1,484 research outputs found

    Combined Scheduling of Time-Triggered Plans and Priority Scheduled Task Sets

    Full text link
    © Owner/Author (2016). This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM SIGAda Ada Letters, 36(1), 68-76, http://dx.doi.org/10.1145/10.1145/2971571.2971580.[EN] Preemptive, priority-based scheduling on the one hand, and time-triggered scheduling on the other, are the two major techniques in use for development of real-time and embedded software. Both have their advantages and drawbacks with respect to the other, and are commonly adopted in mutual exclusion. In a previous paper, we proposed a software architecture that enables the combined and controlled execution of time-triggered plans and priority-scheduled tasks. The goal was to take advantage of the best of both approaches by providing deterministic, jitter-controlled execution of time-triggered tasks (e.g., control tasks), coexisting with a set of priority-scheduled tasks, with less demanding jitter requirements. In this paper, we briefly describe the approach, in which the time-triggered plan is executed at the highest priority level, controlled by scheduling decisions taken only at particular points in time, signalled by recurrent timing events. The rest of priority levels are used by a set of concurrent tasks scheduled by static or dynamic priorities. We also discuss several open issues such as schedulability analysis, use of the approach in multiprocessor architectures, usability in mixed-criticality systems and needed changes to make this approach Ravenscar compliant.This work has been partly supported by the Spanish Government’s project M2C2 (TIN2014-56158-C4-1-P-AR) and the European Commission’s project EMC2 (ARTEMIS-JU Call 2013 AIPP-5, Contract 621429).Real Sáez, JV.; Sáez Barona, S.; Crespo Lorente, A. (2016). Combined Scheduling of Time-Triggered Plans and Priority Scheduled Task Sets. Ada Letters. 36(1):68-76. https://doi.org/10.1145/2971571.2971580S6876361T. P. Baker and A. Shaw. The cyclic executive model and Ada. In Proceedings IEEE Real Time Systems Symposium 1988, Huntsville, Alabama, pages 120--129, 1988.P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo. A Task Model to Reduce Control Delays. Real-Time Systems, 27(3):215--236, September 2004.A. Burns and R. Davis. Mixed Criticality Systems - A Review. Technical report, Depatment of Computer Science, University of York, 2013.A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis, Lund Institute of Technology, April 2003.R. Dobrin. Combining Offline Schedule Construction and Fixed Priority Scheduling in Real-Time Computer Systems. PhD thesis, Mälardalen University, 2005.S. Hong, X. Hu, and M. Lemmon. Reducing Delay Jitter of Real-Time Control Tasks through Adaptive Deadline Adjustments. In IEEE Computer Society, editor, 22nd Euromicro Conference on Real-Time Systems -- ECRTS, pages 229--238, 2010.J. W. S. Liu. Real-Time Systems. Prentice-Hall Inc., 2000.J. Palencia and M. González-Harbour. Schedulability Analysis for Tasks with Static and Dynamic Offsets. In 9th IEEE Real-Time Systems Symposium, 1998.M. J. Pont. The Engineering of Reliable Embedded Systems: LPC1769 edition. Number ISBN: 978-0-9930355-0-0. SafeTTy Systems Limited, 2014.J. Real and A. Crespo. Incorporating Operating Modes to an Ada Real-Time Framework. Ada Letters, 30(1):73--85, April 2010.J. Real, S. Sáez, and A. Crespo. Combining time-triggered plans with priority scheduled task sets. In M. Bertogna and L. M. Pinho, editors, Reliable Software Technologies -- Ada-Europe 2016, volume 9695 of Lecture Notes in Computer Science. Springer, June 2016.S. Sáez, J. Real, and A. Crespo. An integrated framework for multiprocessor, multimoded real-time applications. In M. Brorsson and L. Pinho, editors, Reliable Software Technologies -- Ada-Europe 2012, volume 7308, pages 18--34. Springer-Verlag, June 2012.S. Sáez, J. Real, and A. Crespo. Implementation of Timing-Event Anities in Ada/Linux. Ada Letters, 35(1), April 2015.A. J. Wellings and A. Burns. A Framework for Real-Time Utilities for Ada 2005. Ada Letters, XXVII(2), August 2007

    Investigation of Real-Time Operating Systems: OSEK/VDX and Rubus

    Get PDF
    The aim of this work was to investigate the possibilities and consequences for Haldex Traction of starting to use the OSEK/VDX standard for realtime operating systems. This report contains a summary of the realtime operating system documents produced by OSEK/VDX. OSEK/VDX is a committee that produces standards for realtime operating systems in the European vehicle industry. The report also contains a market evaluation of different OSEK/VDX realtime operating systems. The main differences between OSEK/VDX OS and a realtime operating system named Rubus OS are also discussed. There is a design suggestion of how to change an application that runs under Rubus OS to make it work with an OSEK/VDX OS. Finally a test of changing a small test application's realtime operating system from Rubus OS to the OSEK OS osCAN is presented

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    A Real-time Calculus Approach for Integrating Sporadic Events in Time-triggered Systems

    Full text link
    In time-triggered systems, where the schedule table is predefined and statically configured at design time, sporadic event-triggered (ET) tasks can only be handled within specially dedicated slots or when time-triggered (TT) tasks finish their execution early. We introduce a new paradigm for synthesizing TT schedules that guarantee the correct temporal behavior of TT tasks and the schedulability of sporadic ET tasks with arbitrary deadlines. The approach first expresses a constraint for the TT task schedule in the form of a maximal affine envelope that guarantees that as long as the schedule generation respects this envelope, all sporadic ET tasks meet their deadline. The second step consists of modeling this envelope as a burst limiting constraint and building the TT schedule via simulating a modified Least-Laxity-First (LLF) scheduler. Using this novel technique, we show that we achieve equal or better schedulability and a faster schedule generation for most use-cases compared to other approaches inspired by, e.g., hierarchical scheduling. Moreover, we present an extension to our method that finds the most favourable schedule for TT tasks with respect to ET schedulability, thus increasing the probability of the computed TT schedule remaining feasible when ET tasks are later added or changed

    Optimization of Hierarchically Scheduled Heterogeneous Embedded Systems

    Get PDF

    Escalonar sistemas de tempo-real de alta crĂ­ticalidade

    Get PDF
    Cyclic executives are used to schedule safety-critical real-time systems because of their determinism, simplicity, and efficiency. One major challenge of the cyclic executive model is to produce the cyclic scheduling timetable. This problem is related to the bin-packing problem [34] and is NP-Hard in the strong sense. Unnecessary context switches within the scheduling table can introduce significant overhead; in IMA (Integrated Modular Avionics), cache-related overheads can increase task execution times up to 33% [18]. Developed in the context of the Software Engineering Master’s Degree at ISEP, the Polytechnic Institute of Engineering in Porto Portugal, this thesis contains two contributions to the scheduling literature. The first is a precise and exact approach to computing the slack of a job set that is schedule policy independent. The method introduces several operations to update and maintain the slack at runtime, ensuring the slack of all jobs is valid and coherent. The second contribution is the definition of a state-of-the-art preemptive scheduling algorithm focused on minimizing the number of system preemptions for real-time safety-critical applications within a reasonable amount of time. Both contributions have been implemented and extensively tested in scala. Experimental results suggest our scheduling algorithm has similar non-preemptive schedulability ratio than Chain Window RM [69], yet lower ratio in high utilizations than Chain Window EDF [69] and BB-Moore [68]. For ask sets that failed to be scheduled non-preemptively, 98-99% of all jobs are scheduled without preemptions. Considering the fact that our scheduler is preemptive, being able to compete with non-preemptive schedulers is an excellent result indeed. In terms of execution time, our proposal is multiple orders of magnitude faster than the aforementioned algorithms. Both contributions of this work are planned to be presented at future conferences such as RTSS@Work and RTAS

    SimSched: A tool for Simulating Autosar Implementaion in Simulink

    Full text link
    AUTOSAR (AUTomotive Open System ARchitecture) is an open industry standard for the automotive sector. It defines the three-layered automotive software architecture. One of these layers is the application layer, where functional behaviors are encapsulated in Software Components (SW-Cs). Inside SW-Cs, a set of runnable entities represents the internal behavior and is realized as a set of tasks. To address AUTOSAR's lack of support for modeling behaviors of runnables, languages such as Simulink are employed. Simulink simulations assume Simulink block behaviors are completed in zero execution time, while real execution requires a finite execution time. This timing mismatch can result in failures to detect unexpected runtime behaviors during the simulation phase. This paper extends the Simulink environment to model the timing properties of tasks. We present a Simulink block that can schedule tasks with non-zero simulation times. It enables a more realistic analysis during model development.Comment: 21 page
    • …
    corecore