180 research outputs found

    Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity

    Get PDF
    A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete. Recently, some hardness results for MKTP were proved that are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ?^{NC^0}_m reductions. In this paper, we improve this, to show that the complement of MKTP is hard for the (apparently larger) class NISZK_L under not only ?^{NC^0}_m reductions but even under projections. Also, the complement of MKTP is hard for NISZK under ?^{P/poly}_m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs, and NISZK_L is the non-interactive version of the class SZK_L that was studied by Dvir et al. As an application, we provide several improved worst-case to average-case reductions to problems in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP)

    New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

    Get PDF
    The Minimum Circuit Size Problem (MCSP) and a related problem (MKTP) that deals with time-bounded Kolmogorov complexity are prominent candidates for NP-intermediate status. We show that, under very modest cryptographic assumptions (such as the existence of one-way functions), the problem of approximating the minimum circuit size (or time-bounded Kolmogorov complexity) within a factor of n^{1 - o(1)} is indeed NP-intermediate. To the best of our knowledge, these problems are the first natural NP-intermediate problems under the existence of an arbitrary one-way function. We also prove that MKTP is hard for the complexity class DET under non-uniform NC^0 reductions. This is surprising, since prior work on MCSP and MKTP had highlighted weaknesses of "local" reductions such as NC^0 reductions. We exploit this local reduction to obtain several new consequences: * MKTP is not in AC^0[p]. * Circuit size lower bounds are equivalent to hardness of a relativized version MKTP^A of MKTP under a class of uniform AC^0 reductions, for a large class of sets A. * Hardness of MCSP^A implies hardness of MKTP^A for a wide class of sets A. This is the first result directly relating the complexity of MCSP^A and MKTP^A, for any A

    Polynomial-Time Pseudodeterministic Construction of Primes

    Full text link
    A randomized algorithm for a search problem is *pseudodeterministic* if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time. We provide a positive solution to this question in the infinitely-often regime. In more detail, we give an *unconditional* polynomial-time randomized algorithm BB such that, for infinitely many values of nn, B(1n)B(1^n) outputs a canonical nn-bit prime pnp_n with high probability. More generally, we prove that for every dense property QQ of strings that can be decided in polynomial time, there is an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying QQ. This improves upon a subexponential-time construction of Oliveira and Santhanam. Our construction uses several new ideas, including a novel bootstrapping technique for pseudodeterministic constructions, and a quantitative optimization of the uniform hardness-randomness framework of Chen and Tell, using a variant of the Shaltiel--Umans generator

    On the Structure of Learnability Beyond P/Poly

    Get PDF
    Motivated by the goal of showing stronger structural results about the complexity of learning, we study the learnability of strong concept classes beyond P/poly, such as PSPACE/poly and EXP/poly. We show the following: 1) (Unconditional Lower Bounds for Learning) Building on [Adam R. Klivans et al., 2013], we prove unconditionally that BPE/poly cannot be weakly learned in polynomial time over the uniform distribution, even with membership and equivalence queries. 2) (Robustness of Learning) For the concept classes EXP/poly and PSPACE/poly, we show unconditionally that worst-case and average-case learning are equivalent, that PAC-learnability and learnability over the uniform distribution are equivalent, and that membership queries do not help in either case. 3) (Reducing Succinct Search to Decision for Learning) For the decision problems R_{Kt} and R_{KS} capturing the complexity of learning EXP/poly and PSPACE/poly respectively, we show a succinct search to decision reduction: for each of these problems, the problem is in BPP iff there is a probabilistic polynomial-time algorithm computing circuits encoding proofs for positive instances of the problem. This is shown via a more general result giving succinct search to decision results for PSPACE, EXP and NEXP, which might be of independent interest. 4) (Implausibility of Oblivious Strongly Black-Box Reductions showing NP-hardness of learning NP/poly) We define a natural notion of hardness of learning with respect to oblivious strongly black-box reductions. We show that learning PSPACE/poly is PSPACE-hard with respect to oblivious strongly black-box reductions. On the other hand, if learning NP/poly is NP-hard with respect to oblivious strongly black-box reductions, the Polynomial Hierarchy collapses

    Efficiency Theory: a Unifying Theory for Information, Computation and Intelligence

    Get PDF
    The paper serves as the first contribution towards the development of the theory of efficiency: a unifying framework for the currently disjoint theories of information, complexity, communication and computation. Realizing the defining nature of the brute force approach in the fundamental concepts in all of the above mentioned fields, the paper suggests using efficiency or improvement over the brute force algorithm as a common unifying factor necessary for the creation of a unified theory of information manipulation. By defining such diverse terms as randomness, knowledge, intelligence and computability in terms of a common denominator we are able to bring together contributions from Shannon, Levin, Kolmogorov, Solomonoff, Chaitin, Yao and many others under a common umbrella of the efficiency theory

    Efficiency Theory: a Unifying Theory for Information, Computation and Intelligence

    Get PDF
    The paper serves as the first contribution towards the development of the theory of efficiency: a unifying framework for the currently disjoint theories of information, complexity, communication and computation. Realizing the defining nature of the brute force approach in the fundamental concepts in all of the above mentioned fields, the paper suggests using efficiency or improvement over the brute force algorithm as a common unifying factor necessary for the creation of a unified theory of information manipulation. By defining such diverse terms as randomness, knowledge, intelligence and computability in terms of a common denominator we are able to bring together contributions from Shannon, Levin, Kolmogorov, Solomonoff, Chaitin, Yao and many others under a common umbrella of the efficiency theory. © Taru Publications

    Bounded Relativization

    Get PDF
    Relativization is one of the most fundamental concepts in complexity theory, which explains the difficulty of resolving major open problems. In this paper, we propose a weaker notion of relativization called bounded relativization. For a complexity class ?, we say that a statement is ?-relativizing if the statement holds relative to every oracle ? ? ?. It is easy to see that every result that relativizes also ?-relativizes for every complexity class ?. On the other hand, we observe that many non-relativizing results, such as IP = PSPACE, are in fact PSPACE-relativizing. First, we use the idea of bounded relativization to obtain new lower bound results, including the following nearly maximum circuit lower bound: for every constant ? > 0, BPE^{MCSP}/2^{?n} ? SIZE[2?/n]. We prove this by PSPACE-relativizing the recent pseudodeterministic pseudorandom generator by Lu, Oliveira, and Santhanam (STOC 2021). Next, we study the limitations of PSPACE-relativizing proof techniques, and show that a seemingly minor improvement over the known results using PSPACE-relativizing techniques would imply a breakthrough separation NP ? L. For example: - Impagliazzo and Wigderson (JCSS 2001) proved that if EXP ? BPP, then BPP admits infinitely-often subexponential-time heuristic derandomization. We show that their result is PSPACE-relativizing, and that improving it to worst-case derandomization using PSPACE-relativizing techniques implies NP ? L. - Oliveira and Santhanam (STOC 2017) recently proved that every dense subset in P admits an infinitely-often subexponential-time pseudodeterministic construction, which we observe is PSPACE-relativizing. Improving this to almost-everywhere (pseudodeterministic) or (infinitely-often) deterministic constructions by PSPACE-relativizing techniques implies NP ? L. - Santhanam (SICOMP 2009) proved that pr-MA does not have fixed polynomial-size circuits. This lower bound can be shown PSPACE-relativizing, and we show that improving it to an almost-everywhere lower bound using PSPACE-relativizing techniques implies NP ? L. In fact, we show that if we can use PSPACE-relativizing techniques to obtain the above-mentioned improvements, then PSPACE ? EXPH. We obtain our barrier results by constructing suitable oracles computable in EXPH relative to which these improvements are impossible
    • …
    corecore