . , Am) are

defined to be zero.

For a function, f(·), of one variable analytic at a point µ0, we denote its kth

derivative at µ0 by f (k)(µ0).

Also,


 n

k


 stands for n!

k!(n−k)!
.

Given a differentiable function Φ from an open set O in <n1 × . . . ×<nk ×<m to

<. Suppose (z1, . . . , zk, w) ∈ O where z1 ∈ <n1 , . . ., zk ∈ <nk and w ∈ <m. Then

D(z1,...,zk)Φ is the derivative row vector of Φ w.r.t the component (z1, . . . , zk) of

(z1, . . . , zk, w). If the codomain of Φ is <n for n ≥ 2, then D(z1,...,zk)Φ is defined
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in a similar manner.

Relative interior of a convex set C, denoted by riC, is defined as the interior which

results when C is regarded as a subset of its affine hull.

Given function f : Ω −→ E and g : Ω −→ <++, where Ω is an arbitrary set and

E is a normed vector space, and a subset Ω̃ ⊆ Ω. We write f(w) = O(g(w)) for

all w ∈ Ω̃ to mean that ‖f(w)‖ ≤ Mg(w) for all w ∈ Ω̃ and M > 0 is a constant;

Moreover, for a function U : Ω −→ Sn
++, we write U(w) = Θ(g(w)) for all w ∈ Ω̃

if U(w) = O(g(w)) and U(w)−1 = O(g(w)) for all w ∈ Ω̃. The latter condition is

equivalent to the existence of a constant M > 0 such that

1

M
I ¹ 1

g(w)
U(w) ¹ MI ∀ w ∈ Ω̃.

If {u(ν) : ν > 0} and {v(ν) : ν > 0} are real sequences with v(ν) > 0, then

u(ν) = o(v(ν)) means that limν→0
u(ν)
v(ν)

= 0. If u(ν) is a matrix or vector, then

u(ν) = o(v(ν)) means that limν→0
‖u(ν)‖
v(ν)

= 0.



Chapter 2

Analysis of Off-Central Paths for

SDLCP

Using our definition of off-central path, (X(µ), Y (µ)), we show that this path is

well-behaved in the sense that it is well defined and analytic for all µ > 0 and any

of its acummulation point as µ → 0 is a solution to the SDLCP. This is done in

Section 2.1. In Section 2.2, we show, using a simple example, that the off-central

paths are not analytic at µ = 0 in general. In fact, we show a stronger result

that the off-central paths are not analytic w.r.t
√

µ at µ = 0 in general. This

finding surprised us, because all off-central paths studied in the literature up to

date —[21] for LCP, [17, 10] for SDLCP/SDP with AHO direction, and [9] in

which off-central paths associated with HKM direction are defined by a system

of algebraic equations— are analytic w.r.t µ or
√

µ at µ = 0. This observation

also unveils a substantial difference between AHO direction and other directions.

On the other hand, for the same example, there exists a subset of off-central

paths which are analytic at µ = 0. These “nice” paths are characterized by

some algebraic equations. Then, in Section 2.2.1, we show that by applying the

predictor-corrector path-following algorithm to this example and starting from a

point on any such a “nice” path, superlinear convergence can be achieved. Finally,

8



2.1 Off-Central Path for SDLCP 9

in Section 2.3, we give a necessary and sufficient condition for an off-central path of

a general SDLCP, satisfying the strict complementarity condition, to be analytic

w.r.t
√

µ at µ = 0.

2.1 Off-Central Path for SDLCP

In this section, we define a direction field associated to the predictor-corrector

algorithm for semidefinite linear complementarity problem (SDLCP). This gives

rise to a system of ordinary differential equations (ODEs) whose solution is the

off-central path for SDLCP.

Let us consider the following SDLCP:

XY = 0

A(X) + B(Y ) = q

X, Y ∈ Sn
+

(2.1)

where A,B : Sn −→ <ñ are linear operators mapping Sn to the space <ñ, where

ñ := n(n + 1)/2. Hence A and B have the form A(X) = (A1 • X, . . . , Añ • X)T

resp. B(Y ) = (B1 • Y, . . . , Bñ • Y )T where Ai, Bi ∈ Sn for all i = 1, . . . , ñ.

We have the following assumption on SDLCP:

Assumption 2.1

(a) SDLCP is monotone, i.e. A(X) + B(Y ) = 0 for X,Y ∈ Sn ⇒ X • Y ≥ 0.

(b) There exists X1, Y 1 Â 0 such that A(X1) + B(Y 1) = q.

(c) {A(X) + B(Y ) : X,Y ∈ Sn} = <ñ

In the predictor step of the predictor-corrector path-following algorithm, the algo-

rithm searches a new point in the affine direction, which is defined as the Newton

direction for the system XY = 0. Let (X,Y ) be the current point and

(X+, Y +) = (X,Y ) + (∆X, ∆Y ). (2.2)
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From the equation X+Y + = 0, we obtain

XY + X∆Y + ∆XY + ∆X∆Y = 0.

The linear part is the Newton equation, i.e.,

X∆Y + ∆XY = −XY.

For SDLCP, we make certain symmetrization [25]

HP (X∆Y + ∆XY ) = −HP (XY ). (2.3)

where HP (U) := 1
2
(PUP−1 + (PUP−1)T ) and P ∈ <n×n is an invertible matrix.

(2.3) defines the affine direction (∆X, ∆Y ) at (X,Y ).

It then follows that the direction field comprises, at each point (X,Y ) Â 0, the

direction (∆X, ∆Y ) defined by (2.3).

A path in Sn
++ × Sn

++ passing through (X0, Y 0) and having its tangent vectors

elements of this direction field is then determined by

HP (XY ′ + X ′Y ) = −HP (XY ), (2.4)

A(X ′) + B(Y ′) = 0 (2.5)

with the initial condition (X,Y )(0) = (X0, Y 0) where X0, Y 0 Â 0. Here equation

(2.5) arises out of the feasibility equation in (2.1).

Without loss of generality, we can make a parameter transformation µ = exp(−t),

where t is the parameter in (2.4)-(2.5). Then we have (we still use the notation

(X,Y ) for the path with the new parameter µ)

HP (XY ′ + X ′Y ) =
1

µ
HP (XY ), (2.6)

A(X ′) + B(Y ′) = 0 (2.7)

with the initial condition (X,Y )(1) = (X0, Y 0).



2.1 Off-Central Path for SDLCP 11

We will now show that, given the initial condition (X,Y )(1) = (X0, Y 0), the

solution to (2.6)-(2.7), (X(µ), Y (µ)), X(µ), Y (µ) Â 0, is unique, analytic and

exists over µ ∈ (0,∞). We called this solution the off-central path for SDLCP.

Remark 2.1 The central path (Xc(µ), Yc(µ)) for SDLCP, which satisfies (XcYc)(µ)

= µI, is a special example of off-central path for SDLCP. When µ = 1, it satis-

fies Tr((XcYc)(1)) = n. Therefore, we also require the initial data (X0, Y 0) when

µ = 1 in (2.6)-(2.7) to satisfy Tr(X0Y 0) = n.

As in [23], we only consider P such that PXY P−1 is symmetric. We also assume

P is an analytic function of X,Y Â 0. Such P include the well-known directions

like the HKM and NT directions.

For the AHO direction, P = I. Hence (2.6) reduces to

(XY + Y X)′ =
1

µ
(XY + Y X).

This and (2.7) with the initial condition at µ = 1 yield the algebraic equations

(1.1). For other directions, such as HKM and NT directions, P is a function of

(X,Y ), thus it is not possible to solve (2.6)-(2.7) to get an algebraic expression.

This is an aspect which distinguishes the other directions from the AHO direction.

Significant distinctions between off-central paths for AHO direction and for the

other directions can be observed by comparing results in [17] and this chapter.

We are going to use a result from ODE theory, taken from [2] pp. 100 and [3]

pp.196, and their theorem and corollary are combined as a theorem below for

completeness:

Theorem 2.1 Assume that a function f is continuously differentiable from J×D

to E, where J ⊂ < is an open interval, E is a finite dimensional Banach space

over <, D ⊂ E is open. Then for every (t0, x0) ∈ J × D, there exists a unique

nonextensible solution

u(·; t0, x0) : J(t0, x0) → D
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of the IVP

ẋ = f(t, x), x(t0) = x0.

The maximal interval of existence J(t0, x0) := (t−, t+) is open. We either have

t− = inf J, resp. t+ = sup J,

or

lim
t→t+(t→t−)

min{dist(u(t; t0, x0), ∂D), ‖u(t; t0, x0)‖−1} = 0.

(We use the convention: dist(x, ∅) = ∞.)

When f is analytic over J × D, where D ⊂ E = <n, the solution u is analytic

over J(t0, x0).

In order to use Theorem 2.1, we need to express (2.6)-(2.7) in the form of IVP as

in the theorem.

Now, (2.6) can be written as

(PX ⊗s P−T )svec(Y ′) + (P ⊗s P−T Y )svec(X ′) =
1

µ
svec(HP (XY ))

Remark 2.2 Note that the operation ⊗s and the map svec are used extensively

in this chapter. For their definitions and properties, the reader can refer to pp.

775-776 and the appendix of [23].

Writing (2.7) in a similar way using svec, we can rewrite (2.6)-(2.7) as



svec(A1)
T svec(B1)

T

...
...

svec(Añ)T svec(Bñ)T

P ⊗s P−T Y PX ⊗s P−T





 svec(X ′)

svec(Y ′)


 =


 0

1
µ
svec(HP (XY ))


 , (2.8)

which is another form of (2.6)-(2.7).

In the following proposition, we show that the matrix in (2.8) is invertible for all

X,Y Â 0 and hence, we can express (2.6)-(2.7) in the IVP form of Theorem 2.1

and the theorem is then applicable for our case.
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Proposition 2.1 


svec(A1)
T svec(B1)

T

...
...

svec(Añ)T svec(Bñ)T

P ⊗s P−T Y PX ⊗s P−T




is nonsingular for all X,Y Â 0.

Proof. Since the given matrix is square, it suffices to show that it is one-to-one.

Therefore, given the below matrix-vector equation,



svec(A1)
T svec(B1)

T

...
...

svec(Añ)T svec(Bñ)T

P ⊗s P−T Y PX ⊗s P−T





 u

v


 =


 0

0




we need to show that u = v = 0.

We have (P ⊗s P−T Y )u + (PX ⊗s P−T )v = 0 implies that (PX ⊗s P−T )v =

−(P ⊗s P−T Y )u. But PX ⊗s P−T = (PXP T ⊗s I)(P ⊗s P )−T and P ⊗s P−T Y =

(I ⊗s P−T Y P−1)(P ⊗s P ). Therefore

(PX ⊗s P−T )v = −(P ⊗s P−T Y )u

=⇒ v = −(P ⊗s P )T (PXP T ⊗s I)−1(I ⊗s P−T Y P−1)(P ⊗s P )u

Note that (PXP T ⊗s I)−1 and I⊗s P
−T Y P−1 are symmetric, positive definite and

they commute (since PXY P−1 is symmetric). Therefore, (P ⊗s P )T (PXP T ⊗s

I)−1(I ⊗s P−T Y P−1)(P ⊗s P ) is symmetric, positive definite.

Now, svec(Ai)
T u + svec(Bi)

T v = 0 for i = 1, . . . , ñ implies that uT v ≥ 0, by

Assumption 2.1(a). That is,

uT (P ⊗s P )T (PXP T ⊗s I)−1(I ⊗s P−T Y P−1)(P ⊗s P )u ≤ 0.

But with (P ⊗s P )T (PXP T ⊗s I)−1(I ⊗s P−T Y P−1)(P ⊗s P ) symmetric, positive

definite, we must have u = 0. And hence, v = 0. QED
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Let the matrix in Proposition 2.1 be denoted by A(X,Y ). We have shown that

A(X,Y ) is invertible for all X,Y Â 0. Therefore, we can write (2.8) in the IVP

form as

 svec(X ′)

svec(Y ′)


 = F(µ,X, Y ) (2.9)

where

F(µ,X, Y ) = A−1(X,Y )


 0

1
µ
svec(HP (XY ))




Hence, by Theorem 2.1, given (1, (X0, Y 0)) ∈ <++×(Sn
++×Sn

++) (where A(X0)+

B(Y 0) = q), there exists a unique nonextensible solution X,Y : J0 7−→ Sn
++×Sn

++

of the IVP

 svec(X ′)

svec(Y ′)


 = F(µ,X, Y ) , X(1) = X0, , Y (1) = Y 0.

The maximal interval of existence J0 is open:

J0 = (µ−, µ+), (2.10)

where either we have

µ− = 0, resp. µ+ = +∞ or

lim
µ→µ+(µ→µ−)

min{dist((X(µ), Y(µ)), ∂(Sn
++ × Sn

++)), ‖(svec(X(µ)), svec(Y(µ)))‖−1} = 0.

Also, since F(µ,X, Y ) is analytic over <++ × (Sn
++ ×Sn

++), by the same theorem,

we have (X(µ), Y (µ)) is analytic over J0.

We want to determine the value of µ− and µ+ in (2.10). We do this by stating

and proving the following theorem:

Theorem 2.2 For all µ ∈ J0, λmin(XY )(µ) = λmin(X0Y 0)µ and λmax(XY )(µ) =

λmax(X
0Y 0)µ.
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Proof. Note that since λmin(XY )(µ) is locally lipschitz continuous on J0, by

Theorem 7.20 in [19], λ′
min(XY )(µ) exists almost everywhere. We first show

that whenever it exists, λ′
min(XY )(µ) = λmin(XY )(µ)/µ for µ ∈ J0. Hence,

λmin(XY )(µ) is monotonic on J0.

Recall that P in (2.6) is invertible and an analytic function of X,Y . Therefore,

with X(µ), Y (µ) analytic with respect to µ, we have P = P (µ) is analytic with

respect to µ. Also, P (µ) satisfies (PXY P−1)(µ) = ((PXY P−1)(µ))T . We are

going to use the latter two facts in the proof here.

For µ ∈ J0. Let v0 ∈ <n, ‖v0‖ = 1, be such that

HP (µ)((XY )(µ))v0 = λmin(HP (µ)((XY )(µ)))v0

= λmin(XY )(µ)v0

The last equality holds because (PXY P−1)(µ) is symmetric.

Therefore, by (2.6) and this choice of v0, we have

vT
0 HP (µ)((XY )′(µ))v0 =

1

µ
λmin(XY )(µ).

We now focus our attention on the left-hand expression of the above equality. We

have

vT
0 HP (µ)((XY )′(µ))v0

= lim sup
h→0+

vT
0

(
HP (µ)((XY )(µ + h)) − HP (µ)((XY )(µ))

h

)
v0

= lim sup
h→0+

(vT
0 HP (µ)((XY )(µ + h))v0 − λmin(XY )(µ))/h

≥ lim inf
h→0+

(vT
0 HP (µ)((XY )(µ + h))v0 − vT

0 HP (µ+h)((XY )(µ + h))v0)/h

+ lim sup
h→0+

(vT
0 HP (µ+h)((XY )(µ + h))v0 − λmin(XY )(µ))/h

≥ lim inf
h→0+

(vT
0 HP (µ)((XY )(µ + h))v0 − vT

0 HP (µ+h)((XY )(µ + h))v0)/h

+ lim sup
h→0+

( min
‖v‖=1

vT HP (µ+h)((XY )(µ + h))v − λmin(XY )(µ))/h

= lim inf
h→0+

(vT
0 HP (µ)((XY )(µ + h))v0 − vT

0 HP (µ+h)((XY )(µ + h))v0)/h

+ lim sup
h→0+

(λmin(XY )(µ + h) − λmin(XY )(µ))/h
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Let f(ξ) = vT
0 P (µ + ξ)(XY )(µ + h)P−1(µ + ξ)v0.

Therefore,

lim inf
h→0+

(vT
0 HP (µ)((XY )(µ + h))v0 − vT

0 HP (µ+h)((XY )(µ + h))v0)/h

in above is equal to

− lim inf
h→0+

f(h) − f(0)

h

= − lim inf
h→0+

f ′(ξh)

where the last equality follows from the Mean Value Theorem and 0 < ξh < h.

Let us try to find the value of the last limit.

We have f ′(ξh) = vT
0 P

′

(µ+ ξh)(XY )(µ+h)P−1(µ+ ξh)v0 +vT
0 P (µ+ ξh)(XY )(µ+

h)(P−1)′(µ + ξh)v0.

Note that P (µ + ξ)P−1(µ + ξ) = I implies that P ′(µ + ξ)P−1(µ + ξ) + P (µ +

ξ)(P−1)′(µ + ξ) = 0.

Hence (P−1)′(µ + ξ) = −P−1(µ + ξ)P ′(µ + ξ)P−1(µ + ξ).

Therefore, f ′(ξh) = vT
0 P

′

(µ+ξh)(XY )(µ+h)P−1(µ+ξh)v0−vT
0 P (µ+ξh)(XY )(µ+

h)P−1(µ + ξh)P
′

(µ + ξh)P
−1(µ + ξh)v0.

Hence,

lim inf
h→0+

f ′(ξh)

= vT
0 P ′(µ)(XY )(µ)P−1(µ)v0 − vT

0 P (µ)(XY )(µ)P−1(µ)P ′(µ)P−1(µ)v0

= vT
0 P ′(µ)P−1(µ)(P (µ)(XY )(µ)P−1(µ)v0) − (P (µ)(XY )(µ)P−1(µ)v0)

T P ′(µ)P−1(µ)v0

= λmin(XY )(µ)vT
0 P ′(µ)P−1(µ)v0 − λmin(XY )(µ)vT

0 P ′(µ)P−1(µ)v0

= 0,

where the second equality follows from (PXY P−1)(µ) = ((PXY P−1)(µ))T and

the third equality follows from (PXY P−1)(µ)v0 = HP (µ)(XY (µ))v0 = λmin(XY )(µ)v0.

Therefore,

1

µ
λmin(XY )(µ) ≥ lim sup

h→0+

λmin(XY )(µ + h) − λmin(XY )(µ)

h
.
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On the other hand, consider (in what follows, in order to make reading easier, we

suppress the dependence of P on µ)

min
‖v‖=1

vT HP ((XY )′(µ))v

which is equal to

lim
h→0+

(
min
‖v‖=1

vT HP

(
(XY )(µ + h) − (XY )(µ)

h

)
v

)
.

Let v1 ∈ <n, ‖v1‖ = 1 be such that

HP ((XY )(µ + h))v1 = λmin(HP ((XY )(µ + h)))v1.

Therefore, we have

min
‖v‖=1

vT HP

(
(XY )(µ + h) − (XY )(µ)

h

)
v

≤ vT
1 HP

(
(XY )(µ + h) − (XY )(µ)

h

)
v1

= (λmin(HP ((XY )(µ + h))) − vT
1 HP ((XY )(µ))v1)/h

≤ (λmin(XY )(µ + h) − λmin(XY )(µ))/h.

Taking limit infimum as h tends to 0+ in above, we have

min
‖v‖=1

vT HP ((XY )′(µ))v = lim
h→0+

(
min
‖v‖=1

vT HP

(
(XY )(µ + h) − (XY )(µ)

h

)
v

)

≤ lim inf
h→0+

λmin(XY )(µ + h) − λmin(XY )(µ)

h
.

But

min
‖v‖=1

vT HP ((XY )′(µ))v =
1

µ
λmin(XY )(µ).

This implies that 1
µ
λmin(XY )(µ) ≤ lim infh→0+

λmin(XY )(µ+h)−λmin(XY )(µ)
h

.

Hence λ′
min(XY )(µ) whenever it exists has

λ′
min(XY )(µ) =

λmin(XY )(µ)

µ
.

Therefore, integrating with respect to µ and using (X(1), Y (1)) = (X0, Y 0), we

obtain λmin(XY )(µ) = λmin(X0Y 0)µ.

Similarly, we can show that λmax(XY )(µ) = λmax(X
0Y 0)µ. QED
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Remark 2.3 We can also see easily that Tr(XY )(µ) = Tr(X0Y 0)µ = nµ for all

µ ∈ J0, using (2.6). Here the last equality follows from Remark 2.1.

Also, we have the following remark which is used in the proofs of Corollaries 2.1

and 2.2.

Remark 2.4 On an off-central path, X(µ), Y (µ) are bounded near µ = 0. This

can be easily seen using Thereom 2.2 and from (X(µ) − X1) • (Y (µ) − Y 1) ≥ 0,

which follows from Assumption 2.1(a) and (b).

As an immediate consequence of the above theorem, we have

Corollary 2.1 µ− = 0, µ+ = +∞ in (2.10). Therefore, the solution (X(µ), Y (µ))

to (2.6)-(2.7) in Sn
++ × Sn

++ is unique and analytic for µ ∈ (0, +∞).

Proof. By Theorem 2.2, it is clear that for all µ > 0, X(µ), Y (µ) ∈ Sn
++. Hence

µ− = 0 and µ+ = +∞. QED

We also state in the theorem below, using Theorem 2.2, the relationship between

any accumulation point of (X(µ), Y (µ)) as µ tends to zero and the original SDLCP.

Theorem 2.3 Let (X∗, Y ∗) be an accumulation point of the solution, (X(µ),

Y (µ)), to the system of ODEs (2.6)-(2.7) as µ → 0. Then (X∗, Y ∗) is a solution

to the SDLCP (2.1).

Proof. Let (X∗, Y ∗) be an accumulation point of (X(µ), Y (µ)) as µ tends to zero.

Then, by Theorem 2.2, λmin(X∗Y ∗) = λmax(X
∗Y ∗) = 0, which implies that

X∗Y ∗ = 0. Together with A(X∗) + B(Y ∗) = q, X∗, Y ∗ ∈ Sn
+, we have (X∗, Y ∗) is

a solution to the SDLCP (2.1). QED

Corollary 2.2 If the given SDLCP (2.1) has a unique solution, then every of its

off-central paths will converge to the unique solution as µ approaches zero.

Remark 2.5 When the SDLCP (2.1) has multiple solutions, then whether an

off-central path converges is still an open question.
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2.2 Investigation of Asymptotic Analyticity of

Off-Central Path for SDLCP using a ”Nice”

Example

In this section, we show that an off-central path need not be analytic w.r.t
√

µ

at the limit point, even if it is close to the central path. We observe this fact

through an example. The example we choose has all nice properties (e.g. primal

and dual nondegeneracy) and thus is representative of the common SDP (which

is a special class of monotone SDLCP) encountered in practice. This observation

tells a bad news which is that interior point method with certain symmetrized

directions for SDP and SDLCP cannot have fast local convergence in general. On

a positive side, we will show, through the same example, that certain off-central

paths, characterized by a condition, are analytic at the limit point. Moreover,

this condition can be sustained by the predictor-corrector interior point method,

i.e., starting from a point satisfying this condition, after the predictor and cor-

rector step, the new point will also satisfy this condition. This means that if we

can choose a starting point satisfying this condition, then the predictor-corrector

algorithm will converge superlinearly/quadratically.

Consider the following primal-dual SDP pair:

(P) min


 0 0

0 1


 • X

subject to


 2 0

0 0


 • X = 2,


 0 −1

−1 2


 • X = 0, X ∈ S2

+

and

(D) max 2v1

subject to v1


 2 0

0 0


 + v2


 0 −1

−1 2


 + Y =


 0 0

0 1


 , Y ∈ S2

+.
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This example is taken from [8]. Note that the example satisfies the standard

assumptions for SDP that appear in the literature.

It has an unique solution,





 1 0

0 0


 ,


 0 0

0 1





, which satisfies strict com-

plementarity and non-degeneracy (The concept of non-degeneracy is discussed for

example in [8] and is widely used in the literature). In this sense, the example is

a nice, typical SDLCP example.

We choose this example from [8] mainly because it is simple and its nice properties.

What we discussed below using this example, however, is not directly related to

its discussion in [8].

Written as a SDLCP, the example can be expressed as

XY = 0

Asvec(X) + Bsvec(Y ) = q

X, Y ∈ S2
+,

where A =




2 0 0

0 0 0

0 −
√

2 2


, B =




0 0 0

0
√

2 1

0 0 0


 and q =




2

1

0


. Note that A

and B is the corresponding matrix representation of the linear operator A and B

in (2.1).

We are going to analyse the asymptotic behaviour of the off-central path (X(µ), Y (µ))

defined by the system of ODEs (2.8). We specialized to the case when P = Y 1/2,

that is, the dual HKM direction. In this case, (2.8) can be written as


 A B

I X ⊗s Y −1





 svec(X ′)

svec(Y ′)


 =


 0

1
µ
svec(X)


 . (2.11)
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with the initial conditions: (X,Y )(1) = (X0, Y 0) where (X0, Y 0) satisfies

Asvec(X0) + Bsvec(Y 0) = q (2.12)

Tr(X0Y 0) = 2 (2.13)

X0, Y 0 ∈ S2
++, (2.14)

Note that we obtained (2.13) from Remark 2.1.

We are going to analyse the asymptotic behaviour of (X(µ), Y (µ)) w.r.t
√

µ at

µ = 0. To make presentation easier, let us introduce the matrices X̃(t) and Ỹ (t)

to be X(t2) and Y (t2) respectively.

Equations (2.11) and (2.12) imply that (X(µ), Y (µ)) satisfies

Asvec(X) + Bsvec(Y ) = q.

From this equality, we see that

X(µ) =


 1 x(µ)

x(µ) x(µ)


 and Y (µ) =


 y1(µ) y2(µ)

y2(µ) 1 − 2y2(µ)




for some x(µ), y1(µ), y2(µ) ∈ <.

Now

A


X(µ) −


 1 0

0 0





 + B


Y (µ) −


 0 0

0 1





 = 0

implies that x(µ)+y1(µ) ≤ Tr(XY )(µ), by Assumption 2.1(a). But Tr(XY )(µ) =

2µ, by Remark 2.3 and (2.13). Hence, with x(µ) and y1(µ) positive for µ > 0,

we have x(µ) = O(µ) and y1(µ) = O(µ). Also, determinant of Y (µ) positive

for all µ > 0, 1 − 2y2(µ) bounded above by 1 and y1(µ) = O(µ) implies that

y2(µ) = O(
√

µ). Therefore, we can write X̃(t) and Ỹ (t) as

X̃(t) =


 1 t2x̃(t)

t2x̃(t) t2x̃(t)


 and Ỹ (t) =


 t2ỹ1(t) tỹ2(t)

tỹ2(t) 1 − 2tỹ2(t)



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where x̃(t), ỹ1(t) and ỹ2(t) are bounded near µ = 0.

Expressing the ODE system (2.11) in terms of X̃(t) and Ỹ (t), we have

 A B

I X̃ ⊗s Ỹ −1





 svec(X̃ ′)

svec(Ỹ ′)


 =


 0

2
t
svec(X̃)


 . (2.15)

with initial conditions: (X̃, Ỹ )(1) = (X0, Y 0) where (X0, Y 0) satisfies (2.12)-

(2.14).

Note that to investigate the asymptotic analyticity of (X(µ), Y (µ)) for the exam-

ple w.r.t
√

µ at µ = 0, we need only study the asymptotic property of (X̃(t), Ỹ (t)).

First, we would like to simplify the above ODE system.

Proposition 2.2 (X̃(t), Ỹ (t)) satisfies the system of ODEs (2.15) and the initial

conditions (2.12)-(2.14) if and only if

(X̃(t), Ỹ (t)) =





 1 t2(2 − ỹ1(t))

t2(2 − ỹ1(t)) t2(2 − ỹ1(t))


 ,


 t2ỹ1(t) tỹ2(t)

tỹ2(t) 1 − 2tỹ2(t)







and (ỹ1(t), ỹ2(t)) satisfies the following equations:

 1 − 2tỹ2 −ỹ2 + t(2 − ỹ1)

−ỹ2 + t(2 − ỹ1) 2





 ỹ′

1

ỹ′
2


 =

1

t


 −ỹ2(ỹ2 + t(2 − ỹ1))

2((ỹ1 − 2)(ỹ2 + tỹ1) + ỹ2)


 .(2.16)

with the initial condition on (ỹ1(1), ỹ2(1)) such that

 1 2 − ỹ1(1)

2 − ỹ1(1) 2 − ỹ1(1)


 ,


 ỹ1(1) ỹ2(1)

ỹ2(1) 1 − 2ỹ2(1)


 ∈ S2

++.

Proof. For the second equation in the system (2.15), we write explicitly

Ỹ −1(t) =
1

t2(ỹ1(t)(1 − 2tỹ2(t)) − ỹ2
2(t))


 1 − 2tỹ2(t) −tỹ2(t)

−tỹ2(t) t2ỹ1(t)


 ,

(X̃ ⊗s Ỹ −1)(t) = 1

det(Ỹ )
×



1 − 2tỹ2
t√
2
(tx̃(1 − 2tỹ2) − ỹ2) −t3x̃ỹ2

t√
2
(−ỹ2 + tx̃(1 − 2tỹ2))

t2

2
(x̃(1 − 4tỹ2) + ỹ1)

t3√
2
x̃(tỹ1 − ỹ2)

−t3x̃ỹ2
t3√
2
x̃(tỹ1 − ỹ2) t4x̃ỹ1


 ,
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Note that the dependence of ỹ1 and ỹ2 on t is omitted from the last expression

for easy readability.

Since Tr(XY )(µ) = 2µ, that is, Tr(X̃Ỹ )(t) = 2t2, we have x(µ) = 2µ−y1(µ) and

x̃(t) = 2 − ỹ1(t). Therefore,

X(µ) =


 1 2µ − y1(µ)

2µ − y1(µ) 2µ − y1(µ)


 , Y (µ) =


 y1(µ) y2(µ)

y2(µ) 1 − 2y2(µ)


 (2.17)

and

X̃(t) =


 1 t2(2 − ỹ1(t))

t2(2 − ỹ1(t)) t2(2 − ỹ1(t))


 , Ỹ (t) =


 t2ỹ1(t) tỹ2(t)

tỹ2(t) 1 − 2tỹ2(t)


 .(2.18)

With the above expression for (X̃ ⊗s Ỹ −1)(t) and X̃(t), Ỹ (t) in (2.18), we have

expressing (2.15) in terms of ỹ1(t) and ỹ2(t) that (X̃(t), Ỹ (t)), of form (2.18),

satisfies (2.15) if and only if ỹ1(t) and ỹ2(t) satisfy

(1 − 2tỹ2)ỹ
′
1 + (−ỹ2 + t(2 − ỹ1))ỹ

′
2 = −ỹ2(ỹ2 + t(2 − ỹ1))/t, (2.19)

(1 − 2tỹ2)(t(2 − ỹ1) − (2tỹ1 + ỹ2))ỹ
′
1 + 2(1 − t(2 − ỹ1)(tỹ1 + ỹ2))ỹ

′
2 =

−(2 − ỹ1)(1 − 2tỹ2)(ỹ2 + 2tỹ1)/t + ỹ1ỹ2(1 + 2t2(2 − ỹ1))/t
(2.20)

and

(ỹ1(1 − 3tỹ2) + ỹ2(2t − ỹ2))ỹ
′
1 + (2 − ỹ1)(tỹ1 + ỹ2)ỹ

′
2 =

−ỹ2(2 − ỹ1)(ỹ2 + 3tỹ1)/t.
(2.21)

Adding equation (2.20) to 2t of equation (2.21) and simplifying, we obtain the

following equation:

(2t − tỹ1 − ỹ2)ỹ
′
1 + 2ỹ′

2 = 2((ỹ1 − 2)(tỹ1 + ỹ2) + ỹ2)/t (2.22)

From equations (2.19) and (2.22), we obtain the desired system (2.16).

The initial condition on (y1(1), y2(1)) can be easily seen from (2.14) and (2.18).

QED
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We want to write the system of ODEs (2.16) in IVP form, for analysis. In order

to do this, let us look at the determinant of the matrix on the extreme left in

(2.16).

We have the following technical proposition:

Proposition 2.3

det


 1 − 2tỹ2(t) −ỹ2(t) + t(2 − ỹ1(t))

−ỹ2(t) + t(2 − ỹ1(t)) 2




is nonzero for t > 0. Here ỹ1(t), ỹ2(t) appear in Proposition 2.2 where (X̃(t), Ỹ (t))

is the solution to (2.15) for t > 0.

Proof. Now, λmin(XY )(µ) = λmin(X0Y 0)µ by Theorem 2.2. Hence λmin(X̃Ỹ )(t) =

λmin(X0Y 0)t2. Therefore,

λmin(X̃1Ỹ1)(t) = λmin(X0Y 0)

where X̃1(t) =


 1 t(2 − ỹ1(t))

t(2 − ỹ1(t)) 2 − ỹ1(t)


 and Ỹ1(t) =


 ỹ1(t) ỹ2(t)

ỹ2(t) 1 − 2tỹ2(t)


.

We have det(X̃1(t)) and det(Ỹ1(t)) are positive for t > 0. We are going to use this

latter fact in the proof of the proposition.

We have

det


 1 − 2tỹ2(t) −ỹ2(t) + t(2 − ỹ1(t))

−ỹ2(t) + t(2 − ỹ1(t)) 2


 =

2(1 − 2tỹ2(t)) − (−ỹ2(t) + t(2 − ỹ1(t)))
2.

Expressing the last expression in terms of det(X̃1(t)) and det(Ỹ1(t)) , we have

det


 1 − 2tỹ2(t) −ỹ2(t) + t(2 − ỹ1(t))

−ỹ2(t) + t(2 − ỹ1(t)) 2


 = det(X̃1(t)) + det(Ỹ1(t)).
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Now, we know that det(X̃1(t)) and det(Ỹ1(t)) are positive for all t > 0 by above.

Hence we are done. QED

Therefore, we can invert the matrix in (2.16) to obtain the following:


 ỹ′

1

ỹ′
2


 = 1

t(det(X̃1)+det(Ỹ1))
×


 2 −2t + tỹ1 + ỹ2

−2t + tỹ1 + ỹ2 1 − 2tỹ2





 −ỹ2(ỹ2 + t(2 − ỹ1))

2((ỹ1 − 2)(ỹ2 + tỹ1) + ỹ2)


 .

where X̃1 and Ỹ1 are defined in the proof of Proposition 2.3.

Upon simplifying the right-hand side of the ODEs, we have

 ỹ′

1

ỹ′
2


 = 1

t(det(X̃1)+det(Ỹ1))
×


 2(ỹ1 − 2)(tỹ1(tỹ1 − 2t + 2ỹ2) + ỹ2

2)

2tỹ2(−ỹ2 + 2t − tỹ1) + (tỹ1 + ỹ2)(−ỹ2
2 + (2 − ỹ1)(3tỹ2 − 2)) + 2ỹ2


 .

(2.23)

Before analyzing the analyticity of off-central paths at the limit point, let us first

state and prove a lemma:

Lemma 2.1 Let f be a function defined on [0,∞). Suppose f is analytic at 0 and

f(0) is not a positive integer. Let z be a solution of z′(µ) = z(µ)
µ

f(µ) for µ > 0

with z(0) = 0. If z is analytic at µ = 0, then z(µ) is identically equal to zero for

µ ≥ 0.

Proof. Consider z′(µ) = z(µ)
µ

f(µ). We will now show that z(n)(0) = 0 and

limµ→0

(
z
µ

)(n−1)

= 0 for all n ≥ 1 by induction on n.

For n = 1. We have by L’Hopital’s Rule that limµ→0
z(µ)

µ
= z′(0). Therefore, from

z′(µ) = z(µ)
µ

f(µ), we obtained z′(0) = z′(0)f(0) by taking limit of µ to zero. But

f(0) is not a positive integer implies that z′(0) = 0. Hence induction hypothesis

is true for n = 1.

Now, suppose that z(k)(0) = 0 and limk→0

(
z
µ

)(k−1)

= 0 for k ≤ n.
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Consider z(n+1)(µ) =
(

z(µ)
µ

f(µ)
)(n)

.

We have

z(n+1)(µ) =

(
z(µ)

µ
f(µ)

)(n)

=
n∑

k=0


 n

k


 f (n−k)(µ)

(
z

µ

)(k)

=

(
z

µ

)(n)

f(µ) +
n−1∑

k=0


 n

k


 f (n−k)(µ)

(
z

µ

)(k)

.

Note that the second equality in above follows from product rule for derivatives.

Now, by induction hypothesis and because f is analytic at µ = 0,

lim
µ→0

n−1∑

k=0


 n

k


 f (n−k)(µ)

(
z

µ

)(k)

= 0.

Therefore,

lim
µ→0

z(n+1)(µ) = lim
µ→0

(
z

µ

)(n)

f(µ).

By applying product rule for derivatives repeatedly on
(

z
µ

)(n)

, we have

(
z

µ

)(n)

=
n∑

k=0


 n

k


 z(n−k)(µ)

(
1

µ

)(k)

=
n∑

k=0


 n

k


 z(n−k)(µ)

(
(−1)kk!

µk+1

)
.

Applying L’Hopital’s Rule on the last expression, we have

lim
µ→0

n∑

k=0


 n

k


 z(n−k)(µ)

(
(−1)kk!

µk+1

)
= lim

µ→0

n∑

k=0


 n

k


 (−1)kk!

(k + 1)!
z(n+1)(µ)

=
n∑

k=0


 n

k


 (−1)k

k + 1
z(n+1)(0).

Now since
∑n

k=0


 n

k


 (−1)k

k+1
= 1

n+1
for all n ≥ 0, we have that the last expression

in above is equal to z(n+1)(0)
n+1

.
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Substituting limµ→0

(
z
µ

)(n)

= z(n+1)(0)
n+1

and limµ→0 f(µ) = f(0) into limµ→0 z(n+1)(µ) =

limµ→0

(
z
µ

)(n)

f(µ). We have

z(n+1)(0) =
f(0)

(n + 1)
z(n+1)(0).

which implies that z(n+1)(0) = 0 and limµ→0

(
z
µ

)(n)

= 0 since f(0) is not a positive

integer.

Hence, by induction, z(n)(0) = 0 and limµ→0

(
z
µ

)(n−1)

= 0 for all n ≥ 1. Therefore,

with z(0) also equals to zero and z(µ) is analytic at µ = 0, we have z(µ) is

identically zero. QED

Remark 2.6 Note that the result in Lemma 2.1 is a classical result and can be

found for example in [7]. We include its proof here because it is elementary and

does not require deep theoretical background to understand it.

We have the following main theorem for this section:

Theorem 2.4 Let X̃(t) and Ỹ (t), given by (2.18), be positive definite for t > 0.

Then (X̃(t), Ỹ (t)) is a solution to (2.15) for t > 0 and is analytic at t = 0 if and

only if ỹ2(t) = −tỹ1(t) for all t ≥ 0, where ỹ1(t) satisfies ỹ′
1 = 2tỹ1(2−ỹ1)

1+2t2(ỹ1−1)
.

Proof. (⇒) Suppose (X̃(t), Ỹ (t)) is a solution to (2.15) for t > 0 and is analytic

at t = 0.

Then, from the first differential equation in (2.23), we see that ỹ2(t) must approach

zero as t → 0. Therefore, since ỹ2(t) is analytic at t = 0, we have ỹ2(t) = tw(t)

where w(t) is analytic at t = 0. We want to show that w(t) = −ỹ1(t).

Now, from the first differential equation in (2.23), we have

ỹ′
1 =

2(ỹ1 − 2)(tỹ1(tỹ1 − 2t + 2ỹ2) + ỹ2
2)

t(2 − ỹ1 − t2(2 − ỹ1)2 + ỹ1(1 − 2tỹ2) − ỹ2
2)

.

Substituting ỹ2 = tw into the above equation and simplifying, we have

ỹ′
1 =

2t(ỹ1 − 2)(ỹ1(ỹ1 − 2 + 2w) + w2)

2 − t2((2 − ỹ1)2 + 2wỹ1 + w2)
. (2.24)
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From the second differential equation in (2.23), we have

ỹ′
2 =

2tỹ2(−ỹ2 + 2t − tỹ1) + (tỹ1 + ỹ2)(−ỹ2
2 + (2 − ỹ1)(3tỹ2 − 2)) + 2ỹ2

t(2 − ỹ1 − t2(2 − ỹ1)2 + ỹ1(1 − 2tỹ2) − ỹ2
2)

.

Substituting tw for ỹ2 and tw′ + w for ỹ′
2 into the above equation, we have, after

bringing w to the right hand side of the resulting equation, dividing throughout

by t and simplifying,

w′ =
2(2 − ỹ1)((w + ỹ1)(t

2w − 1) + 2t2w)

t(2 − t2((2 − ỹ1)2 + 2wỹ1 + w2))
. (2.25)

Adding up equations (2.24) and (2.25) and upon simplifications, we obtain

(ỹ1 + w)′(t) =
2(2 − ỹ1(t))(t

2(2 − ỹ1(t)) − 1)

t(2 − t2((2 − ỹ1(t))2 + 2wỹ1 + w2))
(ỹ1(t) + w(t)).

Let z(t) = ỹ1(t) + w(t). Then z(t) is analytic at t = 0, since ỹ1(t) and w(t) are

analytic at t = 0. We have the following differential equation:

z′(t) =
z(t)

t

(
2(2 − ỹ1(t))(t

2(2 − ỹ1(t)) − 1)

2 − t2((2 − ỹ1(t))2 + z2 − ỹ2
1)

)
. (2.26)

Let f(t) = 2(2−ỹ1(t))(t2(2−ỹ1(t))−1)

2−t2((2−ỹ1(t))2+z2−ỹ2
1)

. Then f(t) is analytic at t = 0. Also, f(0) =

−(2− ỹ1(0)), which is strictly less than zero since X̃1(t) and Ỹ1(t), in the proof of

Proposition 2.3, are positive definite even in the limit as t approaches zero.

From (2.26), we see that in order for z′(t) to exist as t approaches zero, which

should be the case since z(t) is analytic at t = 0, we must have z(0) = 0, since f(0)

is nonzero. Now z(t), f(t) here satisfy the conditions in Lemma 2.1. Therefore,

by the lemma, z(t) is identically equal to zero which implies that w(t) = −ỹ1(t).

Using w(t) = −ỹ1(t), expressing the differential equation (2.24) in terms of ỹ1, we

obtained the ODE of ỹ1 in the theorem.

(⇐) Suppose ỹ2(t) = −tỹ1(t) for all t ≥ 0, where ỹ1(t) satisfies ỹ′
1 = 2tỹ1(2−ỹ1)

1+2t2(ỹ1−1)
.

Then, since the right-hand side of the ODE of ỹ1 is analytic at t = 0 and ỹ1 ∈ <,

we have, by Theorem 2.1, that ỹ1(t) is analytic at t = 0. Hence ỹ2(t) is also

analytic at t = 0. These imply that X̃(t), Ỹ (t) are analytic at t = 0.
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With ỹ2(t) related to ỹ1(t) by ỹ2(t) = −tỹ1(t) where ỹ1(t) satisfying the ODE in

the theorem, we can also check easily that ỹ1(t) and ỹ2(t) satisfy (2.16). Hence,

by Proposition 2.2, (X̃(t), Ỹ (t)) satisfies (2.15) for t > 0. QED

Using Theorem 2.4, we have the following interesting result:

Corollary 2.3 Let X(µ), Y (µ), given by (2.17), be positive definite for µ > 0.

Suppose (X(µ), Y (µ)) is a solution to (2.11) for µ > 0 with initial conditions

given by (2.12)-(2.14). Then (X(µ), Y (µ)) is analytic w.r.t µ at µ = 0 if and only

if it is analytic w.r.t
√

µ at µ = 0.

Proof. (⇒) This is clear.

(⇐) Suppose (X(µ), Y (µ)) is analytic w.r.t
√

µ at µ = 0.

Then (X̃(t), Ỹ (t)) is analytic at t = 0. Hence, by Thereom 2.4, we have ỹ2(t) =

−tỹ1(t) for all t ≥ 0, where ỹ1(t) satisfies ỹ′
1 = 2tỹ1(2−ỹ1)

1+2t2(ỹ1−1)
.

It is clear that y1(µ) = µỹ1(
√

µ) and y2(µ) =
√

µỹ2(
√

µ). Therefore ỹ2(t) =

−tỹ1(t) implies that y2(µ) = −y1(µ). Letting ˜̃y1(µ) to be ỹ1(
√

µ), we see that

y1(µ) = µ˜̃y1(µ) where ˜̃y1(µ) satisfies ˜̃y
′
1 =

˜̃y1(2−˜̃y1)

1+2µ(˜̃y1−1)
since ỹ1(t) satisfies ỹ′

1 =

2tỹ1(2−ỹ1)
1+2t2(ỹ1−1)

. Since the right-hand side of the ODE satisfied by ˜̃y1(µ) is analytic

at µ = 0, we have, by Theorem 2.1, ˜̃y1(µ) is also analytic at µ = 0. Therefore,

y1(µ) and y2(µ) are analytic at µ = 0, which further implies that (X(µ), Y (µ)) is

analytic at µ = 0. Hence, we are done. QED

Remark 2.7 From the proof of Corollary 2.3, we see that we have a result similar

to Theorem 2.4 which is that (X(µ), Y (µ)), given by (2.17), is a solution to (2.11)

for µ > 0 and is analytic at µ = 0 if and only if y2(µ) = −y1(µ) for all µ ≥ 0,

where y1(µ) = µ˜̃y1(µ) and ˜̃y1(µ) satisfies ˜̃y
′
1 =

˜̃y1(2−˜̃y1)

1+2µ(˜̃y1−1)
.

We also have:

Remark 2.8 We see, from Theorem 2.4, that no matter how close we consider a

starting point (for the off-central path) to the central path of the SDP example, we
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can always start off with a point whose off-central path is not analytic w.r.t µ or
√

µ at µ = 0. On the other hand, if the initial point satisfies a certain condition,

its off-central path can be analytic at µ = 0. In the next section, we will see how

this latter fact can be used to ensure superlinear convergence of the first-order

predictor-corrector algorithm.

To end this section, we have the below final remark:

Remark 2.9 If we consider P = X−1/2, which corresponds to the so-called HKM

direction, then by performing manipulations similar to the above (and hence will

not be shown here), Theorem 2.4 also holds. In particular, we also have the

interesting relation y2 = −y1, as in Remark 2.7. We do not know about the case

of NT direction since manipulations for NT direction on this example proved to

be too complicated. Finally, we remark that we choose the dual HKM direction

over the HKM direction to show the results above because it is computationally

advantageous to use this direction when we compute the iterates of path-following

algorithm in general (see [25]). Hence it is more meaningful to show results using

the dual HKM direction.

2.2.1 Implications to Predictor-Corrector Algorithm

From the previous section, Remark 2.7, we note that not all off-central paths of

the given example are analytic at the limit as µ approaches zero. In fact, we see

that only if we start an off-central path, (X(µ), Y (µ)), at a point (X0, Y0) with

X0 =


 1 2µ0 − y0

1

2µ0 − y0
1 2µ0 − y0

1


, Y0 =


 y0

1 y0
2

y0
2 1 − 2y0

2


 such that y0

2 = −y0
1, then

it is analytic at the limit as µ → 0. This is a very restrictive condition for an

off-central path to be analytic at µ = 0.

One may ask whether for other starting points, the off-central path may have at

least bounded first derivatives as µ approaches zero. We have written codes in



2.2.1 Implications to Predictor-Corrector Algorithm 31

matlab to see how the first derivatives of y1(µ) and y2(µ) behave, as µ approaches

zero, for different starting points. The results are shown in the figures below:
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We see from these figures that indeed, without y2 = −y1, the first derivatives of

the off-central path do not seems to be bounded in the limit as µ approaches zero.

From [26], it then suggests that we cannot conclude superlinear convergence of the

predictor-corrector algorithm using this example, if we choose any point as the

initial iterate. However, in what follows, we will show that by choosing suitable

initial iterate, superlinear convergence of first-order predictor-corrector algorithm

on this example is still possible.

Let us first define a set S, for the given example, which is the collection of all

off-central paths in S2
++ × S2

++ which are analytic at their limit point as µ → 0.
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We have the following observation on the structure of S:

Proposition 2.4

S = {(X,Y ) : X,Y ∈ S2
++, Asvec(X) + Bsvec(Y ) = q, Y12 = −Y11}

Proof. (⊆) Let (X,Y ) ∈ S. Clearly (X,Y ) ∈ {(X,Y ) ; X,Y ∈ S2
++, Asvec(X)+

Bsvec(Y ) = q, Y12 = −Y11}.

(⊇) Let (X,Y ) ∈ {(X,Y ) ; X,Y ∈ S2
++, Asvec(X) + Bsvec(Y ) = q, Y12 =

−Y11}. Then Asvec(X) + Bsvec(Y ) = q, Y12 = −Y11 ⇒ X =


 1 x0

x0 x0


 , Y =


 y0

1 y0
2

y0
2 1 − 2y0

2


 for some x0, y0

1, y
0
2 ∈ < and y0

2 = −y0
1. Define µ0 = Tr(XY )/2.

Then x0 = 2µ0 − y0
1. By Remark 2.7, the ODE of ˜̃y1 there has a solution with

initial point ˜̃y1(µ0) = y0
1/µ0 and its resulting off-central path (X(µ), Y (µ)), using

the ODE solution ˜̃y1(µ), is analytic at µ = 0. This off-central path has (X,Y ) as

the point at µ0. Hence (X,Y ) ∈ S. QED

In the first-order predictor-corrector algorithm, the predictor and corrector steps

are obtained by solving the following system of equations:

HP (X∆Y + ∆XY ) = σµI − HP (XY )

A(∆X) + B(∆Y ) = 0

where (X,Y ) is the current iterate and for σ = 0, (∆X, ∆Y ) corresponds to

the predictor step, (∆pX, ∆pY ), and for σ = 1, (∆X, ∆Y ) corresponds to the

corrector step, (∆cX, ∆cY ). Also, µ = Tr(XY )/n where n is the matrix size of

X (or Y ).

The intermediate iterate, (Xp, Y p), after the predictor step, is obtained by adding

suitable scalar multiple of (∆pX, ∆pY ) to (X,Y ). The next iterate (X+, Y +) of

the algorithm is then obtained by adding (∆cX, ∆cY ) to (Xp, Y p).
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We want to show for the example that if (X,Y ) ∈ S, then the next iterate,

(X+, Y +), also belongs to S. It then follows that if our initial feasible iterate

(X0, Y0) ∈ S, then any iterate generated by the first-order predictor-corrector

algorithm lies on an off-central path which is analytic at the optimal solution

(since it also belongs to S) and hence, by [26], the iterates converge quadratically

to the optimal solution.

We have the following proposition:

Proposition 2.5 If (X,Y ) ∈ S, then (Xp, Y p) ∈ S.

Proof. We know that the derivative at the point where the off-central path

passes through (X,Y ) is along the same direction as (∆pX, ∆pY ). Therefore,

(∆pX, ∆pY ) has the form

∆pX = −µ


 0 2 − ∆py1

2 − ∆py1 2 − ∆py1


 , ∆pY = −µ


 ∆py1 ∆py2

∆py2 −2∆py2




where ∆py2 = −∆py1.

Therefore, (Xp, Y p) = (X,Y ) + α(∆pX, ∆pY ) for some α > 0 implies that

(Y p)11 = Y11 − αµ∆py1 and (Y p)12 = Y12 − αµ∆py2. Clearly, (Y p)12 = −(Y p)11.

Also, since Asvec(Xp) + Bsvec(Y p) = q, we are done, by Proposition 2.4. QED

Next, we show that if (Xp, Y p) ∈ S, then (X+, Y +) also belongs to S and we

would have shown that all iterates generated by the first-order predictor-corrector

algorithm, if suitably initialized, have the nice property as stated above.

We do this by studying the path corresponding to the corrector step, which is the

solution of the following system of ODEs:

HP ((XY )′) =
Tr(XY )

2
I − HP (XY ) (2.27)

A(X ′) + B(Y ′) = 0 (2.28)

where P = Y 1/2. We denote the parameter in (2.27)-(2.28) by the variable t. Note

that taking trace on both sides of (2.27) and integrating w.r.t t, we see that on
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a solution of the system of ODEs (2.27)-(2.28), Tr(XY )/2 is equal to a constant

µ+ for all t. Therefore, we will write (2.27) as

HP ((XY )′) = µ+I − HP (XY ) (2.29)

from now onwards, where µ+ is a constant.

For the solution curve of (2.28)-(2.29), (X(t), Y (t)), passing through (Xp, Y p)

(and hence satisfying Asvec(X) +Bsvec(Y ) = q and Tr(XY ) = µ+), we see that

it is of the form





 1 2µ+ − w1(t)

2µ+ − w1(t) 2µ+ − w1(t)


 ,


 w1(t) w2(t)

w2(t) 1 − 2w2(t)





,

which satisfies (2.28) automatically.

We have the following proposition:

Proposition 2.6 Let

(X(t), Y (t)) =





 1 2µ+ − w1(t)

2µ+ − w1(t) 2µ+ − w1(t)


 ,


 w1(t) w2(t)

w2(t) 1 − 2w2(t)







where w2(t) = −w1(t) with w1(t) satisfying (1 + 2w1 − 2µ+)w′
1 = µ+ + (2µ+ −

1)w1 − w2
1, w1(0) = (Y p)11. Then (X(t), Y (t)) is the unique solution of (2.28)-

(2.29) passing through (Xp, Y p).

Proof. Suppose (X(t), Y (t)) satisfies the conditions in the proposition.

Then we first observe that (X(t), Y (t)) of the given form satisfies (2.28) automat-

ically. This is noted in the discussion before the proposition. Therefore, we only

need to show that (X(t), Y (t)) satisfies (2.29) and then by Theorem 2.1, it is the

unique solution of (2.28)-(2.29) passing through (Xp, Y p).

Note that (2.29) can be written as (Y 1/2⊗sY
1/2)svec(X ′)+((Y 1/2X)⊗sY

−1/2)svec(Y ′) =

µ+svec(I) − (Y 1/2 ⊗s Y 1/2)svec(X) using svec and ⊗s notations. Taking the in-

verse of Y 1/2 ⊗s Y 1/2 on both sides of this equation and using the properties of

⊗s, we get

svec(X ′) + (X ⊗s Y −1)svec(Y ′) = µ+svec(Y −1) − svec(X). (2.30)
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Substituting

(X(t), Y (t)) =





 1 2µ+ − w1(t)

2µ+ − w1(t) 2µ+ − w1(t)


 ,


 w1(t) w2(t)

w2(t) 1 − 2w2(t)







and expressions for X ′, Y ′, Y −1 and X ⊗s Y −1 (this expression in terms of w1(t)

and w2(t) can be easily derived from a similar expression in Section 2.2) in terms

of w1(t) and w2(t) into (2.30) and upon simplification, we get the following three

equations:

(1 − 2w2)w
′
1 + ((2µ+ − w1) − w2)w

′
2 = (1 − 2w2)(µ

+ − w1) + w2
2, (2.31)

(1 − 2w2)(2µ
+ − 3w1 − w2)w

′
1 + (2µ+ − 2(2µ+ − w1)(w1 + w2))w

′
2 =

−2µ+w2 − 2(w1(1 − 2w2) − w2
2)(2µ

+ − w1)
(2.32)

and

(w2(2µ
+ − w1 − w2) + w1(1 − 2w2))w

′
1 + (2µ+ − w1)(w1 + w2)w

′
2 =

−µ+w1 + (w1(1 − 2w2) − w2
2)(2µ

+ − w1).
(2.33)

We can easily check that if w1(t) and w2(t) of (X(t), Y (t)) are given by the con-

ditions in the proposition, then they satisfy (2.31)-(2.33). Hence (X(t), Y (t)) in

the proposition satisfies (2.29). Therefore, we are done. QED

As in the proof of Proposition 2.5, we observe that the derivative of the solution

(X(t), Y (t)) to (2.28)-(2.29) passing through (Xp, Y p) is along the same direction

as (∆cX, ∆cY ). Therefore, by Proposition 2.6, (∆cX, ∆cY ) has the form

∆cX =


 0 −∆cw1

−∆cw1 −∆cw1


 , ∆cY =


 ∆cw1 ∆cw2

∆cw2 −2∆cw2




where ∆cw2 = −∆cw1. Adding this to (Xp, Y p) (which satisfies (Y p)12 = −(Y p)11

and Asvec(Xp) + Bsvec(Y p) = q), we see that (X+, Y +) also satisfies (Y +)12 =

−(Y +)11 and Asvec(X+) + Bsvec(Y +) = q. Therefore, (X+, Y +) ∈ S.
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In conclusion, in this section, we show that for the example under consideration,

if the initial iterate for the first-order predictor-corrector algorithm lies on an off-

central path which is analytic at its limit point, then all iterates generated by

the algorithm also lies on some off-central path analytic at its limit point. Hence,

these iterates converge superlinearly to the optimal solution.

2.3 General Theory for Asymptotic Analyticity

of Off-Central Path for SDLCP

In Section 2.1, we shown that any accumulation point of (X(µ), Y (µ)), the solution

to (2.6)-(2.7) in Sn
++×Sn

++, is a solution to (2.1), as µ tends to zero. In this section,

the asymptotic behaviour of (X(µ), Y (µ)) will be analysed. Instead of studying

the limiting behaviour of (X(µ), Y (µ)) for general P , which is too daunting a task,

we will do so only for the case when P = Y 1/2, the so-called dual HKM direction.

Note that the case when P = I has already been studied in [17] and hence will

not be discussed here.

We first make a few transformations to (2.8) which is an equivalent form of (2.6)-

(2.7). The system of ODEs obtained after these transformations allows us to give

a necessary and sufficient condition to when an off-central path (X(µ), Y (µ)) is

analytic at its limit point with respect to t =
√

µ. We only attempt to study the

analyticity of the off-central path at its limit point with respect to
√

µ instead of µ

because
√

µ naturally appears in the off diagonal entries of X(µ), Y (µ), as shown

in (2.34) and (2.35) below. This leads us to naturally investigate asymptotic

behaviour of X(µ), Y (µ) w.r.t
√

µ.

In what follows, we occasionally suppress the dependence of a vector or matrix on

its parameter and whether these matrices or vectors are dependent on a parameter

should be clear from the context.
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We need an additional assumption besides Assumption 2.1 before we proceed. The

analysis of the asymptotic behaviour of an off-central path for a general SDLCP

is difficult without this assumption although there are some recent work done in

this area for special classes of SDLCP without the assumption. See for example

[16].

Here, we will discuss the case of SDLCP (2.1) with the assumption (in addition

to Assumption 2.1), which is stated below.

Assumption 2.2 There exists a strictly complementary solution, (X∗, Y ∗), to

SDLCP (2.1).

Since X∗ and Y ∗ commutes, they are jointly diagonalizable by some orthogonal

matrix. So, using a suitable orthogonal similarity transformation of the matrices

in SDLCP (2.1), we may assume, without loss of generality, that

X∗ =


 Λ∗

11 0

0 0


 , Y ∗ =


 0 0

0 Λ∗
22


 ,

where Λ∗
11 = diag(λ∗

1, . . . , λ
∗
m) Â 0 and Λ∗

22 = diag(λ∗
m+1, . . . , λ

∗
n) Â 0. Here

λ∗
1, . . . , λ

∗
n are real numbers greater than zero.

Hereafter, whenever we partitioned a matrix S ∈ Sn, we do it in a similar way,

i.e., S is always partitioned as


 S11 S12

ST
12 S22


 , where S11 ∈ Sm, S22 ∈ Sn−m and

S12 ∈ <m×(n−m).

In order to transform the ODE system (2.8) into a more ”manageable” system of

ODEs, we now claim that for (X(µ), Y (µ)) on an off-central path, we have

X(µ) =


 X11

√
µX̃12

√
µX̃T

12 µX̃22


 (2.34)

and

Y (µ) =


 µỸ11

√
µỸ12

√
µỸ T

12 Y22


 (2.35)
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where X11, Y22, X̃22 and Ỹ11 are equal to Θ(1) and ‖X̃12(µ)‖F , ‖Ỹ12(µ)‖F are equal

to O(1). We proved this in a few propositions below. These propositions are

adapted from [17].

Proposition 2.7 ([17] Lemma 3.10) Y11(µ) and X22(µ) are equal to O(µ) and

‖X12(µ)‖F and ‖Y12(µ)‖F are equal to O(
√

µ).

Proof. Now, A(X(µ) − X∗) + B(Y (µ) − Y ∗) = 0 implies, by Assumption 2.1(a),

that (X(µ)−X∗)•(Y (µ)−Y ∗) ≥ 0. Hence X(µ)•Y ∗+X∗•Y (µ) ≤ X(µ)•Y (µ) =

Tr(XY )(µ).

Note that by Remark 2.3, Tr(XY )(µ) = Tr(X0Y 0)µ = nµ. Hence, X(µ) •
Y ∗ +X∗ •Y (µ) = O(µ). That is,

∑n
i=m+1 λ∗

i xii(µ)+
∑m

i=1 λ∗
i yii(µ) = O(µ), where

xii(µ), yii(µ) are the diagonal elements of X(µ) and Y (µ) respectively. This implies

that X22(µ) = O(µ) and Y11(µ) = O(µ).

Also, we have ‖X12(µ)‖2
F ≤ Tr(X11(µ))Tr(X22(µ)) (by Lemma 2.2 of [17]), to-

gether with the fact that X(µ) is bounded near µ equal to zero (by Remark 2.4)

and X22(µ) = O(µ), implies that ‖X12(µ)‖F = O(
√

µ).

Similarly, we can show that ‖Y12(µ)‖F = O(
√

µ). QED

Proposition 2.8 ([17] Lemma 3.11) X11(µ) and Y22(µ) are equal to Θ(1) and

X22(µ) and Y11(µ) are equal to Θ(µ).

Proof. Now, det
(

X(µ)Y (µ)
µ

)
=

∏n
i=1

λi(XY )(µ)
µ

≥ λmin(X0Y 0)n, where the inequal-

ity follows from Theorem 2.2.

On the other hand, det
(

X(µ)Y (µ)
µ

)
= 1

µn det(X(µ))det(Y (µ)) ≤ det(X11(µ)) det
(

X22(µ)
µ

)
×

det(Y22(µ)) det
(

Y11(µ)
µ

)
(where the inequality follows from Theorem 2.4 in [17]).

Therefore, we have λmin(X0Y 0)n ≤ det(X11(µ))det
(

X22(µ)
µ

)
det(Y22(µ))det

(
Y11(µ)

µ

)
.

Taking log on both sides of the inequality, we have

n log λmin(X0Y 0) ≤ log det(X11(µ)) + log det

(
X22(µ)

µ

)
+ log det(Y22(µ))

+ log det

(
Y11(µ)

µ

)
.
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Since X22(µ) and Y11(µ) are equal to O(µ) (by the previous proposition) and

X(µ), Y (µ) are bounded (by Remark 2.4), we must have, from the above logarith-

mic inequality, that X11(µ) and Y22(µ) are equal to Θ(1) and X22(µ) and Y11(µ)

are equal to Θ(µ). QED

Therefore, our claim on (X(µ), Y (µ)) of an off-central path having form (2.34)

and (2.35) is true.

Letting X̃(µ) =


 X11 X̃12

X̃T
12 X̃22


 and Ỹ (µ) =


 Ỹ11 Ỹ12

Ỹ T
12 Y22


, we can then write

X(µ) =


 I 0

0
√

µI


 X̃(µ)


 I 0

0
√

µI




and

Y (µ) =




√
µI 0

0 I


 Ỹ (µ)




√
µI 0

0 I


 .

Remark 2.10 It can be seen easily that since λmin(XY )(µ) = λmin(X0Y 0)µ and

λmax(XY )(µ) = λmax(X
0Y 0)µ (Thereom 2.2), the above relationship between X̃,

X and Ỹ , Y implies that λmin(X̃Ỹ )(µ) = λmin(X0Y 0) and λmax(X̃Ỹ )(µ) =

λmax(X
0Y 0). Hence X̃(µ) and Ỹ (µ) are positive definite for all µ > 0 and any of

their accumulation points are also positive definite.

Let X1(t) = X(t2), Y1(t) = Y (t2). Similarly, let X̃1(t) = X̃(t2) and Ỹ1(t) = Ỹ (t2).

Then X1, X̃1, Y1, Ỹ1 are related by

X1(t) =


 I 0

0 tI


 X̃1(t)


 I 0

0 tI


 (2.36)

and

Y1(t) =


 tI 0

0 I


 Ỹ1(t)


 tI 0

0 I


 . (2.37)
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To study the analyticity of (X(µ), Y (µ)) w.r.t
√

µ at µ = 0, it is the same as

studying the analyticity of (X1(t), Y1(t)) when t = 0. The following proposition

shows that it suffices to do this by studying the analyticity of (X̃1(t), Ỹ1(t)) at

t = 0.

Proposition 2.9 X1(t) is analytic at t = 0 if and only if X̃1(t) is analytic at

t = 0. Similarly, Y1(t) is analytic at t = 0 if and only if Ỹ1(t) is analytic at t = 0.

Proof. This is clear since by (2.36) and (2.37), (X1)11(t) = (X̃1)11(t), (X1)12(t) =

t(X̃1)12(t), (X1)22(t) = t2(X̃1)22(t), (Y1)11(t) = t2(Ỹ1)11(t), (Y1)12(t) = t(Ỹ1)12(t)

and (Y1)22(t) = (Ỹ1)22(t). We also need the fact that X̃1 and Ỹ1 are bounded near

t = 0, which follows from Propositions 2.7 and 2.8. QED

Therefore, by this proposition, we need only study the analyticity of X̃1(t) and

Ỹ1(t) at t = 0 to conclude the property for X1(t) and Y1(t). An advantage for

studying the asymptotic behaviour of X̃1(t) and Ỹ1(t) than that of X1(t) and Y1(t)

is because their accumulation points are positive definite, by Remark 2.10 (which

is a desirable property), unlike that of X1(t) and Y1(t).

Hence, we are going to express the system of ODEs (2.8) in terms of X̃1 and Ỹ1.

First, we observe that by letting P = Y 1/2 in (2.8), inverting P ⊗s P−T Y and

observing that (P ⊗s P−T Y )−1(PX ⊗s P−T ) = X ⊗s Y −1 and (P ⊗s P−T Y )−1

svec(HP (XY )) = svec(X) when P = Y 1/2, (2.8) becomes


 A B

I X ⊗s Y −1





 svec(X ′)

svec(Y ′)


 =

1

µ


 0

svec(X)


 (2.38)

where A =




svec(A1)
T

...

svec(Añ)T


 and B =




svec(B1)
T

...

svec(Bñ)T


.
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In terms of X1 and Y1, (2.38) becomes

1

2


 A B

I X1 ⊗s Y −1
1





 svec(X ′

1)

svec(Y ′
1)


 =

1

t


 0

svec(X1)


 (2.39)

If we consider X1 and Y1 to be on an off-central path, then the matrix on the

extreme left in (2.39) is not invertible and may not even be defined as t tends to

zero (since Y −1
1 may not exist in the limit) and hence it is not possible to analyse

the asymptotic behaviour of X1(t) and Y1(t) if we just use (2.39). By expressing

(2.39) in terms of X̃1 and Ỹ1, we will see that further analysis is possible.

In what follows, as in Section 2.1, the properties of the operation ⊗s and the map

svec are used extensively. Also, following [23], the inverse map of svec is denoted

by smat.

Note that since

X1(t) =


 I 0

0 tI


 X̃1(t)


 I 0

0 tI


 ,

we have

X ′
1(t) =


 0 0

0 I


 X̃1(t)


 I 0

0 tI


 +


 I 0

0 tI


 X̃ ′

1(t)


 I 0

0 tI


 +


 I 0

0 tI


 X̃1(t)


 0 0

0 I


 .

Therefore,

svec(X ′
1(t)) = 2





 0 0

0 I


 ⊗s


 I 0

0 tI





 svec(X̃1(t)) +





 I 0

0 tI


 ⊗s


 I 0

0 tI





 svec(X̃ ′

1(t)).
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Similarly,

svec(Y ′
1(t)) = 2





 I 0

0 0


 ⊗s


 tI 0

0 I





 svec(Ỹ1(t)) +





 tI 0

0 I


 ⊗s


 tI 0

0 I





 svec(Ỹ ′

1(t)).

Substituting these into (2.39), we have


 A B

I X1 ⊗s Y −1
1











 0 0

0 I


 ⊗s


 I 0

0 tI





 svec(X̃1)





 I 0

0 0


 ⊗s


 tI 0

0 I





 svec(Ỹ1)




+

1
2


 A B

I X1 ⊗s Y −1
1











 I 0

0 tI


 ⊗s


 I 0

0 tI





 svec(X̃ ′

1)





 tI 0

0 I


 ⊗s


 tI 0

0 I





 svec(Ỹ ′

1)




= 1
t




0



 I 0

0 tI


 ⊗s


 I 0

0 tI





 svec(X̃1)




Therefore,

1
2
M1


 svec(X̃ ′

1)

svec(Ỹ ′
1)


 =

1
t




0
 I 0

0 tI


 ⊗s


 I 0

0 tI


 svec(X̃1)


 −M2


 svec(X̃1)

svec(Ỹ1)


 ,

(2.40)
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where

M1 :=


A





 I 0

0 tI


 ⊗s


 I 0

0 tI





 B





 tI 0

0 I


 ⊗s


 tI 0

0 I








 I 0

0 tI


 ⊗s


 I 0

0 tI


 (X1 ⊗s Y −1

1 )





 tI 0

0 I


 ⊗s


 tI 0

0 I










and

M2 :=


A





 0 0

0 I


 ⊗s


 I 0

0 tI





 B





 I 0

0 0


 ⊗s


 tI 0

0 I








 0 0

0 I


 ⊗s


 I 0

0 tI


 (X1 ⊗s Y −1

1 )





 I 0

0 0


 ⊗s


 tI 0

0 I










.

Let us look more closely at M1. We will show that it can be written as a product

of two matrices where one of the matrices is invertible for all t ≥ 0 and X̃1, Ỹ1

positive definite.

First, consider the matrices A,B in M1 (and also in M2). We have the following

lemma (note that the lemma is inspired by a similar result in [17], see also [9]):

Lemma 2.2 There exists an invertible matrix T such that

T (A,B) =

T




svec(A1)
T svec(B1)

T

...
...

svec(Añ)T svec(Bñ)T


 =



2.3 General Theory for SDLCP Off-Central Path 44





svec


 (Ã1)11 (Ã1)12

(Ã1)
T
12 (Ã1)22







T 
svec


 (B̃1)11 (B̃1)12

(B̃1)
T
12 (B̃1)22







T

...
...


svec


 (Ãi1)11 (Ãi1)12

(Ãi1)
T
12 (Ãi1)22







T 
svec


 (B̃i1)11 (B̃i1)12

(B̃i1)
T
12 (B̃i1)22







T


svec


 0 (Ãi1+1)12

(Ãi1+1)
T
12 (Ãi1+1)22







T 
svec


 (B̃i1+1)11 (B̃i1+1)12

(B̃i1+1)
T
12 0







T

...
...


svec


 0 (Ãi1+i2)12

(Ãi1+i2)
T
12 (Ãi1+i2)22







T 
svec


 (B̃i1+i2)11 (B̃i1+i2)12

(B̃i1+i2)
T
12 0







T


svec


 0 0

0 (Ãi1+i2+1)22







T 
svec


 (B̃i1+i2+1)11 0

0 0







T

...
...


svec


 0 0

0 (Ãñ)22







T 
svec


 (B̃ñ)11 0

0 0







T




.(2.41)

where 0 ≤ i1, i2 ≤ ñ - how i1 and i2 are defined should be clear from the proof of

the lemma.

Proof. In order to prove this, imagine that svec(Ai)
T is written as ((̂Ai)11 (̂Ai)12

(̂Ai)22) where (̂Ai)11 is a row of vector corresponding to the upper left hand block

(Ai)11 of Ai, (̂Ai)12 corresponds to the upper right hand block (Ai)12 of Ai and

(̂Ai)22 corresponds to the lower right hand block (Ai)22 of Ai. Similarly, svec(Bi)
T

is written as ((̂Bi)11 (̂Bi)12 (̂Bi)22).

Let

i1 = rank




(̂A1)11 (̂B1)22

...
...

(̂Añ)11 (̂Bñ)22


 ,
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i2 = rank




(̂A1)11 (̂A1)12 (̂B1)12 (̂B1)22

...
...

...
...

(̂Añ)11 (̂Añ)12 (̂Bñ)12 (̂Bñ)22


 − i1,

i3 = rank




svec(A1)
T svec(B1)

T

...
...

svec(Añ)T svec(Bñ)T


 − (i1 + i2),

where i1 + i2 + i3 = ñ (by Assumption 2.1(c)). Then the lemma holds by applying

block Gaussian elimination method to



svec(A1)
T svec(B1)

T

...
...

svec(Añ)T svec(Bñ)T


 .

QED

Remark 2.11 It should be noted, by construction, that in the above

i1 =

rank





svec


 (Ã1)11 0

0 0







T 
svec


 0 0

0 (B̃1)22







T

...
...


svec


 (Ãi1)11 0

0 0







T 
svec


 0 0

0 (B̃i1)22







T




,

i2 =

rank





svec


 0 (Ãi1+1)12

(Ãi1+1)
T
12 0







T 
svec


 0 (B̃i1+1)12

(B̃i1+1)
T
12 0







T

...
...


svec


 0 (Ãi1+i2)12

(Ãi1+i2)
T
12 0







T 
svec


 0 (B̃i1+i2)12

(B̃i1+i2)
T
12 0







T




,
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i3 =

rank





svec


 0 0

0 (Ãi1+i2+1)22







T 
svec


 (B̃i1+i2+1)11 0

0 0







T

...
...


svec


 0 0

0 (Ãñ)22







T 
svec


 (B̃ñ)11 0

0 0







T




,

where i1 + i2 + i3 = ñ.

From now onwards, we can assume, without loss of generality, that A =




svec(A1)
T

...

svec(Añ)T




and B =




svec(B1)
T

...

svec(Bñ)T


 are given by (2.41). In these forms, again, (A B) have

full row rank and

Au + Bv = 0 ⇒ uT v ≥ 0. (2.42)

Now, for each i = 1, . . . , ñ,

svec(Ai)
T





 I 0

0 tI


 ⊗s


 I 0

0 tI





 =


svec


 (Ai)11 t(Ai)12

t(Ai)
T
12 t2(Ai)22







T

.

Together with form (2.41) for A, we can see easily that

A





 I 0

0 tI


 ⊗s


 I 0

0 tI





 =
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diag(I, tI, t2I)





svec


 (A1)11 t(A1)12

t(A1)
T
12 t2(A1)22







T

...

svec


 (Ai1)11 t(Ai1)12

t(Ai1)
T
12 t2(Ai1)22







T


svec


 0 (Ai1+1)12

(Ai1+1)
T
12 t(Ai1+1)22







T

...

svec


 0 (Ai1+i2)12

(Ai1+i2)
T
12 t(Ai1+i2)22







T


svec


 0 0

0 (Ai1+i2+1)22







T

...

svec


 0 0

0 (Añ)22







T




.

Let the matrix on the extreme right in the above expression be A(t).

Remark 2.12 Note that in this section, diag(I, tI, t2I) or diag(I, tI, t2I, C) where

C is a matrix, whenever it appears, has its first diagonal block of dimension i1,

its second diagonal block of dimension i2 and its third diagonal block of dimension

ñ − i1 − i2 = i3.

In a similar fashion, we have

B





 tI 0

0 I


 ⊗s


 tI 0

0 I





 = diag(I, tI, t2I)B(t),
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where

B(t) :=





svec


 t2(B1)11 t(B1)12

t(B1)
T
12 (B1)22







T

...

svec


 t2(Bi1)11 t(Bi1)12

t(Bi1)
T
12 (Bi1)22







T


svec


 t(Bi1+1)11 (Bi1+1)12

(Bi1+1)
T
12 0







T

...

svec


 t(Bi1+i2)11 (Bi1+i2)12

(Bi1+i2)
T
12 0







T


svec


 (Bi1+i2+1)11 0

0 0







T

...

svec


 (Bñ)11 0

0 0







T




.

Therefore, we have the following lemma,

Lemma 2.3

A





 I 0

0 tI


 ⊗s


 I 0

0 tI





 = diag(I, tI, t2I)A(t)

and

B





 tI 0

0 I


 ⊗s


 tI 0

0 I





 = diag(I, tI, t2I)B(t),

where A(t) and B(t) are defined as above.

Proof. As above. QED
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Remark 2.13 Since Asvec(X1(t)) + Bsvec(Y1(t)) = q, we have

A





 I 0

0 tI


 ⊗s


 I 0

0 tI





 svec(X̃1(t))+

B





 tI 0

0 I


 ⊗s


 tI 0

0 I





 svec(Ỹ1(t)) = q.

Hence, by Lemma 2.3,

diag(I, tI, t2I)
(
A(t)svec(X̃1(t)) + B(t)svec(Ỹ1(t))

)
= q.

This implies that q is equal to (qT
1 , 0, 0)T where q1 ∈ <i1, which can be seen by

letting t tends to zero in above. Therefore,

A(t)svec(X̃1(t)) + B(t)svec(Ỹ1(t)) =




q1

0

0


 . (2.43)

By (2.36), (2.37) and using the properties of ⊗s, we have

(X1⊗sY
−1
1 )





 tI 0

0 I


 ⊗s


 tI 0

0 I





 =





 I 0

0 tI


 ⊗s


 I 0

0 tI





 (X̃1⊗sỸ

−1
1 )

Therefore, we can write M1 as

M1 =

diag


I, tI, t2I,


 I 0

0 tI


 ⊗s


 I 0

0 tI








 A(t) B(t)

I X̃1 ⊗s Ỹ −1
1


 .

(2.44)

In a similar manner, we can express M2 in terms of A(t), B(t), X̃1 and Ỹ1 as

follows:
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Using Lemma 2.3, we have

A





 0 0

0 I


 ⊗s


 I 0

0 tI





 =

diag(I, tI, t2I)A(t)





 I 0

0 1
t
I


 ⊗s


 I 0

0 1
t
I











 0 0

0 I


 ⊗s


 I 0

0 tI





 =

diag(I, tI, t2I)A(t)





 0 0

0 1
t
I


 ⊗s I


 .

Also,

B





 I 0

0 0


 ⊗s


 tI 0

0 I





 = diag(I, tI, t2I)B(t)







1
t
I 0

0 0


 ⊗s I




and

(X1 ⊗s Y −1
1 )





 I 0

0 0


 ⊗s


 tI 0

0 I





 =





 I 0

0 tI


 ⊗s


 I 0

0 tI





 (X̃1 ⊗s Ỹ −1

1 )







1
t
I 0

0 0


 ⊗s I


 := M3.

where the last expression follows from (2.36), (2.37) and using the properties of

⊗s.

We have

M2 =


diag(I, tI, t2I)A(t)





 0 0

0 1
t
I


 ⊗s I


 diag(I, tI, t2I)B(t)







1
t
I 0

0 0


 ⊗s I





 0 0

0 I


 ⊗s


 I 0

0 tI


 M3




.
(2.45)

Substituting (2.44) and (2.45) into the system of ODEs (2.40) and simplifying the
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right hand side of its equality sign, we have

1
2
diag


I, tI, t2I,


 I 0

0 tI


 ⊗s


 I 0

0 tI








 A(t) B(t)

I X̃1 ⊗s Ỹ −1
1





 svec(X̃ ′

1)

svec(Ỹ ′
1)


 =

G


 svec(X̃1)

svec(Ỹ1)




(2.46)

where

G =


−diag(I, tI, t2I)A(t)





 0 0

0 1
t
I


 ⊗s I


 −diag(I, tI, t2I)B(t)







1
t
I 0

0 0


 ⊗s I







1
t
I 0

0 0


 ⊗s


 I 0

0 tI


 −M3




.

Taking the inverse of the matrix on the extreme left in (2.46) and simplifying, we

finally obtain

1
2


 A(t) B(t)

I X̃1 ⊗s Ỹ −1
1





 svec(X̃ ′

1)

svec(Ỹ ′
1)


 = (2.47)




−A(t)





 0 0

0 1
t
I


 ⊗s I


 −B(t)







1
t
I 0

0 0


 ⊗s I







1
t
I 0

0 0


 ⊗s I −(X̃1 ⊗s Ỹ −1

1 )







1
t
I 0

0 0


 ⊗s I







×


 svec(X̃1)

svec(Ỹ1)


 .

Remark 2.14 Instead of inverting P ⊗s P−T Y in (2.8) to obtain the system of

ODEs (2.38), we can also invert PX ⊗s P−T in (2.8), when P = Y 1/2, to obtain


 A B

(X ⊗s Y −1)−1 I





 svec(X ′)

svec(Y ′)


 =

1

µ


 0

svec(Y )


 . (2.48)
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Proceeding in a similar manner as what was described above to obtain (2.47) from

(2.38), we obtained from (2.48), the following system of ODEs,

1
2


 A(t) B(t)

(X̃1 ⊗s Ỹ −1
1 )−1 I





 svec(X̃ ′

1)

svec(Ỹ ′
1)


 = (2.49)




−A(t)





 0 0

0 1
t
I


 ⊗s I


 −B(t)







1
t
I 0

0 0


 ⊗s I




−(X̃1 ⊗s Ỹ −1
1 )−1





 0 0

0 1
t
I


 ⊗s I





 0 0

0 1
t
I


 ⊗s I




×


 svec(X̃1)

svec(Ỹ1)


 .

We have the following result by combining the systems of ODEs (2.47) and (2.49):

Proposition 2.10 Given (X(µ), Y (µ)), µ > 0, an off-central path of SDLCP

(2.1) with (X(1), Y (1)) = (X0, Y 0). Let X1(t) = X(t2) and Y1(t) = Y (t2). Then

(X̃1(t), Ỹ1(t)) is a solution to the following system of ODEs




1
2
A(t) 1

2
B(t)

I X̃1 ⊗s Ỹ −1
1





 svec(X̃ ′

1)

svec(Ỹ ′
1)


 = (2.50)

1
t




−A(t)





 0 0

0 I


 ⊗s I


 −B(t)





 I 0

0 0


 ⊗s I





 I 0

0 −I


 ⊗s I −(X̃1 ⊗s Ỹ −1

1 )





 I 0

0 −I


 ⊗s I







×


 svec(X̃1)

svec(Ỹ1)


 .

Here X(µ), X̃1(t) and Y (µ), Ỹ1(t) are related by (2.36) and (2.37) respectively

where µ = t2.

Proof. Suppose (X(µ), Y (µ)) is an off-central path of SDLCP (2.1), then it is

clear that (X̃1(t), Ỹ1(t)), t > 0, is a solution to the systems of ODE (2.47) and
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(2.49). We have, from (2.49),

1
2
(svec(X̃ ′

1) + (X̃1 ⊗s Ỹ −1
1 )svec(Ỹ ′

1)) =

1
t


−





 0 0

0 I


 ⊗s I


 svec(X̃1) + (X̃1 ⊗s Ỹ −1

1 )





 0 0

0 I


 ⊗s I


 svec(Ỹ1)


 .

By adding this to a similar equation from (2.47) and keeping the other half of

the system of equalities in (2.47), (2.49) unchanged, we obtained the system of

ODEs (2.50). Clearly, from the way (2.50) is obtained from (2.47), (2.49), we have

(X̃1(t), Ỹ1(t)) is also its solution. QED

Note that we will use (2.50) in the analysis that follows since it is more ”symmet-

ric” than (2.47) or (2.49).

We observe, in the following proposition, an important property of the matrix
 A(t) B(t)

I X̃1 ⊗s Ỹ −1
1


 on the left hand side of equation (2.50).

Proposition 2.11


 βA(t) βB(t)

I X̃1 ⊗s Ỹ −1
1


, where β 6= 0, β ∈ <, is invertible

for all t ≥ 0 and X̃1, Ỹ1 positive definite.

Proof. To prove the proposition, it suffices to show that


 βA(t) βB(t)

I X̃1 ⊗s Ỹ −1
1





 u

v


 = 0 ⇒ u = v = 0,

for t ≥ 0 and X̃1, Ỹ1 positive definite.

A sufficient condition for this to hold is to show that

A(t)u + B(t)v = 0 ⇒ uT v ≥ 0 (2.51)

Now, for t > 0, (2.51) is true by Lemma 2.3 and since (2.42) holds.

Therefore, we need only show (2.51) for the case t = 0.
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Suppose A(0)u + B(0)v = 0. We want to show that uT v ≥ 0 (The idea to prove

this follows the proof of Theorem 3.13 in [17]).

Let u = svec


 U11 U12

UT
12 U22


 and v = svec


 V11 V12

V T
12 V22


.

We have A svec


 U11 0

0 0


 + B svec


 0 0

0 V22


 = 0 since A(0)u + B(0)v = 0.

Also, A svec


 W1 Z1

ZT
1 U22


 + B svec


 V11 Z2

ZT
2 W2


 = 0 for some W1 ∈ Sm,

W2 ∈ Sn−m and Z1, Z2 ∈ <m×(n−m). This is possible because A(0)u + B(0)v = 0

and by Remark 2.11.

Letting X(s) =


 W1 Z1

ZT
1 U22


 + s


 U11 0

0 0


 and Y (s) =


 V11 Z2

ZT
2 W2


 +

s


 0 0

0 V22


, we have A svec(X(s))+B svec(Y (s)) = 0 for all s ∈ <. Therefore,

by (2.42), X(s) • Y (s) ≥ 0 for all s ∈ <. Expanding X(s) • Y (s), we have

W1 • V11 + U22 • W2 + 2Z1 • Z2 + s(U11 • V11 + U22 • V22) ≥ 0 for all s ∈ <. This

must imply that U11 • V11 + U22 • V22 = 0.

We are done if we can show that U12 •V12 ≥ 0. This is true since there exist W3 ∈

Sm and W4 ∈ Sn−m such that A svec


 W3 U12

UT
12 0


 + B svec


 0 V12

V T
12 W4


 = 0

(the reason for this is because A(0)u+B(0)v = 0 and by Remark 2.11.) and then

by (2.42).

Therefore, we have uT v =


 U11 U12

UT
12 U22


 •


 V11 V12

V T
12 V22


 ≥ 0. QED

Note that the matrix




1
2
A(t) 1

2
B(t)

I X̃1 ⊗s Ỹ −1
1


 in (2.50) is invertible at any ac-

cumulation point of (X̃1(t), Ỹ1(t)) (This follows from Proposition 2.11 since any

accumulation point of X̃1(t) and Ỹ1(t) is positive definite, by Remark 2.10). This
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fact implies that we can invert the matrix at the limit as t tends to zero and this

enables us to study the asymptotic behaviour of (X̃1(t), Ỹ1(t)).

Using (2.50), we can give a necessary and sufficient condition for (X̃1(t), Ỹ1(t)) of

an off-central path to be analytic at t = 0.

First, we have the following technical proposition:

Proposition 2.12 Let (X̃∗
1 , Ỹ

∗
1 ) be an accumulation point of (X̃1(t), Ỹ1(t)) of an

off-central path as t approaches zero. Then

(Ỹ ∗
1 )12 = 0 ⇐⇒

(Ỹ ∗
1 )−1


 I 0

0 −I


 Ỹ ∗

1 X̃∗
1 + X̃∗

1 Ỹ
∗
1


 I 0

0 −I


 (Ỹ ∗

1 )−1 =


 2(X̃∗

1 )11 0

0 −2(X̃∗
1 )22




Proof. ( ⇒ ) Clear.

( ⇐ ) Suppose

(Ỹ ∗
1 )−1


 I 0

0 −I


 Ỹ ∗

1 X̃∗
1 + X̃∗

1 Ỹ
∗
1


 I 0

0 −I


 (Ỹ ∗

1 )−1 =


 2(X̃∗

1 )11 0

0 −2(X̃∗
1 )22


 .

Then we have

 I 0

0 −I


 Ỹ ∗

1 X̃∗
1 Ỹ

∗
1 + Ỹ ∗

1 X̃∗
1 Ỹ

∗
1


 I 0

0 −I


 = 2Ỹ ∗

1


 (X̃∗

1 )11 0

0 −(X̃∗
1 )22


 Ỹ ∗

1 .

Now,




 I 0

0 −I


 Ỹ ∗

1 X̃∗
1 Ỹ

∗
1 + Ỹ ∗

1 X̃∗
1 Ỹ

∗
1


 I 0

0 −I







11

=

2
(
(Ỹ ∗

1 )11(X̃
∗
1 )11(Ỹ

∗
1 )11 + (Ỹ ∗

1 )12(X̃
∗
1 )T

12(Ỹ
∗
1 )11+

(Ỹ ∗
1 )11(X̃

∗
1 )12(Ỹ

∗
1 )T

12 + (Ỹ ∗
1 )12(X̃

∗
1 )22(Ỹ

∗
1 )T

12

)

and

2


Ỹ ∗

1


 (X̃∗

1 )11 0

0 −(X̃∗
1 )22


 Ỹ ∗

1




11

= 2(Ỹ ∗
1 )11(X̃

∗
1 )11(Ỹ

∗
1 )11 − 2(Ỹ ∗

1 )12(X̃
∗
1 )22(Ỹ

∗
1 )T

12.
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Equating them together, we have

(Ỹ ∗
1 )12(X̃

∗
1 )T

12(Ỹ
∗
1 )11 + (Ỹ ∗

1 )11(X̃
∗
1 )12(Ỹ

∗
1 )T

12 + 2(Ỹ ∗
1 )12(X̃

∗
1 )22(Ỹ

∗
1 )T

12 = 0.

Hence,

(Ỹ ∗
1 )12(X̃

∗
1 )T

12 + (Ỹ ∗
1 )11(X̃

∗
1 )12(Ỹ

∗
1 )T

12(Ỹ
∗
1 )−1

11 = −2(Ỹ ∗
1 )12(X̃

∗
1 )22(Ỹ

∗
1 )T

12(Ỹ
∗
1 )−1

11 .

Therefore, (Ỹ ∗
1 )12 • (X̃∗

1 )12 = −Tr((Ỹ ∗
1 )12(X̃

∗
1 )22(Ỹ

∗
1 )T

12(Ỹ
∗
1 )−1

11 ) ≤ 0.

On the other hand, consider X1(t) and Y1(t) where X1(t), X̃1(t) and Y1(t), Ỹ1(t) are

related by (2.36) and (2.37) respectively. Let {tk} be a sequence tending to zero

such that (X1(tk), Y1(tk)) approaches (X∗, Y ∗) and (X̃1(tk), Ỹ1(tk)) approaches

(X̃∗
1 , Ỹ

∗
1 ). Note that (X∗, Y ∗) is a solution to SDLCP (2.1) (Hence X∗ • Y ∗ = 0).

Also, (X∗)11 = (X̃∗
1 )11 and (Y ∗)22 = (Ỹ ∗

1 )22.

Note also that since (X1(tk), Y1(tk)) and (X∗, Y ∗) satisfy A(X) + B(Y ) = q, we

have, by Assumption 2.1(a), (X1(tk) − X∗) • (Y1(tk) − Y ∗) ≥ 0.

Therefore, X1(tk)•Y1(tk) ≥ X1(tk)•Y ∗+X∗•Y1(tk), where we have used X∗•Y ∗ =

0.

Note that X1(tk) • Y1(tk) = t2kX̃1(tk) • Ỹ1(tk), X1(tk) • Y ∗ = t2k(X̃1(tk))22 • (Ỹ ∗
1 )22

and X∗ • Y1(tk) = t2k(X̃
∗
1 )11 • (Ỹ1(tk))11 by (2.36), (2.37) and (Y ∗)22 = (Ỹ ∗

1 )22,

(X∗)11 = (X̃∗
1 )22. Hence X̃1(tk) • Ỹ1(tk) ≥ (X̃1(tk))22 • (Ỹ ∗

1 )22 +(X̃∗
1 )11 • (Ỹ1(tk))11.

Letting tk tends to zero, we have X̃∗
1 • Ỹ ∗

1 ≥ (X̃∗
1 )22 • (Ỹ ∗

1 )22 + (X̃∗
1 )11 • (Ỹ ∗

1 )11.

Since X̃∗
1 • Ỹ ∗

1 = (X̃∗
1 )11 • (Ỹ ∗

1 )11 + 2(X̃∗
1 )12 • (Ỹ ∗

1 )12 + (X̃∗
1 )22 • (Ỹ ∗

1 )22, we have

(X̃∗
1 )11•(Ỹ ∗

1 )11+2(X̃∗
1 )12•(Ỹ ∗

1 )12+(X̃∗
1 )22•(Ỹ ∗

1 )22 ≥ (X̃∗
1 )22•(Ỹ ∗

1 )22+(X̃∗
1 )11•(Ỹ ∗

1 )11.

This implies that (X̃∗
1 )12 • (Ỹ ∗

1 )12 ≥ 0.

Combining with (Ỹ ∗
1 )12 • (X̃∗

1 )12 ≤ 0 obtained earlier, we have Tr((Ỹ ∗
1 )12(X̃

∗
1 )22

(Ỹ ∗
1 )T

12(Ỹ
∗
1 )−1

11 ) = 0 which means that (Ỹ ∗
1 )12 = 0, since (X̃∗

1 )22, (Ỹ ∗
1 )11 are sym-

metric, positive definite. Hence we are done. QED

With this technical proposition, the following proposition follows almost immedi-

ately.
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Proposition 2.13 Let (X̃1(t), Ỹ1(t)) be a solution to the system of ODEs (2.50)

for t > 0. Suppose X̃1(t) and Ỹ1(t) converges as t −→ 0. Then limt→0(Ỹ1)12(t) =

0.

Proof. Suppose X̃1(t) and Ỹ1(t) converge as t −→ 0, then it is easy to see that

X̃ ′
1(t), Ỹ

′
1(t) = o

(
1
t

)
. Therefore, if X̃1(t) −→ X̃∗

1 , Ỹ1(t) −→ Ỹ ∗
1 as t −→ 0, we must

have


−A(0)





 0 0

0 I


 ⊗s I


 −B(0)





 I 0

0 0


 ⊗s I





 I 0

0 −I


 ⊗s I −(X̃∗

1 ⊗s (Ỹ ∗
1 )−1)





 I 0

0 −I


 ⊗s I








 svec(X̃∗

1 )

svec(Ỹ ∗
1 )




is equal to zero. Therefore,




 I 0

0 −I


 ⊗s I


 svec(X̃∗

1 )−(X̃∗
1⊗s(Ỹ

∗
1 )−1)





 I 0

0 −I


 ⊗s I


 svec(Ỹ ∗

1 ) = 0.

Using the properties of ⊗s, we have

svec


 (X̃∗

1 )11 0

0 −(X̃∗
1 )22


 − 1

2





X̃∗

1


 I 0

0 −I





 ⊗s (Ỹ ∗

1 )−1+


(Ỹ ∗

1 )−1


 I 0

0 −I





 ⊗s X̃∗

1


 svec(Ỹ ∗

1 ) = 0,

which implies that

(Ỹ ∗
1 )−1


 I 0

0 −I


 Ỹ ∗

1 X̃∗
1+X̃∗

1 Ỹ
∗
1


 I 0

0 −I


 (Ỹ ∗

1 )−1 =


 2(X̃∗

1 )11 0

0 −2(X̃∗
1 )22




Hence (Ỹ ∗
1 )12 = 0, by Proposition 2.12. Therefore, limt→0(Ỹ1)12(t) = 0. QED

We are now ready to state a necessary and sufficient condition for X̃1(t) and Ỹ1(t)

to be analytic at t = 0. We have the following theorem:

Theorem 2.5 Let (X̃1(t), Ỹ1(t)) be a solution to the system of ODEs (2.50) for

t > 0. Then X̃1(t) and Ỹ1(t) are analytic at t = 0 if and only if (Ỹ1)12(t) is

analytic at t = 0 and (Ỹ1)12(0) = 0.
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Proof. (⇒) Suppose X̃1(t) and Ỹ1(t) are analytic at t = 0. Then they converge

to unique limit points as t −→ 0. Therefore, by Proposition 2.13, (Ỹ1)12(0) = 0.

This, together with the analyticity of (Ỹ1)12(t) at t = 0, implies our required

result.

(⇐) Suppose (Ỹ1)12(t) = tW1(t) for t (> 0) near 0, where W1(t) is analytic at

t = 0.

From (2.50), we have


 svec(X̃ ′

1)

svec(Ỹ ′
1)


 =

F1(t, X̃1, Ỹ1)

t
,

where

F1(t, X̃1, Ỹ1) =




1
2
A(t) 1

2
B(t)

I X̃1 ⊗s Ỹ −1
1




−1

×



−A(t)





 0 0

0 I


 ⊗s I


 −B(t)





 I 0

0 0


 ⊗s I





 I 0

0 −I


 ⊗s I −(X̃1 ⊗s Ỹ −1

1 )





 I 0

0 −I


 ⊗s I








 svec(X̃1)

svec(Ỹ1)


 .

Note that F1(t, X̃1, Ỹ1) is analytic at (0, X̃1, Ỹ1), where X̃1, Ỹ1 Â 0. Therefore,

we can write F1(t, X̃1, Ỹ1) as
∑∞

n=0 an(X̃1, Ỹ1)t
n where an is analytic at (X̃1, Ỹ1),

X̃1, Ỹ1 Â 0, for all n ≥ 0.

Now, F1(0, X̃1, Ỹ1) = a0(X̃1, Ỹ1).

We want to show that F1(0, X̃1(t), Ỹ1(t)) = a0(X̃1(t), Ỹ1(t)) = t ã0(t, X̃1(t), (Ỹ1)11(t),

(Ỹ1)22(t)), where ã0 as a function of (t, X̃1, (Ỹ1)11, (Ỹ1)22) is analytic at (0, X̃1,

(Ỹ1)11, (Ỹ1)22) where X̃1, (Ỹ1)11, (Ỹ1)22 Â 0.
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We have

a0(X̃1(t), Ỹ1(t)) = F1(0, X̃1(t), Ỹ1(t)) =




1
2
A(0) 1

2
B(0)

I X̃1(t) ⊗s Ỹ −1
1 (t)




−1

×



−A(0)





 0 0

0 I


 ⊗s I


 −B(0)





 I 0

0 0


 ⊗s I





 I 0

0 −I


 ⊗s I −(X̃1(t) ⊗s Ỹ −1

1 (t))





 I 0

0 −I


 ⊗s I







×


 svec(X̃1(t))

svec(Ỹ1(t))


 .

Now,




1
2
A(0) 1

2
B(0)

I X̃1(t) ⊗s Ỹ −1
1 (t)




−1

is equal to B̃0(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)),

where B̃0 as a function of (t, X̃1, (Ỹ1)11, (Ỹ1)22) is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22),

with X̃1, (Ỹ1)11, (Ỹ1)22 Â 0, since (Ỹ1)12(t) is analytic at t = 0 and (Ỹ1)12(0) = 0.

Next, let us consider




−A(0)





 0 0

0 I


 ⊗s I


 −B(0)





 I 0

0 0


 ⊗s I





 I 0

0 −I


 ⊗s I −(X̃1(t) ⊗s Ỹ −1

1 (t))





 I 0

0 −I


 ⊗s I







×


 svec(X̃1(t))

svec(Ỹ1(t))


 .

Let

c(t) := −A(0)





 0 0

0 I


 ⊗s I


 svec(X̃1(t)) − B(0)





 I 0

0 0


 ⊗s I


 svec(Ỹ1(t)).

Therefore,

c(t) = −A(0)svec


 0 (X̃1)12(t)

(X̃1)
T
12(t) 2(X̃1)22(t)


 − B(0)svec


 2(Ỹ1)11(t) (Ỹ1)12(t)

(Ỹ1)
T
12(t) 0


 .
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By definition of A(0) and B(0), we have for i = 1, . . . , i1, c(t)i = 0. Also, for i =

i1 + i2 + 1, . . . , ñ, because A(t)svec(X̃1(t)) + B(t)svec(Ỹ1(t)) =




q1

0

0


 (Remark

2.13) , we have c(t)i = 0.

Now, for i = i1 +1, . . . , i1 + i2, using A(t)svec(X̃1(t))+B(t)svec(Ỹ1(t)) =




q1

0

0




again, we have

svec


 0 (Ai)12

(Ai)
T
12 t(Ai)22




T

svec(X̃1(t))+svec


 t(Bi)11 (Bi)12

(Bi)
T
12 0




T

svec(Ỹ1(t)) = 0.

Therefore,

svec


 0 (Ai)12

(Ai)
T
12 0




T

svec


 0 (X̃1)12(t)

(X̃1)
T
12(t) 2(X̃1)22(t)


 +

t svec


 0 0

0 (Ai)22




T

svec


 0 0

0 (X̃1)22(t)


 +

svec


 0 (Bi)12

(Bi)
T
12 0




T

svec


 2(Ỹ1)22(t) (Ỹ1)12(t)

(Ỹ1)
T
12(t) 0


 +

t svec


 (Bi)11 0

0 0




T

svec


 (Ỹ1)11(t) 0

0 0


 = 0.

Hence, c(t)i = t c̃i
0(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)) where c̃i

0 as a function of (t, X̃1, (Ỹ1)11,

(Ỹ1)22) is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 Â 0, for i =

i1 + 1, . . . , i1 + i2.

Consider

smat








 I 0

0 −I


 ⊗s I


 svec(X̃1(t))−

(X̃1(t) ⊗s Ỹ −1
1 (t))





 I 0

0 −I


 ⊗s I


 svec(Ỹ1(t))



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which is equal to

 (X̃1)11(t) 0

0 −(X̃1)22(t)


 − 1

4





 2(X̃1)11(t) 0

0 −2(X̃1)22(t)


 +

Ỹ −1
1 (t)


 I 0

0 −I


 Ỹ1(t)X̃1(t) + X̃1(t)Ỹ1(t)


 I 0

0 −I


 Ỹ −1

1 (t)


 .

Let

D(t) = Ỹ −1
1 (t)


 I 0

0 −I


 Ỹ1(t)X̃1(t) + X̃1(t)Ỹ1(t)


 I 0

0 −I


 Ỹ −1

1 (t) −


 2(X̃1)11(t) 0

0 −2(X̃1)22(t)


 .

We have

Ỹ1(t)D(t)Ỹ1(t) =


 I 0

0 −I


 Ỹ1(t)X̃1(t)Ỹ1(t)+

Ỹ1(t)X̃1(t)Ỹ1(t)


 I 0

0 −I


 − 2Ỹ1(t)


 (X̃1)11(t) 0

0 −(X̃1)22(t)


 Ỹ1(t).

Let Ỹ1(t) = Ŷ1(t) + Ȳ1(t) where

Ŷ1(t) =


 (Ỹ1)11(t) 0

0 (Ỹ1)22(t)


 , Ȳ1(t) =


 0 (Ỹ1)12(t)

(Ỹ1)
T
12(t) 0


 .

Then, noting that

 I 0

0 −I


 Ŷ1(t)X̃1(t)Ŷ1(t) + Ŷ1(t)X̃1(t)Ŷ1(t)


 I 0

0 −I


 =

2Ŷ1(t)


 (X̃1)11(t) 0

0 −(X̃1)22(t)


 Ŷ1(t),

we observe that every term in the above expression for Ỹ1(t)D(t)Ỹ1(t) involves

at least a (Ỹ1)12(t). Therefore, with (Ỹ1)12(t) = tW1(t) for t (> 0) near 0 and

W1(t) analytic at t = 0, we have D(t) = t D̃0(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)), where
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D̃0 as a function of (t, X̃1, (Ỹ1)11, (Ỹ1)22) is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with

X̃1, (Ỹ1)11, (Ỹ1)22 Â 0.

Hence, a0(X̃1(t), Ỹ1(t)) = t ã0(t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)), where ã0 as a function

of (t, X̃1, (Ỹ1)11, (Ỹ1)22) is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), with X̃1, (Ỹ1)11, (Ỹ1)22 Â
0, is true.

Therefore, we have (t, X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)), for t (> 0) near 0, satisfies the

following system of ODEs,


 svec(X̃ ′

1)

svec(Ỹ ′
1)


 = ã0(t, X̃1, (Ỹ1)11, (Ỹ1)22)+

∞∑

n=1

an((Ỹ1)12(t), X̃1, (Ỹ1)11, (Ỹ1)22) tn−1,

where its right-hand side is analytic at (0, X̃1, (Ỹ1)11, (Ỹ1)22), where X̃1, (Ỹ1)11, (Ỹ1)22 Â
0.

Therefore, from Theorem 4.1 of [4], pp. 15 and Theorem 2.1 above, we have

(X̃1(t), (Ỹ1)11(t), (Ỹ1)22(t)) is analytic at t = 0, which together with the analyticity

of (Ỹ1)12(t) at t = 0, implies our required result. QED

Using Theorem 2.5, we end this section by giving a necessary and sufficient con-

dition for (X(µ), Y (µ)) to be analytic with respect to t =
√

µ at the limit point

when µ tends to zero.

Theorem 2.6 Let (X(µ), Y (µ)) be an off central path of SDLCP (2.1) for µ > 0.

Then X(µ), Y (µ) are analytic with respect to t =
√

µ at the limit point as µ → 0

if and only if Y12(µ) = µW (µ), where W (µ) is analytic with respect to t =
√

µ at

the limit point as µ → 0.

Proof. Using (2.36), (2.37) and Theorem 2.5. QED



Chapter 3

Analysis of Off-Central Paths for

SOCP

In this chapter, we consider off-central paths for second order cone programming

(SOCP). We consider the general case of multiple cone SOCP in most of our

discussions here. However, in the last part of the chapter, we will show asymptotic

analyticity of off-central path for the AHO direction only for single cone SOCP.

Although this is not interesting, since a closed form formula for the primal and

dual optimal solution for single cone SOCP is already known (see [1]), we still

state and prove the result here for the sake of completeness and also because the

result and its proof may shed some light in showing asymptotic analyticity of

off-central path for multiple cone SOCP, which is still an open question.

We first define off-central path for SOCP for a general direction. Then we restrict

our attention to the AHO direction. We show the existence of off-central paths for

possibly the largest domain for this direction. This is done in Section 3.1. Next,

in Section 3.2, we provide a condition when off-central path for SOCP defined

by the AHO direction will converge to a strictly complementary optimal solution.

Finally, we prove asymptotic analyticity of off-central path for the 1-cone SOCP

defined by the AHO direction.

63
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As far as we know, off-central path for SOCP defined by the AHO direction has

not been discussed in the literature and our discussions here make contributions

to this area.

3.1 Off-Central Path for SOCP

In this section, we define a direction field associated with the predictor-corrector

algorithm for second order cone programming (SOCP). This gives rise to a system

of ordinary differential equations (ODEs) whose solution is the off-central path

for SOCP.

Consider the following primal program (P)

min
∑N

i=1 cT
i xi

(P) subject to
∑N

i=1 Aixi = b

‖xi‖ ≤ (xi)0 i = 1, . . . , N

Here xi = ((xi)0, xi
T )T ∈ <ki+1 and Ai ∈ <m×(ki+1).

Its dual program (D) is

max bT y

(D) subject to AT
i y + si = ci i = 1, . . . , N

‖si‖ ≤ (si)0 i = 1, . . . , N

where y ∈ <m and si = ((si)0, si
T )T ∈ <ki+1.

(P)-(D) together formed a SOCP.

We have the following standard assumptions on (P)-(D):

Assumption 3.1

(a) There exists a strictly feasible solution to (P) and (D).

(b) (A1, . . . , AN) has full row rank.
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Under Assumption 3.1, it is well known that there exists an optimal solution to

(P)-(D), the optimal solution set is bounded and (x∗
1, . . . , x

∗
N , y∗, s∗1, . . . , s

∗
N) is an

optimal solution to (P)-(D) if and only if

Arw(x∗
i )s

∗
i = 0 for i = 1, . . . , N
∑N

i=1 Aix
∗
i = b

AT
i y∗ + s∗i = ci for i = 1, . . . , N

‖x∗
i ‖ ≤ (x∗

i )0, ‖s∗i ‖ ≤ (s∗i )0 for i = 1, . . . , N.

(3.1)

Here, Arw(u) :=


 u0 uT

u u0I


 where u = (u0, u

T )T ∈ <k+1.

We will now define an off-central path for SOCP using the system of equations

(3.1). As in the case of SDLCP - in Section 2.1 - we consider the predictor step

of the predictor-corrector path-following algorithm for SOCP, which is based on

the linearization of (3.1), to define the off-central path. We will use the MZ-type

family of directions on the predictor step to define the path.

Define Gi := {λT̃i : λ > 0, T̃i ∈ <(ki+1)×(ki+1), T̃ T
i Jki

T̃i = Jki
, (T̃i)11 > 0}, where

Jki
=


 1 0

0 −I


 ∈ <(ki+1)×(ki+1).

It is well-known that Gi is exactly the automorphism group of the second order

cone Ki := {x = (x0, x
T )T ∈ <ki+1 : ‖x‖ ≤ x0}, namely, the set of all nonsingular

matrices Gi such that Ki = Gi(Ki).

For different Gi ∈ Gi applied to the predictor step of the predictor-corrector path-

following algorithm, we obtain the AHO direction, the HKM directions and the

NT direction. For more details on the MZ-type family of directions for SOCP,

please refer to [14].

As in the case of SDLCP in Section 2.1, starting from the system of equations

defining the predictor step of the predictor-corrector algorithm, we obtain the
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following system of ODEs for SOCP:

Arw(G−1
i si)G

T
i x′

i + Arw(GT
i xi)G

−1
i s′i = −Arw(GT

i xi)G
−1
i si for i = 1, . . . , N

∑N
i=1 Aix

′
i = 0

AT
i y′ + s′i = 0 for i = 1, . . . , N.

(3.2)

where Gi ∈ Gi and the initial point (x1(0), . . . , xN(0), y(0), s1(0), . . . , sN(0)) of

the ODE system (3.2) satisfies the primal and dual feasibility conditions.

The solution to the system of ODEs (3.2) is called the off-central path for SOCP.

In the discussions that follow, we concentrate on the case when Gi = I for all

i = 1, . . . , N , which corresponds to the AHO direction. In this case, (3.2) becomes

Arw(xi)s
′
i + Arw(si)x

′
i = −Arw(xi)si for i = 1, . . . , N

∑N
i=1 Aix

′
i = 0

AT
i y′ + s′i = 0 for i = 1, . . . , N

(3.3)

with the initial point (x1(0), . . . , xN(0), y(0), s1(0), . . . , sN(0)) of the ODE system

(3.3) satisfying the primal and dual feasibility conditions.

Now the first equation in (3.3) can be written as (Arw(xi)si)
′ = −Arw(xi)si. Let-

ting zi(t) = Arw(xi)si. We have z′i(t) = −zi(t), from (Arw(xi)si)
′ = −Arw(xi)si,

which implies that zi(t) = e−tmi for some mi ∈ <ki+1.

By applying an appropriate change of variable from t to µ (to be precise, letting

µ = exp (−t)), we have that any solution to (3.3) must satisfy the following

algebraic system of equations:

Arw(xi(µ))si(µ) = µmi for i = 1, . . . , N
∑N

i=1 Aixi(µ) = b

AT
i y(µ) + si(µ) = ci for i = 1, . . . , N

(3.4)

Remark 3.1 Note that if mi = (1, 0, . . . , 0)T , then (3.4), together with ‖xi(µ)‖ <

(xi)0(µ) and ‖si(µ)‖ < (si)0(µ) for i = 1, . . . , N , give rise to the equations defining

the central path for SOCP for µ > 0. Therefore, to be consistent with the way the

central path is related to (3.4), we require that
∑N

i=1(mi)0 = N in (3.4).



3.1 Off-Central Path for SOCP 67

To be meaningful, we also require that an off-central path stays in the interior

of the second order cones for all µ > 0. Therefore, besides satisfying (3.4), an

off-central path, (x1(µ), . . . , xN(µ), y(µ), s1(µ), . . . , sN(µ)), must also satisfy

‖xi(µ)‖ < (xi)0(µ), ‖si(µ)‖ < (si)0(µ) for i = 1, . . . , N (3.5)

for µ > 0.

A question therefore arises as to under what conditions does such off-central path

exists for all µ > 0.

In the following, we give an example in which an off-central path does not exist

for all µ > 0. In particular, for this example, it does not satisfy (3.5) for all µ > 0.

Example 3.1 Consider N = 1. Let A =


 1 0 0

0 0 1


 and let x0 =

(
1

√
3

2

√
3

6

)T

,

s0 =
(
1 1

2
1
2

)T
, y0 = (1 1)T be a point that satisfied (3.4) when µ = 1. Note that

x0 and s0 both lie in the interior of the second order cone. The solution to (3.4)

with these initial conditions is

s(µ) =




s0(µ)

s1(µ)

s2(µ)


 =




(
1
2

+ 3
√

3
22

)
µ + 3

11

√(
11
6

+
√

3
2

)2

µ2 − 11
3
(1 +

√
3)µ + 11

3

1
2

(
19
44

+
√

3
12

)
µ −

√
3

22

√(
11
6

+
√

3
2

)2

µ2 − 11
3
(1 +

√
3)µ + 11

3




,

x(µ) =




1

1
s0(µ)

[(
1
2

+
√

3
2

)
µ − 1

2

]

√
3

6




,

y(µ) =


 2 − s0(µ)

3
2
− s2(µ)


 .
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When µ = 1√
3
, s(µ) =

(√
3

3
1
2

√
3

6

)T

and we have s0(µ) = ‖s(µ)‖. Therefore, s( 1√
3
)

no longer lies in the interior of the second order cone. Hence, for this example, it

does not satisfy (3.5) for all µ > 0.

We observe that a property of the above example is that Arw(x0)s0 does not lie

in the interior of the second order cone (in fact, it lies on the boundary of the

second order cone).

We may ask whether if Arw(x0)s0 lies in the interior of the second order cone,

then the off-central path exists for all µ > 0 with x(1) = x0 and s(1) = s0? The

answer is affirmative.

We have the following theorem:

Theorem 3.1 Let (x0
1, . . . , x

0
N , y0, s0

1, . . . , s
0
N) satisfies (3.4) and (3.5) with µ = 1.

Suppose that for all i = 1, . . . , N , Arw(x0
i )s

0
i lies in the interior of each of its

second order cone, then there exists an unique analytic solution (x1(µ), . . . , xN(µ),

y(µ), s1(µ), . . . , sN(µ)) to (3.4) and (3.5) for µ > 0 such that (x1(1), . . . , xN(1),

y(1), s1(1), . . . , sN(1)) = (x0
1, . . . , x

0
N , y0, s0

1, . . . , s
0
N).

Note that in Thereom 3.1, we show for the first time the existence of off-central

path defined using the AHO direction, for, arguably, the largest domain possible.

This domain is analogous to the domain for the existence of AHO search direction

for SDP, as shown in [20].

In order to prove Theorem 3.1, we need to use the following two lemmas:

Lemma 3.1 Suppose X, S are symmetric matrices with S invertible. If XS+SX

is positive definite, then WS−1XW T is invertible, where W has full row rank.

Proof. Let XS + SX = C. Then WS−1XW T + WXS−1W T = WS−1CS−1W T .

Let v ∈ Ker(WS−1XW T ). Then WXS−1W T v = WS−1CS−1W T v.

Therefore, WS−1CS−1W T v ∈ Range(WXS−1W T ). But note that

Range(WXS−1W T ) = Ker((WXS−1W T )T )⊥ = Ker(WS−1XW T )⊥
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Therefore, we must have vT WS−1CS−1W T v = 0. Since C is a symmetric positive

definite matrix, we have S−1W T v = 0. This implies that v = 0 because W has

full row rank. Hence, WS−1XW T is invertible and the lemma is proved. QED

Lemma 3.2 If x, s, Arw(x)s are all in the interior of a second order cone, that

is, x, s, Arw(x)s ∈ Int(K) where K is a second order cone, then Arw(x)Arw(s)+

Arw(s)Arw(x) is positive definite.

Proof. Suppose x, s, Arw(x)s ∈ Int(K).

Let x = (x0, x
T )T , s = (s0, s

T )T . Then

1
2
(Arw(x)Arw(s) + Arw(s)Arw(x))

=


 xT s x0s

T + s0x
T

x0s + s0x
1
2
(xsT + sxT ) + x0s0I




It is easy to see that Arw(x)Arw(s) + Arw(s)Arw(x) is positive definite if and

only if

1
2
(xsT + sxT ) + x0s0I − 1

xT s
(x0s + s0x)(x0s

T + s0x
T )

= (1
2
− x0s0

xT s
)(xsT + sxT ) + x0s0I − x2

0

xT s
ssT − s2

0

xT s
xxT

(3.6)

is positive definite.

Therefore, to prove the lemma, it suffices to show that (3.6) is positive definite.

We need to show that min‖v‖=1 vT [(1
2
− x0s0

xT s
)(xsT + sxT ) + x0s0I − x2

0

xT s
ssT −

s2
0

xT s
xxT ]v > 0.

Now,

vT [(1
2
− x0s0

xT s
)(xsT + sxT ) + x0s0I − x2

0

xT s
ssT − s2

0

xT s
xxT ]v

= (vT x)(vT s) + x0s0‖v‖2 − 1
xT s

(x0v
T s + s0v

T x)2.

Therefore, to prove the lemma, it is enough to show that

min
‖v‖=1

xT s(vT x)(vT s) − (x0v
T s + s0v

T x)2 > −(x0s0)x
T s,



3.1 Off-Central Path for SOCP 70

given x, s, Arw(x)s ∈ Int(K).

However,

min‖v‖=1 xT s(vT x)(vT s) − (x0v
T s + s0v

T x)2

≥ min{−x2
0β

2 − s2
0α

2 + (xT s − 2x0s0)αβ ; |α| ≤ ‖x‖, |β| ≤ ‖s‖,
|x0β + s0α| ≤ ‖x0s + s0x‖}

Given that x, s, Arw(x)s ∈ Int(K), the possible ”optimal value” candidates to the

latter minimization problem are

−xT s‖x‖‖s‖ − (x0‖s‖ − s0‖x‖)2,

− s0

x0
xT s‖x‖2 + xT s

x0
‖x‖‖x0s + s0x‖ − ‖x0s + s0x‖2 and

−x0

s0
xT s‖s‖2 + xT s

s0
‖s‖‖x0s + s0x‖ − ‖x0s + s0x‖2.

In all three cases, it can be shown easily that they are all greater than −(x0s0)x
T s.

Hence the lemma is proved. QED

Proof of Theorem 3.1. To show this, we basically rely on the Implicit Function

Theorem.

First define a set O by

O = {(x1, . . . , xN , y, s1, . . . , sN) : y ∈ <m, (xi, si) ∈ Int(Ki) × Int(Ki),

Arw(xi)si ∈ Int(Ki) for i = 1, . . . , N}

where Ki := {xi = ((xi)0, xi
T )T ∈ <ki+1 : ‖xi‖ ≤ (xi)0}, which is a second order

cone.

We consider the map Φ : O × <++ 7−→ <m × (<k1+1 × . . . × <kN+1) × (<k1+1 ×
. . . ×<kN+1) defined by
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Φ(x1, . . . , xN , y, s1, . . . , sN , µ) :=




∑N
i=1 Aixi − b

AT
1 y + s1 − c1

...

AT
Ny + sN − cN

Arw(x1)s1 − µArw(x0
1)s

0
1

...

Arw(xN)sN − µArw(x0
N)s0

N




.

Φ is clearly an analytic map and if we can show that for every (x1, . . . , xN , y, s1,

. . . , sN , µ) ∈ O × <++ such that Φ(x1, . . . , xN , y, s1, . . . , sN , µ) = 0, DzΦ(z, µ),

where z = (x1, . . . , xN , y, s1, . . . , sN), is nonsingular, then the theorem is proved

by applying the Implicit Function Theorem and a continuity argument.

Now,

DzΦ(z, µ) =




W 0 0

0 W T I

S 0 X




where W = (A1 . . . AN), X = diag(Arw(x1), . . . , Arw(xN)) and S = diag(Arw(s1),

. . . , Arw(sN)).

Consider




W 0 0

0 W T I

S 0 X







∆X

∆y

∆S


 = 0.

If we can show that ∆X, ∆y and ∆S are equal to zero, then we are done.

We have WS−1XW T ∆y = 0, ∆S = −W T ∆y and ∆X = S−1XW T ∆y. There-

fore, if WS−1XW T is invertible, then (∆X, ∆y, ∆S) = 0 and hence DzΦ(z) is

nonsingular. However, by Lemma 3.2 and Lemma 3.1 with Assumption 3.1(b) ,

we know that for (x1, . . . , xN , y, s1, . . . , sN) ∈ O, WS−1XW T is invertible. Hence

we are done. QED

We have shown in Theorem 3.1 that for suitable initial point (x0
1, . . . , x

0
N , y0, s0

1, . . . , s
0
N),
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an off-central path, passing through this point and satisfying (3.4)-(3.5), exists.

The region of initial points is, arguably, the largest possible, given Example 3.1.

It is clear that every accumulation point of such off-central path as µ approaches

zero is an optimal solution to (P)-(D). In fact, by an analogous argument as in

[6], the off-central path converges to an unique limit point, which is an optimal

solution to (P)-(D).

3.2 Asymptotic Properties of Off-Central Path

for SOCP

In this section, we again restrict our attention to AHO direction, that is, to off-

central path defined by (3.4) and (3.5).

We show that for off-central paths restricted to a neighbourhood of the central

path, they converge to strictly complementary optimal solutions of (P)−(D). We

then show that when we consider the 1-cone SOCP, for an off-central path in this

neighbourhood, it is analytic at the limit point when µ = 0. This has an impact

on the rate of convergence of path-following interior-point algorithms, see [22, 26].

Let us first define what we meant by strictly complementary optimal solutions:

Definition 3.1 Let (x∗
1, . . . , x

∗
N , y∗, s∗1, . . . , s

∗
N) be an optimal solution to (P) −

(D). (x∗
1, . . . , x

∗
N , y∗, s∗1, . . . , s∗N) is strictly complementary if and only if

(a) (x∗
i )0 > ‖x∗

i ‖ ⇐⇒ s∗i = 0,

(b) (s∗i )0 > ‖s∗i ‖ ⇐⇒ x∗
i = 0,

(c) 0 6= (x∗
i )0 = ‖x∗

i ‖ ⇐⇒ 0 6= (s∗i )0 = ‖s∗i ‖.

We assume from now onwards that for the SOCP that we consider, there always

exists a strictly complementary optimal solution.

We know from the previous section that if (x1(µ), . . . , xN(µ), y(µ), s1(µ), . . . , sN(µ)),

µ > 0, is an off-central path, then it converges to an unique limit point. We are go-
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ing to show that if this off-central path is restricted to a certain neighbourhood of

the central path, then the unique limit point is actually a strictly complementary

optimal solution to (P) − (D).

The neighbourhood is derived from the following condition on the off-central path:

Assumption 3.2 Let mi = Arw(x0
i )s

0
i for i = 1, . . . , N , where (x0

1, . . . , x
0
N , y0,

s0
1, . . . , s

0
N) = (x1(1), . . . , xN(1), y(1), s1(1), . . . , sN(1)). Then, we assume that

(mi)0 > 3‖mi‖ for i = 1, . . . , N .

The ”restricted” neighbourhood that we consider is defined by:

N :=

{
(x1, . . . , xN , y, s1, . . . , sN) : ‖Arw(xi)si − xT

i siei‖ <
1

3
xT

i si, i = 1, . . . , N

}
.

Here ei = (1, 0, . . . , 0)T ∈ <ki+1.

Therefore, an off-central path satisfies Assumption 3.2 if and only if it stays in N
for all µ > 0.

Note that the central path belongs to N . Hence N is a neighbourhood of the

central path. Also, note that the neighbourhood of the central path defined here

differs from the one defined in [14, 1].

We have the following theorem:

Theorem 3.2 Suppose Assumption 3.2 holds. Then (x1(µ), . . . , xN(µ), y(µ), s1(µ),

. . . , sN(µ)) converges to a strictly complementary optimal solution of (P)-(D)

where (x1(µ), . . . , xN(µ), y(µ), s1(µ), . . . , sN(µ)) is the solution to (3.4) and (3.5)

for µ > 0.

We defer the proof of Theorem 3.2 as we need to use other results in its proof as

discussed below.

Let OP = primal optimal solution set to (P) and OD = dual optimal solution set

to (D).

Consider OP .



3.2 Asymptotic Properties of SOCP Off-Central Path 74

Let MP := {i ∈ {1, . . . , N} : ∀ (x∗
1, . . . , x

∗
N) ∈ OP , (x∗

i )0 = ‖x∗
i ‖},

M1
P := {i ∈ MP : ∃ (x∗

1, . . . , x
∗
N) ∈ OP with x∗

i = 0 and ∃ (x̂1, . . . , x̂N) ∈ OP

with x̂i 6= 0},
M2

P := {i ∈ MP : ∀ (x∗
1, . . . , x

∗
N) ∈ OP , x∗

i = 0},
M3

P := {i ∈ MP : ∀ (x∗
1, . . . , x

∗
N) ∈ OP , x∗

i 6= 0}.
Therefore, M c

P = {i ∈ {1, . . . , N} : ∃ (x∗
1, . . . , x

∗
N) ∈ OP , (x∗

i )0 > ‖x∗
i ‖}.

Note that if (x∗
1, . . . , x

∗
N), (x̂1, . . . , x̂N) ∈ OP , then for each i ∈ MP , x̂i = αix

∗
i for

some αi ≥ 0, assuming x∗
i 6= 0.

We have below a lemma that characterizes the relative interior of OP .

Lemma 3.3 riOP = {(x∗
1, . . . , x

∗
N) ∈ OP : (x∗

i )0 > ‖x∗
i ‖ ∀ i ∈ M c

P and x∗
i 6=

0 ∀ i ∈ M1
P}.

Proof. Let us denote the set on the right hand side of the equality sign in the

lemma by X. Therefore, we need to show that riOP = X.

(⊆) Let (x∗
1, . . . , x

∗
N) ∈ riOP .

∃ (x̂1, . . . , x̂N) ∈ OP such that ∀ i ∈ M c
P , (x̂i)0 > ‖x̂i‖ (by taking convex combi-

nations).

∃ (x̃1, . . . , x̃N) ∈ OP such that ∀ i ∈ M1
P , x̃i 6= 0 (again, by taking convex

combinations).

Let (x̌1, . . . , x̌N) = λ(x̂1, . . . , x̂N) + (1 − λ)(x̃1, . . . , x̃N) with 0 < λ < 1.

Then (x̌1, . . . , x̌N) ∈ OP and ∀ i ∈ M c
P , (x̌i)0 > ‖x̌i‖ and ∀ i ∈ M1

P , x̌i 6= 0.

Then, by Theorem 6.4 of [18], pp. 47, ∃ µ > 1 such that µ(x∗
1, . . . , x

∗
N) + (1 −

µ)(x̌1, . . . , x̌N) ∈ OP , since (x∗
1, . . . , x

∗
N) ∈ riOP .

Therefore, (x∗
1, . . . , x

∗
N) = α(x̌1, . . . , x̌N) + (1− α)(v∗

1, . . . , v
∗
N) for some 0 < α < 1

and (v∗
1, . . . , v

∗
N) ∈ OP .

Hence, ∀ i ∈ M c
P , (x∗

i )0 > ‖x∗
i ‖ and ∀ i ∈ M1

P , x∗
i 6= 0.

This implies that (x∗
1, . . . , x

∗
N) ∈ X.

(⊇) Let (x∗
1, . . . , x

∗
N) ∈ X.
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Given (x̂1, . . . , x̂N) ∈ OP .

∀ i ∈ M c
P , ∃ µi > 1 such that ‖µix∗

i + (1 − µi)x̂i‖ ≤ (µix
∗
i + (1 − µi)x̂i)0.

∀ i ∈ M1
P , we have x∗

i 6= 0 and (x∗
i )0 > 0. Hence, ∃ µi > 1 such that

‖µix∗
i + (1 − µi)x̂i‖ = (µix

∗
i + (1 − µi)x̂i)0

with (µix
∗
i + (1 − µi)x̂i)0 ≥ 0.

Similarly for i ∈ M2
P and i ∈ M3

P .

Let µ = min{µi}. Then µ > 1 and µ(x∗
1, . . . , x

∗
N) + (1 − µ)(x̂1, . . . , x̂N) ∈ OP .

Therefore, again, by Theorem 6.4 of [18], pp. 47, (x∗
1, . . . , x

∗
N) ∈ riOP . QED

Next, we consider OD. Again, we partition {1, . . . , N} into disjoint sets as follows:

MD := {i ∈ {1, . . . , N} : ∀ (y∗, s∗1, . . . , s
∗
N) ∈ OD, (s∗i )0 = ‖s∗i ‖},

M1
D := {i ∈ MD : ∃ (y∗, s∗1, . . . , s

∗
N) ∈ OD with s∗i = 0 and ∃ (ŷ, ŝ1, . . . , ŝN) ∈ OD

with ŝi 6= 0},
M2

D := {i ∈ MD : ∀ (y∗, s∗1, . . . , s
∗
N) ∈ OD, s∗i = 0},

M3
D := {i ∈ MD : ∀ (y∗, s∗1, . . . , s

∗
N) ∈ OD, s∗i 6= 0}.

Therefore, M c
D = {i ∈ {1, . . . , N} : ∃ (y∗, s∗1, . . . , s

∗
N) ∈ OD, (s∗i )0 > ‖s∗i ‖}.

We also have

riOD = {(y∗, s∗1, . . . , s
∗
N) ∈ OD : (s∗i )0 > ‖s∗i ‖ ∀ i ∈ M c

D and s∗i 6= 0 ∀ i ∈ M1
D}.

Remark 3.2 Without assuming strict complementarity, it is easy to see from

the above characterization of riOP and riOD that for the 2-cone SOCP under

Assumption 3.1, if the primal and dual optimal solutions are both not unique,

then (P) − (D) always has a strictly complementary optimal solution. This is

analogous to the well-known existence result of strictly complementary optimal

solution for linear programming. It is still an open question whether for n−cone

SOCP, n ≥ 3, when the primal and dual optimal solutions are both not unique,

there always exists strictly complementary optimal solutions under Assumption

3.1. In the case when the primal or dual optimal solution is unique, it is easy to
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find an example to show that there does not exist a strictly complementary optimal

solution under Assumption 3.1 alone. For example, one may consider a SOCP

converted from a strongly convex quadratic programming problem whose unique

solution does not satisfy the strict complementarity condition.

We observe that if (P)−(D) has a strictly complementary optimal solution and by

the first equation in (3.1) (which is called the complementary slackness condition),

we have

M2
P ⊆ M c

D, M2
D ⊆ M c

P

M3
P ⊆ M1

D ∪ M3
D, M3

D ⊆ M1
P ∪ M3

P

M1
P ⊆ M1

D ∪ M3
D, M1

D ⊆ M1
P ∪ M3

P

M c
P ⊆ M2

D, M c
D ⊆ M2

P .

Therefore, M c
P = M2

D, M1
P ∪ M3

P = M1
D ∪ M3

D and M2
P = M c

D.

We can easily see from these and the characterization of riOP and riOD above

that (x∗
1, . . . , x

∗
N , y∗, s∗1, . . . , s

∗
N) ∈ OP ×OD is strictly complementary if and only

if (x∗
1, . . . , x

∗
N , y∗, s∗1, . . . , s∗N) ∈ riOP × riOD = ri(OP ×OD).

Using this latter fact, Theorem 3.2 can now be proved by showing that the limit

point of an off-central path in N lies in the relative interior of the optimal solution

set.

Proof of Theorem 3.2. Let (x1(µ), . . . , xN(µ), y(µ), s1(µ), . . . , sN(µ)) → (x∗
1, . . . ,

x∗
N , y∗, s∗1, . . . , s∗N).

Consider any (x̂1, . . . , x̂N , ŷ, ŝ1, . . . , ŝN) ∈ riOP × riOD.

We have

N∑

i=1

(x̂i − xi(µ))T (ŝi − si(µ)) =
N∑

i=1

(x̂i − xi(µ))T (ci − AT
i ŷ + AT

i y(µ) − ci)

=
N∑

i=1

[Ai(x̂i − xi(µ))]T (y(µ) − ŷ) = 0.
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Therefore,

0 =
N∑

i=1

(x̂i − xi(µ))T (ŝi − si(µ))

=
N∑

i=1

x̂i
T ŝi −

N∑

i=1

x̂i
T si(µ) −

N∑

i=1

ŝi
T xi(µ) +

N∑

i=1

xi(µ)T si(µ).

Now,
∑N

i=1 xi(µ)T si(µ) = µ
∑N

i=1(mi)0 and
∑N

i=1 x̂i
T ŝi = 0. Therefore,

N∑

i=1

x̂i
T si(µ) +

N∑

i=1

ŝi
T xi(µ) = µ

N∑

i=1

(mi)0.

Note that for any i = 1, . . . , N , x̂i
T si(µ), ŝi

T xi(µ) ≥ 0.

Hence

x̂i
T si(µ), ŝi

T xi(µ) ≤ µ

N∑

i=1

(mi)0 for all i = 1, . . . , N.

Consider x̂i
T si(µ).

We have Arw(xi(µ))si(µ) = µmi. Therefore

xi(µ)T si(µ) = µ(mi)0

(xi(µ))0si(µ) + (si(µ))0xi(µ) = µmi

(3.7)

The second equation of (3.7) implies that

(si(µ))j =
µ(mi)j − (si(µ))0(xi(µ))j

(xi(µ))0

for j = 1, . . . , ki.

Substituting this into the first equation of (3.7), we get after some manipulations,

(si(µ))0 = µ
(mi)0(xi(µ))0 −

∑ki

j=1(xi(µ))j(mi)j

(xi(µ))2
0 − ‖xi(µ)‖2

,

from which,

(si(µ))j =
µ(mi)j

(xi(µ))0

− µ(xi(µ))j

(xi(µ))0

[
(mi)0(xi(µ))0 −

∑ki

j=1(xi(µ))j(mi)j

(xi(µ))2
0 − ‖xi(µ)‖2

]
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Now, x̂i
T si(µ) ≤ µ

∑N
i=1(mi)0 implies that

(x̂i)0

[
(mi)0(xi(µ))0−

∑ki
j=1(xi(µ))j(mi)j

(xi(µ))20−‖xi(µ)‖2

]
+

∑ki

k=1(x̂i)k

{
(mi)k

(xi(µ))0
− (xi(µ))k

(xi(µ))0

[
(mi)0(xi(µ))0−

∑ki
j=1(xi(µ))j(mi)j

(xi(µ))20−‖xi(µ)‖2

]}

≤ ∑N
i=1(mi)0

Upon manipulations, we have
[
1 −

∑ki
j=1(mi)j(xi(µ))j

(mi)0(xi(µ))0

] [
(x̂i)0(xi(µ))0−

∑ki
j=1(x̂i)j(xi(µ))j

(xi(µ))20−‖xi(µ)‖2

]
≤

∑N
k=1(mk)0
(mi)0

−
∑ki

j=1(mi)j(x̂i)j

(mi)0(xi(µ))0

(3.8)

Now,

∑ki

j=1(mi)j(xi(µ))j

(mi)0(xi(µ))0

≤ ‖mi‖
(mi)0

‖xi(µ)‖
(xi(µ))0

≤ ‖mi‖
(mi)0

Also,

−
∑ki

j=1(mi)j(x̂i)j

(mi)0(xi(µ))0

≤ ‖mi‖
(mi)0

‖x̂i‖
(xi(µ))0

≤ ‖mi‖
(mi)0

(x̂i)0

(xi(µ))0

and

(x̂i)0(xi(µ))0−
∑ki

j=1(x̂i)j(xi(µ))j

(xi(µ))20−‖xi(µ)‖2
=

1−∑ki
j=1

(x̂i)j(xi(µ))j
(x̂i)0(xi(µ))0

1−∑ki
j=1

(xi(µ))2
j

(xi(µ))20

(x̂i)0
(xi(µ))0

≥ (x̂i)0
(xi(µ))0

1−
(

∑ki
j=1

(x̂i)
2
j

(x̂i)
2
0

)1/2(
∑ki

j=1

(xi(µ))2j

(xi(µ))20

)1/2

1−
∑ki

j=1

(xi(µ))2
j

(xi(µ))20

≥ (x̂i)0
(xi(µ))0

1

1+

(
∑ki

j=1

(x̂i)
2
j

(x̂i)
2
0

)1/2(
∑ki

j=1

(xi(µ))2
j

(xi(µ))20

)1/2

≥ 1
2

(x̂i)0
(xi(µ))0

Therefore, we have from (3.8),

1

2

(
1 − ‖mi‖

(mi)0

)
(x̂i)0

(xi(µ))0

≤
∑N

k=1(mk)0

(mi)0

+
‖mi‖
(mi)0

(x̂i)0

(xi(µ))0

.

That is,

1

2

(
1 − 3

‖mi‖
(mi)0

)
(x̂i)0

(xi(µ))0

≤
∑N

k=1(mk)0

(mi)0

. (3.9)



3.2 Asymptotic Properties of SOCP Off-Central Path 79

Now, if i ∈ M c
P , then (x̂i)0 > 0. Hence by (3.9) and Assumption 3.2, (x∗

i )0 > 0.

Also, since ‖x̂i‖ < (x̂i)0 and ‖mi‖ < (mi)0, we have, by (3.8), ‖x∗
i ‖ < (x∗

i )0.

If i ∈ M1
P , then (x̂i)0 > 0, (3.9) and Assumption 3.2 implies that (x∗

i )0 > 0. Thus

x∗
i 6= 0.

Hence (x∗
1, . . . , x

∗
N) ∈ riOP by the above characterization of riOP .

By similar argument, we also have (y∗, s∗1, . . . , s
∗
N) ∈ riOD.

Therefore, (x∗
1, . . . , x

∗
N , y∗, s∗1, . . . , s

∗
N) ∈ riOP × riOD. That is, (x∗

1, . . . , x
∗
N , y∗,

s∗1, . . . , s
∗
N) is strictly complementary. QED

It is important to determine whether the limit point of an off-central path is

strictly complementary since we can then use it to analyze the analyticity of the

off-central path at the limit when µ = 0. This has an impact on the rate of

convergence of interior-point algorithms, see [22, 26]. As an illustration of the

use of strict complementarity on asymptotic analyticity, we have the following

proposition:

Proposition 3.1 Consider N = 1, that is, a 1-cone SOCP. Assume that the

primal feasible set is not equal to the primal optimal solution set and the dual

feasible set is not equal to the dual optimal solution set. If Assumption 3.2 holds

for an off-central path (x(µ), y(µ), s(µ)), then it is analytic at the limit point when

µ = 0.

Proof. Suppose Assumption 3.2 holds for an off-central path (x(µ), y(µ), s(µ)),

µ > 0.

Let (x(µ), y(µ), s(µ)) −→ (x∗, y∗, s∗) as µ −→ 0.

Since the primal feasible set is not equal to the primal optimal solution set, the

dual feasible set is not equal to the dual optimal solution set and (x∗, y∗, s∗)

is strictly complementary (by Theorem 3.2), we must have 0 6= (x∗)0 = ‖x∗‖,
0 6= (s∗)0 = ‖s∗‖.
We want to show that (x(µ), y(µ), s(µ)) is analytic at µ = 0.
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Consider the map Ψ : <k+1 ×<m ×<k+1 ×< 7−→ <m ×<k+1 ×<k+1 defined by

Ψ(x, y, s, µ) :=




Ax − b

AT y + s − c

Arw(x)s − µArw(x0)s0


 .

If we can show that DzΨ(x∗, y∗, s∗, 0), where z = (x, y, s), is nonsingular, then we

are done by the Implicit Function Theorem, since Ψ is analytic for all (x, y, s, µ) ∈
<k+1 ×<m ×<k+1 ×<.

Now,

DzΨ(x∗, y∗, s∗, 0) =




A 0 0

0 AT I

Arw(s∗) 0 Arw(x∗)


 .

Note that we can write Arw(s∗) = QD1Q
T and Arw(x∗) = QD2Q

T where Q =

(q1, q2, . . . , qk+1), q1 = 1√
2


 1

x∗

‖x∗‖


, q2 = 1√

2


 1

− x∗

‖x∗‖


 (QQT = I), D1 =

diag(0, 2s0, s0, . . . , s0) and D2 = diag(2x0, 0, x0, . . . , x0). Therefore,




A 0 0

0 AT I

Arw(s∗) 0 Arw(x∗)


 =

diag(I, I,Q)




AQ 0 0

0 AT Q

D1 0 D2


 diag(QT , I, QT )

Hence, to show that




A 0 0

0 AT I

Arw(s∗) 0 Arw(x∗)


 is nonsingular, we need only

show that




AQ 0 0

0 AT Q

D1 0 D2


 is nonsingular.
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Consider



AQ 0 0

0 AT Q

D1 0 D2







u

v

w


 = 0. (3.10)

If we can show that u, v, w = 0, then




AQ 0 0

0 AT Q

D1 0 D2


 is nonsingular.

From (3.10), we have

AQu = 0

AT v + Qw = 0

D1u + D2w = 0.

(3.11)

Observe that, except for one entry, all the diagonal entries of D1 and D2 are

nonzero. Using this fact, we have, from the last equation in (3.11), that u =

(u1, 0, u3, . . . , uk+1)
T and w = (0, w2, w3, . . . , wk+1)

T , where ui = −x0

s0
wi, i =

3, . . . , k + 1. Using the first two equations in (3.11) and QQT = I, we have
∑k+1

i=3 uiwi = 0. Hence, with ui = −x0

s0
wi, i = 3, . . . , k + 1, ui = wi = 0 for

i = 3, . . . , k + 1.

From AQu = 0, with u = (u1, 0, . . . , 0)T , we have u1Aq1 = 0. That is, 1√
2

u1

(x∗)0
Ax∗ =

0. But Ax∗ = b, therefore, u1

(x∗)0
b = 0. Now, since the dual feasible set is not equal

to the dual optimal solution set, we must have b 6= 0. Therefore, u1 = 0.

Similarly, the primal feasible set not equal to the primal optimal solution set

implies that w2 = 0. Also, v = 0, since A has full row rank.

Therefore, we have u, v, w = 0 and we are done. QED

It should be noted that the above proposition is not interesting since a closed

form formula for the primal and dual optimal solution for 1-cone SOCP is already

known, see [1]. Since it is generally believed that without strict complementarity,

it is difficult to analyze the asymptotic analyticity behaviour of off-central path,
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we state this proposition here to illustrate that with only strict complementarity,

it is possible to derive asymptotic analyticity behaviour of off-central path. Also,

its proof is given since it is quite ”neat”.



Chapter 4

Future Directions

The work done in this dissertation is not really complete. First of all, for the

asymptotic behaviour of off-central path for SDLCP, we have yet to show that it

has a unique limit point as µ approaches zero under weak assumptions, although

we believe that this should be true. Also, we state in Chapter 2, Section 2.3, a

necessary and sufficient condition for an off-central path for SDLCP to be analytic

w.r.t
√

µ at the limit when µ = 0. This necessary and sufficient condition unfor-

tunately is not very practical and we would like to find a more practical condition

for analyticity of off-central path that can be ”implemented”, like the example

that we analyzed in Section 2.2 and for which, we have an algebraic condition

y2 = −y1 for analyticity. This algebraic condition proves to be useful when we

consider local convergence behaviour of first-order predictor-corrector algorithm.

As for off-central path for SOCP, we only consider the existence of off-central path

for µ > 0 for the AHO direction. It would be interesting to consider this question

in general for other directions. We would also like to further investigate the con-

vergence to strictly complementary optimal solution and asymptotic analyticity

of off-central path for multiple cone SOCP, for the AHO or other directions, which

are still open questions. We believe that there are a lot more work that need to

be done in the area of SOCP, in particular, multiple cone SOCP in relation to

83
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interior point algorithm and its underlying paths, and the work presented in this

dissertation is only preliminary.
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