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Abstract
Motivated by the goal of showing stronger structural results about the complexity of learning, we
study the learnability of strong concept classes beyond P/poly, such as PSPACE/poly and EXP/poly.
We show the following:
1. (Unconditional Lower Bounds for Learning) Building on [31], we prove unconditionally that

BPE/poly cannot be weakly learned in polynomial time over the uniform distribution, even with
membership and equivalence queries.

2. (Robustness of Learning) For the concept classes EXP/poly and PSPACE/poly, we show uncon-
ditionally that worst-case and average-case learning are equivalent, that PAC-learnability and
learnability over the uniform distribution are equivalent, and that membership queries do not
help in either case.

3. (Reducing Succinct Search to Decision for Learning) For the decision problems RKt and RKS

capturing the complexity of learning EXP/poly and PSPACE/poly respectively, we show a succinct
search to decision reduction: for each of these problems, the problem is in BPP iff there is a
probabilistic polynomial-time algorithm computing circuits encoding proofs for positive instances
of the problem. This is shown via a more general result giving succinct search to decision results
for PSPACE, EXP and NEXP, which might be of independent interest.

4. (Implausibility of Oblivious Strongly Black-Box Reductions showing NP-hardness of learning
NP/poly) We define a natural notion of hardness of learning with respect to oblivious strongly
black-box reductions. We show that learning PSPACE/poly is PSPACE-hard with respect to
oblivious strongly black-box reductions. On the other hand, if learning NP/poly is NP-hard with
respect to oblivious strongly black-box reductions, the Polynomial Hierarchy collapses.
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1 Introduction

What is the complexity of learning polynomial-size circuits? Despite extensive research
on this question, our knowledge is still fairly sparse. For weak concept classes such as
decision trees [34, 32], DNFs [34, 27] or even constant-depth circuits with parity gates [12],
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46:2 On the Structure of Learnability Beyond P/Poly

reasonably efficient learning algorithms under the uniform distribution are known for various
models of learning. For stronger concept classes, learning is believed to be hard, but the
evidence for this is not as strong as one might hope. Cryptographic assumptions such as the
existence of one-way functions are known to imply that learning polynomial-size circuits is
hard [29, 18]. However, we still seem far from showing that PAC-learning polynomial-size
circuits is NP-hard - indeed [5] give negative results for certain kinds of black-box reductions
to learning.

In this paper, we adopt a fresh perspective of approaching the learnability question from
above, i.e. via circuit classes which are more powerful than P/poly. We consider commonly
held beliefs about the complexity of learning, and establish these beliefs unconditionally for
strong concept classes such as PSPACE/poly and EXP/poly. Of course the very learnability of
these concept classes has some unlikely implications, eg., that these classes are approximable
by efficient Boolean circuits. The point is that this is still consistent with our complexity-
theoretic understanding, and we would like to know what current techniques are capable
of proving unconditionally about learning. Partly this is to understand the limitations of
current techniques, and partly this is to understand what structural properties of the stronger
concept classes enable us to show unconditional results about them.

We begin by outlining our main results and comparing them with previous work.

1.1 Unconditional Results for Hardness of Learning
Our first set of results deals with unconditional hardness of learning circuit classes. Most
complexity theorists believe that learning polynomial-size circuits is unconditionally hard,
but of course proving this is at least as hard as the P vs NP problem. We ask: what is the
smallest concept class C/poly2 for which we can prove learning to be hard? Clearly, if we
can prove that C/poly cannot be approximated by efficient circuits, i.e., there does not even
exist a good hypothesis for all concepts in the class, then hardness of learning follows. This
observation implies for example that learning MAEXP is hard, by using known circuit lower
bounds for this class [11].

But can we show hardness of learning unconditionally for some concept class where it is
consistent with our current understanding of complexity theory that a good hypothesis exists
for every concept in the class? We give an affirmative answer by ruling out PAC-learning
with membership and equivalence queries unconditionally for the class BPE/poly.

The notion of PAC-learning C/poly, for a uniform class C above P such as EXP or BPE,
can have different interpretations. Standard definitions for PAC-learning (cf. [30]) consider
the task of learning to be efficient if it is polynomial in the size of the target concept over n

inputs (assume that the accuracy ε and confidence δ are both 1/poly(n)) and the hypothesis
class is P/poly.3 The standard definition of PAC-learning in poly(n) time using P/poly as its
hypothesis class naturally extends to the concept class C/poly as the size of the target concept
is still polynomial in the input size n. For the classes C we consider, PAC-learnability of
C/poly in poly(n) time using polynomial-sized hypothesis circuits is still consistent with our
current understanding of complexity theory (as we do not have any unconditional average-case
lower bounds for C against P/poly), and therefore worth studying.

2 For any uniform complexity class C, define the class C/poly as the set of languages L for which there
is a language C-machine M and a family of strings {an}, where an ∈ {0, 1}poly(n), such that for every
x ∈ {0, 1}n, x ∈ L ⇐⇒ M accepts (x, an)

3 In general, the definition requires the hypothesis class H to be polynomially evaluatable, which means
that there exists an algorithm that on input any instance x ∈ {0, 1}n and an encoding of the hypothesis
h ∈ Hn, outputs the value h(x) in time polynomial in n and the size of the hypothesis encoding. It is
well known that P/poly is polynomially evaluatable.
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We say that a class C is (ε, δ)-learnable using membership queries over distribution D in
polynomial time, if there exists a probabilistic polynomial time learning algorithm which
given oracle access to any f ∈ C, with probability at least 1 − δ, outputs a polynomial-sized
hypothesis circuit that approximates f up to an error ε over the target distribution D. This
definition also extends to the case of (ε, δ)-learning using random examples.

BPE/poly can equivalently be defined as the class of languages computable by polynomial-
sized circuit families with oracle gates to some function in BPE, with the oracle query size
restricted to O(n). We prove the unconditional hardness of learning BPE/poly in polynomial
time using membership queries even over the uniform distribution using P/poly as the
hypothesis class. Hardness of exactly learning BPE/poly with membership and equivalence
queries, even using randomized algorithms follows directly from this via [4].

▶ Theorem 1.1. For every constant k ∈ N, BPE/poly cannot be (1/2 − 1/nk, 1/n)-learnt
over the uniform distribution using membership queries by randomized learning algorithms
running in polynomial time.

To prove this, we adapt techniques used by [31, 36] to show that randomized PAC-learning
algorithms imply circuit lower bounds. [38] show the existence of a PSPACE-Complete function
f∗ which is in DSPACE[n], such that f∗ is downward self-reducible and self-correctible (see
Appendix A for definitions). Using the techniques of [31], along with the fact that f∗ belongs
to BPE, we see that PSPACE collapses to BPP. Using a padding argument and diagonalizing
DSPACE[2O(n)] against functions which can be approximated by polynomial-sized circuits,
we obtain a contradiction to the fact that for every function in BPE/poly, the learner gives a
hypothesis circuit which approximates it well.

1.2 Robustness for Hardness of Learning
We believe that polynomial-size circuits are hard to learn in a robust sense, i.e., that the
precise details of the learning model do not matter. Hardness should hold irrespective of
whether we consider PAC-learning or learning over the uniform distribution, worst-case
learning or average-case learning over some samplable distribution on concepts, and whether
or not the learning model is allowed to use membership queries. We do not know how to
show that this robustness holds for P/poly, but we are able to show it unconditionally for
EXP/poly and PSPACE/poly.

We now consider the class EXP/poly, which can be equivalently defined as the circuit
class PEXP/poly i.e. the class of languages that can be computed by a polynomial sized circuit
family with EXP oracle gates.

Showing non-trivial derandomization of BPP, i.e. EXP ̸= BPP, is one of the most
fundamental questions in complexity theory.4 We prove that the problem of non-trivial
derandomization of BPP is equivalent to the hardness of learning EXP/poly efficiently in most
standard models of PAC-learning. In addition, these results extend to not just showing that
EXP/poly is hard to learn in the worst-case, but also on average with respect to polynomially
samplable distributions over EXP/poly.5 This also gives us an intriguing situation, where
hardness of learning EXP/poly using random examples also implies the hardness of learning
EXP/poly using membership queries.

4 It is worth mentioning that [26] show that EXP ̸= BPP is equivalent to the fact that BPP can be
derandomized on average in deterministic sub-exponential time (over infinitely many input lengths).

5 In particular, the results hold for polynomially samplable distribution families over EXP/poly, where for
each n, there exists a distribution in the family over circuit encodings of n-variate functions in EXP/poly,
implicitly defining a distribution on n-variate functions in EXP/poly (see Remark A.3 for more details.)

APPROX/RANDOM 2021



46:4 On the Structure of Learnability Beyond P/Poly

The following results are stated for hardness of strong learning. However, they also hold
for the setting of weak learnability, by standard equivalences between weak learning and
strong learning for PAC-learners [17].

▶ Theorem 1.2 (Equivalences for hardness of learning EXP/poly). The following statements
are equivalent.
1. Non-trivial derandomization of BPP: EXP ̸= BPP.
2. Hardness of PAC-learning EXP/poly in the worst-case using random examples:

There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial
time using random examples.

3. Hardness of PAC-learning EXP/poly in the worst-case using membership
queries: There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in
polynomial time using membership queries.

4. Hardness of PAC-learning EXP/poly on average using random examples: There
exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial time
on average using random examples, with respect to polynomially samplable distributions
over EXP/poly.

5. Hardness of PAC-learning EXP/poly on average using membership queries:
There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polyno-
mial time on average using membership queries, with respect to polynomially samplable
distributions over EXP/poly.

A contrasting result to this is the equivalence between the existence of one-way functions
(OWFs) and the hardness of learning P/poly in polynomial time on average with respect to
polynomially samplable distributions over P/poly using random examples [25, 8]. Theorem 1.2
not only lends an analogous equivalence between a complexity theoretic assumption that BPP
has a non-trivial derandomization and the hardness of learning EXP/poly in polynomial time
on average using random examples, but also extends this equivalence to hardness of learning
EXP/poly efficiently in the worst-case. Note that showing such an equivalence between the
existence of OWFs and hardness of learning P/poly efficiently in the worst-case has been
open for decades.6

Furthermore, our proof techniques also let us extend all these equivalences to the case
where C = PSPACE.

▶ Corollary 1.3. The following statements are equivalent.
1. PSPACE ̸= BPP.
2. There exists c ≥ 0, such that PSPACE/poly is not (1/nc, 1/20n)-PAC-learnable in polyno-

mial time using random examples (also using membership queries).
3. There exists c ≥ 0, such that PSPACE/poly is not (1/nc, 1/20n)-PAC-learnable in poly-

nomial time on average using random examples (also using membership queries) with
respect to polynomially samplable distributions over PSPACE/poly.

Essentially, the proof of showing conditional hardness of PAC-learning EXP/poly uses the
fact that strongly learning EXP/poly using random examples over the uniform distribution
implies that EXP = BPP. This also means that the hardest distribution to learn EXP/poly
is over the uniform distribution. The same ideas hold for PAC-learning EXP/poly using
membership queries too.

6 In particular, we do not know if hardness of learning P/poly efficiently using random examples in the
worst-case implies OWFs.
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Our techniques used to show these equivalences are inspired from results on uniform
derandomization by [26, 38], which were further used by [15, 31] to show circuit lower bounds
based on the existence of learning algorithms. We use special properties of functions in
EXP and PSPACE like downward self-reducibility and self-correctibility to show that learning
these functions would imply a collapse for EXP and PSPACE to BPP.

1.3 Reducing Succinct Search to Decision for Learning
Recently, [12] established an important connection between natural proofs and learning. They
showed that natural proofs of strong lower bounds against a circuit class C/poly imply efficient
learning algorithms for C/poly over the uniform distribution with membership queries, as
long as the class C/poly satisfies some mild closure properties. One way to interpret their
result is as an approximate search to decision reduction for learning. The decision version of
learning polynomial-size circuits is the language MCSP consisting of truth tables of functions
that have small circuits, i.e., for which a good hypothesis exists. The search version is to find
a small circuit for a positive instance of MCSP. [12] show that if MCSP is polynomial-time
decidable (which is implied by the existence of natural proofs against P/poly), then the
search version of MCSP can be solved approximately, in the sense that we can efficiently
compute a polynomially larger sized circuit that approximates the truth table well.

The language RKt (resp. RKS) of strings with high Kt complexity (resp. high KS complexity)
plays an analogous role to MCSP in the theory of learning EXP/poly (resp. PSPACE/poly).
We ask if search to decision reductions can be established for these languages as well. However,
it is unclear a priori what it would mean to solve search efficiently for a problem that does
not have polynomial-size proofs or witnesses. We introduce the notion of succinct search. To
efficiently solve a search problem succinctly is to efficiently compute for any YES instance of
the problem a circuit that encodes a possibly exponential-size proof for the instance. We
use the PCP theorem for NEXP [6] and the Easy Witness Lemma [24] to show that for the
classes PSPACE, EXP and NEXP, efficient decidability of the class is equivalent to efficiently
solving succinct search for every language in the class. We then use results from [3] to argue
that for RKt and RKS, efficient solvability is equivalent to solving succinct search efficiently.
Note that this connection is for succinctly solving the search problem exactly rather than
just for approximate search as in [12].

▶ Theorem 1.4 (Equivalence of Succinct Search and Decision for Learning EXP/poly and
PSPACE/poly). Let L be RKt or RKS. L ∈ BPP iff for each polynomial-time verifier V for L,
succinct search is efficiently solvable for L with respect to V .

1.4 Barriers for Establishing NP-Hardness of Learning
We next look at questions pertaining to hardness of learning classes of the form C/poly, where
C ⊆ PH. We only focus on the hardness of PAC-learning C/poly with random examples. In
this section, we consider the limitations of proving the NP-hardness of PAC-learning NP/poly,
i.e. the class of polynomial size non-deterministic circuits, using random examples, via a
black-box reduction from deciding SAT.

Informally, a black-box reduction from problem A to B, solves A given access to any oracle
solving B. Black-box reductions have been ubiquitously used in complexity theory to prove
conditional lower bounds. However, for many fundamental questions in complexity theory,
there have been results showing why such reductions are limited in power. Various results
have conditionally ruled out special-cases of black-box reductions for showing average-case
hardness of NP [14, 10], existence of one-way functions [1, 5, 9] and the existence of hitting
set generators [22], from hardness of SAT.

APPROX/RANDOM 2021
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For the case of showing hardness of learnability, a B-adaptive black-box reduction R from
some language L to PAC-learning a class C using random examples is defined by two phases

The first phase consists of B adaptive rounds of probabilistic polynomial time algorithms,
each of which generates queries to the learner oracle. In more detail, each round uses the
input z to the reduction, fresh randomness and the hypotheses returned by the C-learner
oracle in the previous rounds, and constructs joint distributions (that serve as example
oracles for the learner). It then samples a set of independent labeled examples from each
of these distributions as queries to the learner oracle.
In the second phase, a probabilistic polynomial time algorithm takes all the hypotheses
from the first phase and decides whether z ∈ L, with high probability.

[5] study the question of the existence of black-box Turing reductions from any language
in NP to PAC-learning P/poly using random examples. They consider a strongly black-box
reduction, where a reduction is strongly black-box if it runs correctly given any oracle for the
learner, as well as the hypotheses output by the learner. For a special case of such a reduction,
where the access to the learner and the hypothesis oracles is additionally non-adaptive, they
show that such a reduction from SAT to PAC-learning P/poly using random examples
collapses NP to CoAM (which implies a collapse of PH to the second level). Additionally,
they show that if any language L reduces to PAC-learning P/poly using random examples
via an O(1)-adaptive black-box reduction, then the hardness of L implies the existence of an
auxiliary-input one-way function (which is a major breakthrough in cryptography).7

We define a natural special-case of such a reduction, called an oblivious strongly black-box
reduction, where the obliviousness of a reduction implies that the queries made to the
learner do not depend on the input z to the reduction, and try to understand its limitations
for showing NP-hardness of PAC-learning NP/poly. At a first glance, ruling out oblivious
reductions may seem very restrictive, since ideally, one would like to allow reductions whose
queries to the learner can depend on the input to the reduction. However, we observe
the proof of Corollary 1.3 which shows hardness of PAC-learning PSPACE/poly assuming
PSPACE ≠ BPP and reformulate it as an oblivious black-box reduction of the form defined
above. In particular, for f∗ being the PSPACE-Complete function given by [38] which is
downward self-reducible and self-correctible, we observe that

▶ Lemma 1.5. There exists an oblivious, n-adaptive, strongly black-box reduction from decid-
ing f∗ to PAC-learning PSPACE/poly using random examples over the uniform distribution.

On the other hand, for the case of learning NP/poly using random examples, we show
that oblivious strongly black-box reductions from SAT imply a collapse of the polynomial
hierarchy. Our main result for the section is

▶ Theorem 1.6 (Informal). If there exists an oblivious, poly(n)-adaptive, strongly black-box
reduction from deciding SAT to learning NP/poly using random examples over polynomially
samplable distributions, then PH collapses to the third level.8

7 They also show the impossibility of Karp reductions from SAT to PAC-learning P/poly using random
examples, unless NP collapses to SZKA.

8 We actually show a stronger result that the existence of such a reduction implies that NP ⊆ CoAMpoly,
where CoAMpoly is the class of languages recognized by constant-round CoAM protocols with advice,
where we require proper acceptance/rejection probabilities only when the advice is correct.
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Theorem 1.6 implies that standard techniques used for worst-case to average-case reductions,
pseudo-random generator constructions from uniform hardness assumptions and in particular,
hardness of efficiently PAC-learning classes like PSPACE/poly, cannot be used to show the
NP-hardness of PAC-learning NP/poly using random examples.

Theorem 1.6 compares to some previous results in the following way:
It shows a conditional impossibility result by ruling out a restricted version of adaptive,
strongly black-box reductions to learning P/poly using random examples, in contrast to
[5], who only rule out fully non-adaptive, strongly black-box reductions, from a slightly
weaker assumption (NP ̸⊆ CoAM).
Furthermore, the result by [22] which conditionally rules out a non-adaptive black box
reduction from deciding SAT to breaking a Hitting Set Generator (HSG), in turn rules
out fully non-adaptive, strongly black-box reductions from SAT to learning NP/poly using
membership queries over the uniform distribution (by suitably changing the definition of
the reduction to the learner).
Indeed, the ideas of [26] can be used to show that hardness of learning NP/poly using
membership queries over the uniform distribution, implies the existence of a hitting set
generator which hits sufficiently dense circuits. We strengthen this observation by not
only extending the reduction to a restricted version of the adaptive case, but also by
ruling out a weaker reduction to learning NP/poly with random examples.
In a similar way, [20] conditionally rule out the existence of mildly adaptive (each query
length up to n, where n is the length of the input instance, appears in very few levels of
adaptivity), strongly black-box reductions from an EXP-Complete problem to learning
NP/poly using membership queries (and in fact, learning EXP/poly).
Our result rules out the restricted cases of mildly adaptive, strongly black-box reductions
which show the NP-hardness of learning NP/poly using random examples and hence,
is a conceptual strengthening of [20], as we rule out a hardness result from a stronger
assumption.
On the other hand, Schapire [37] shows that a non-uniform hardness assumption like
NP/poly ̸= P/poly actually implies the hardness of PAC-learning NP/poly in polynomial
time using random examples. They show that if NP/poly is learnable in polynomial
time, then there exists an algorithm which takes any m labeled samples of a target
fn ∈ NP/poly, runs in time poly(m, n), and with high probability, outputs a hypothesis
of size poly(n) (independent of m) that is consistent with all the labeled samples.
In particular, if m = 2n, then for every fn ∈ NP/poly, the algorithm outputs a polynomial-
sized hypothesis circuit which computes it correctly on all inputs, thus contradicting
the assumption NP/poly ̸= P/poly. Note that the result uses that for any fn, we
get a polynomial-sized circuit that computes it, and in fact, the algorithm runs in
poly(m, n) = 2O(n) time and is not useful in terms of contradicting a uniform assumption.

It is worth noting that our result has no implications for showing the impossibility of adaptive,
black-box NP-hardness reductions which imply the average-case hardness for NP [14, 10],
existence of one-way functions [1, 5] or the existence of HSGs [20, 22].

Overview of the techniques. The proof of Theorem 1.6 builds on the Feigenbaum-Fortnow
[14] protocol, which simulates a type of non-adaptive randomized reduction A from SAT
to an NP problem Q, by an AM protocol with polynomial-sized advice, and shows that
coNP ⊆ NP/poly.9

9 Their motivation (and [10]) was to rule out certain kinds of non-adaptive, worst-case to average-case
black-box reductions for NP.

APPROX/RANDOM 2021
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Suppose that on input x, A makes q non-adaptive queries to Q, sampled independently
from certain distribution X. Very briefly, their AM protocol does the following. For K

large enough, the verifier first generates K tuples of q non-adaptive queries by running A(x)
independently K times. The verifier asks the prover to send a witness to each query which
is a YES instance (which it can verify easily). This ensures that the prover cannot cheat
if the query is a NO instance and the only way it can cheat is by claiming a YES instance
to be a NO instance. Now, if the verifier has the proportion p of YES instances of Q over
the distribution X, then with high probability it knows that the number of YES instances
among the Kq queries is concentrated around q · (pK ± O(

√
K)). The verifier answers with

a reject if the number of YES instances is much lesser than pqK.
The honest prover answers each query correctly (with correct witnesses if necessary) and

with high probability, the number of YES instances are close to the expectation. Hence,
the verifier can pick any of K runs of A(x) using the prover’s answers to its queries and
the output will be correct with high probability. On the other hand, the cheating prover
cannot cheat on more than O(q

√
K) YES instances, with high probability. If we choose

K ≫ O(q
√

K), then on most of the K independent runs of A, all its queries are answered
correctly and the reduction gives the correct answer. Thus, if we pick one of the runs at
random and get A(x) by using the prover’s answers to its queries, the verifier answers wrongly
with low probability.

Consider an oblivious, B-adaptive, strongly black-box reduction R from L to an oracle
which learns NP/poly. Suppose we are able to fix S1, . . . , St, which are sets of labeled
examples drawn independently from the joint distributions (X1, f1(X1)), . . . , (Xt, ft(Xt))
where f1, . . . , ft ∈ NP/poly, as the queries made to the learner. Furthermore, let h1, . . . , ht

be a set of fixed hypotheses circuits, some of which are used to generate S1, . . . , St, such that
each hi (1 − ε0)-approximates fi over Xi, for some ε0 > 0. Because R is strongly black-box,
each hypothesis is also accessed as an oracle and we see that L is decided by the algorithm M

in the second phase, which has access to h1, . . . , ht. Now, the t oracles to M can be replaced
by a single oracle O which takes as input i ∈ [t] and y ∈ {0, 1}n, and outputs hi(y) (O can
be thought of as a table with t rows and 2n columns). We then adapt the techniques of [14]
to design an AM protocol for L with polynomial sized advice, where the verifier expects that
the prover answers according to O.

The obliviousness of the reduction helps us in fixing the queries made by R, and implicitly,
the corresponding hypotheses output by the oracle. In other words, this helps us fix the
proportions of YES instances for each fi non-uniformly, as the queries generated to the
learner do not depend on the input to the reduction. We do this by inductively fixing the
queries made by the reduction starting from the first round of adaptivity. Fixing a “good”
polynomial-sized random string r∗ used by the first phase non-uniformly (using Adleman’s
trick), we first get the queries to the learner made in the first round.

For any other round b ≥ 2, assume that the queries to the learner up to round (b − 1) and
the functionality of the hypothesis oracles used to generate them up to round (b−2) are fixed.
Using the fact that r∗ is also fixed, we consider the set of all tuples of joint distributions
that can be generated in the bth round depending on the answers to the oracle queries of
the hypotheses seen so far, and arbitrarily choose one of them. Note that, this implicitly
fixes the functionality of the hypothesis oracles for the queries generated in round b − 1. We
continue this process and fix all the queries made to the learner by all the rounds from the
first phase.

The details of the results from this section have been delegated to Appendix B because
of space constraints.
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1.5 Further Discussion
Connections to Karp-Lipton Style Theorems. There is an analogy between our results on
implications of learnability and Karp-Lipton style theorems. A Karp-Lipton style theorem
for a uniform class C gives an unlikely uniform implication of the assumption that C has
polynomial-size circuits. The original theorem of Karp and Lipton [28] shows such an
implication for C = NP: if NP ⊆ P/poly, then Σ2 = Π2. Karp-Lipton style theorems are now
known for many other classes, including C = P#P [35], C = PSPACE [6] and C = EXP [6].
In each of these cases, C ⊆ P/poly implies C = MA, applying techniques from the theory of
interactive proofs [35, 6].

Similarly, in some of our results (i.e., Theorem 1.1, Theorem 1.2 and Corollary 1.3), we
study implications of learnability for classes C/poly, where C = BPE, EXP or PSPACE. Since
the learner is required to output a polynomial-size Boolean circuit, the learnability assumption
already implies that C is approximated by polynomial-size circuits, where the approximation
is over the distribution on the examples. We are interested in establishing strong uniform
implications of these assumptions, showing that the assumption is actually false in the case
C = BPE, and that the assumption implies a simulation of C in BPP in the other cases. What
enables us to show stronger implications than in corresponding Karp-Lipton style theorems
is that the learner uniformly produces a good hypothesis by our assumption. However, the
learner is assumed to have access to random examples or membership queries which cannot
be efficiently simulated - this makes our simulation task more challenging, and we therefore
exploit various structural properties of complete languages. We also need to deal with the
issue of approximation, while standard Karp-Lipton style theorems have as their antecedent
an exact simulation by efficient circuits.

Open Questions. One question which stems from our work is to explore the possibility of
showing the hardness of PAC-learning NP/poly efficiently using random examples assuming
that NP ̸= BPP. A potential direction is to consider non black-box reductions for the
NP-hardness of PAC-learning NP/poly. This viewpoint has lent itself some success in the case
of worst-case to average-case reductions [19, 21, 22] and in our case, hardness of efficiently
PAC-learning EXP/poly. Indeed, the reduction for EXP/poly only works if the learning
algorithm runs in polynomial time, although the reduction still uses the learning algorithm
as an oracle.10 Moreover, [13] show a non black-box reduction from an approximate version
of MCSP to learning P/poly by sub-exponential-sized circuits (and thus, learning NP/poly).
Note that, it is unclear if approximate MCSP is NP-hard and this reduction does not imply
the NP-hardness of PAC-learning NP/poly efficiently.

Another important question is to explore an analogue of the PH collapse for learnability. In
other words, does polynomial time learnability of NP/poly imply polynomial time learnability
of PH/poly? Note that, under a strong assumption of the existence of a (possibly adaptive
and non-relativizable) worst-case to average-case reduction for NP, we can use the techniques
in Lemma 3.2 along with the downward-self-reducibility of SAT to show such a collapse.
On the other hand, [23] also shows that there exists an oracle O with respect to which
DistNPO ⊆ AvgPO and ΣO

2 ̸⊆ HeurSIZEO[2nα ]. Essentially, this result negates the existence
of any relativizable reductions which show a statement analogous to the PH collapse for
average-case algorithms i.e. if NP is easy on average, then Σ2 is easy on average too. In
a similar spirit, can we prove that no relativizable technique can show that if NP/poly is
learnable in polynomial time, then Σ2/poly is learnable in polynomial time as well?

10 For EXP to collapse to PSPACE, we need the EXP/poly learner to be efficient so that it outputs
polynomial-sized hypothesis circuits for any language in EXP, and this further implies EXP ⊆ P/poly.
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2 Unconditional Results for Hardness of Learning

Firstly, we show the hardness of learning BPE/poly over the uniform distribution using
membership queries by randomized polynomial time algorithms. The proof of this result uses
the following lemma from [31]. Preliminaries and definitions can be found in Appendix A.

▶ Lemma 2.1. Let C be any circuit class, s : N → N be a size function and f∗ be the
PSPACE-Complete problem from Theorem A.8. There exists constant c ∈ N such that if
C[s(n)] is learnable up to error n−c in time T (n), then at least one of the following holds :

f∗ /∈ C[s(n)].
f∗ ∈ BPTIME[poly(T (n))].

We also need Lemma A.11 (Appendix A) which proves the existence of functions which
cannot be approximated by nlog n-sized circuits.

Proof of Theorem 1.1. Towards a contradiction, assume that there exists constants k, d ≥ 1
and a randomized learning algorithm A which learns BPE/poly in O(nd) time over the
uniform distribution using membership queries, up to error 1/2 − 1/nk and confidence 1/n,
for every large enough input length n. By non-uniformly fixing a good random string, we
ensure that for every function g ∈ BPE/poly, there exists c such that A always outputs a
hypothesis circuit of size O(nc) which computes g on at least (1/2 + 1/nk)-fraction of n-
length inputs. Thus, for every function in BPE/poly, there exists a family of polynomial-sized
circuits {hn}n∈N which (1/2 + 1/nk)-approximates it, where hi is the hypothesis output by
the learner on input length i.

We next show that the existence of such a learner implies the existence of a function in
BPE which cannot be (1/2 + 1/nk)-approximated by polynomial sized circuits. Consider the
PSPACE-Complete function f∗ from Theorem A.8 which is computable in time DSPACE[n].
f∗ is in BPE/poly (since f∗ can be computed in E) and we use the learning algorithm
for BPE/poly in Lemma 2.1 to see that PSPACE ⊆ BPP. Using a padding argument we
observe that DSPACE[2O(n)] ⊆ BPE. From Lemma A.11, we see that there exists a function
which cannot be (1/2 + 1/nk)-computed by circuits of size nlog n. We can easily construct
a Turing Machine which lexicographically searches for the truth table of a function on n

inputs which cannot be (1/2 + 1/nk)-approximated by nlog n sized circuits in 2O(n) space
and answers according to the first one it finds. From this we have that DSPACE[2O(n)], and
thus BPE/poly cannot be (1/2 + 1/nk)-approximated by nlog n sized circuits, which leads to
a contradiction. ◀

▶ Remark 2.2. [36] show that if for each c, a circuit class C[nc] is (1/2 − 1/nc, 1/n)-learnable
using membership queries over the uniform distribution in 2n/nω(1) time, then for each c,
there exists Lc ∈ BPE such that Lc /∈ C[nk] (Theorem 12). For any c, the idea of picking
C[nc] = SIZEBPE[nc], with linear-sized queries to BPE oracles and using the learning algorithm
A which learns BPE/poly in their result to achieve a contradiction (as any function in BPE
can be computed by constant sized SIZEBPE-circuits with linear-sized oracle queries) does
not work, as [36] crucially uses that C[nc] has to be a subset of SIZE[nc′ ] for some c′ = O(c).

On the other hand, Theorem 4 in [15] shows that if C is learnable using membership
queries over the uniform distribution in polynomial time then BPE ̸⊆ C[poly(n)]. Proving
Theorem 1.1 by setting C as BPE/poly again does not really work, as [15]’s result only holds
true when C = P/poly, as it depends on the collapse of EXP to P/poly.

We next consider hardness of learning E/poly deterministically over the uniform distribu-
tion using membership queries. E/poly can equivalently be defined as the class of languages
which can be computed by polynomial-sized circuit families with oracle access to some
function in E, with the constraint that the oracle queries are of size O(n).
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We first rule out deterministic exact learners for E/poly running in time O(2n/n) in
Angluin’s model of learning [4], i.e. the learners have access to a membership oracle, as well
as an equivalence oracle, where the learner presents a hypothesis circuit to the equivalence
oracle, receives yes if the hypothesis exactly computes the target concept and receives a
counter-example for the hypothesis, otherwise.

We also extend this result to rule out any deterministic learners for E/poly using member-
ship queries, i.e. even learners which can output an approximate hypothesis. In particular,
we can show that, for every constant δ ∈ [0, 1/2 − 1/n), E/poly is hard to learn up to error
δ over the uniform distribution using membership queries, even by deterministic learning
algorithms which run in time 2n/n. These ideas can also be extended to show similar
results for unconditional hardness of learning PSPACE/poly by deterministic polynomial time
learners. The proofs follow from simple diagonalization-like arguments such as that used by
[31] and can be found in the full version.

3 Robustness of Hardness of Learning

In this section, we establish the equivalences in Theorem 1.2 for hardness of learning EXP/poly.
We first state the following results necessary for its proof.

▶ Lemma 3.1. Let EXP = BPP. Then, for every c > 0, EXP/poly can be (1/nc, 1/20n)-
PAC-learnt using random examples in time polynomial in n.

Proof Sketch. The proof uses the collapse of EXP into BPP, firstly to observe that EXP/poly
is in P/poly. Next, we construct an exponential time procedure which takes as inputs a size
parameter s(n), a set of examples of length n and their labels, and outputs a hypothesis
circuit of size at most s(n) which is consistent with the examples, if there exists one, via an
exhaustive search. From our assumption, this runs in probabilistic polynomial time. Using an
argument based on Occam’s razor [30], we obtain a polynomial time learner for P/poly. ◀

▶ Lemma 3.2. Let EXP ̸= BPP. Then, there exists c ≥ 0 such that EXP/poly is not
(1/nc, 1/20n)-learnable in the worst-case using random examples over the uniform distribution
in time polynomial in n.

Proof. Towards a contradiction assume that there exists a constant a > 0 and an O(na)-time
learner A that (1/nc, 1/20n)-learns EXP/poly using random examples over Un, for every c ≥ 0.
We first show that the existence of the learner A for EXP/poly implies that EXP ⊆ P/poly.
Let g∗ be an EXP-Complete problem which is self-correctible, whose existence is given by
Theorem A.7, with c1 ≥ 0 being the corresponding constant. Use A to (1/nc1 , 1/20n)-learn
g∗ using random examples over the uniform distribution. Let A′ be the algorithm which
takes as input y ∈ {0, 1}n in addition to the inputs of A and runs the learner A, following
which it returns the evaluation of the hypothesis circuit output by A on the input y. In
other words, for every n ∈ N, we have

Pr
w∈{0,1}r(n)

x1,...,xm∼Un

{
Pr

y∼Un

{A′(1n, w, (x1, g∗(x1)), . . . , (xm, g∗(xm), y) = g∗(y)} ≥ 1 − 1/nc1

}
≥ 1 − 1/20n

where both r(n) and m = m(n) = poly(n).

APPROX/RANDOM 2021



46:12 On the Structure of Learnability Beyond P/Poly

By amplifying the correctness of A′ using standard techniques, we can then non-uniformly
fix the random strings w, x1, . . . , xm and the values of g∗ on each xi to get a polynomial
sized circuit C, which takes input y ∈ {0, 1}n and outputs the answer of A′ on the advice
string and y. Thus Cn agrees with g∗ on at least (1 − 1/nc1)-fraction of the inputs. Using
Cn with the self-correctibility of g∗ (and fixing another “good” random string non-uniformly
in the resulting algorithm), we get a polynomial-sized circuit which computes g∗ on every
input and by the EXP-Completeness of g∗, we see that EXP ⊆ P/poly.

Since EXP ⊆ P/poly, we use Lemma A.9 to observe that f∗ given by Theorem A.8 is now
an EXP-Complete problem that is both downward self-reducible and self-correctible. Let c2
be the constant associated with the self-corrector for f∗. For any integer k, given a procedure
Bk which computes f∗ on every instance of size k with high probability, we use A together
with the downward self-reduction for f∗, followed by the self-corrector for f∗ to obtain a
procedure Bk+1 that computes f∗ on any input of size k + 1. We use this inductively, to
compute f∗ on n inputs in probabilistic polynomial time.

More precisely, consider the following algorithm Bn which computes f∗ on a given input
x and does the following. First, it starts with a procedure Bk0 , for a constant k0, which can
be computed easily using a look-up table. Assuming that we have the procedure Bk for some
input length k ≤ n, we show how to construct the procedure Bk+1 inductively. We use the
learner A to learn the function f∗

k+1 up to error 1/(k + 1)c2 . For every input f∗(y) passed
to A, where y is a string randomly picked from {0, 1}k+1, we use Bk with the downward
self-reduction of f∗ to compute f∗(y). A outputs a hypothesis hk+1 which computes f∗

k+1
on at least a (1 − 1/(k + 1)c)-fraction of the inputs with high probability. We now use the
self-corrector for f∗ to obtain from hk+1 a procedure Bk+1 which is correct on every input
of size k + 1 with probability 1 − γ (by using standard error reduction arguments), for some
γ > 0 which we pick later. Repeating this process at most n times, we obtain Bn and output
Bn(x).

First, we show that Bn outputs f∗(x) with probability at least 2/3. Let d(n) be the number
of queries made by the DSR to the oracle f∗

n−1 in computing f∗(x) on any input x of length
n. The idea is that at each stage k, the procedure Bk fails only if at least one of m(n) · d(n)
queries answered by Bk−1 is incorrect, with probability at most m(n)d(n)γ ≤ 1/20n for
γ = 1/20nm(n)d(n), or if A fails to output the right hypothesis, with probability at most
1/20n. Thus, the total failure probability at each stage is at most 1/10n and over the n

stages, using the union bound, the total failure probability is at most 1/10 + γ ≤ 1/3.
We inductively observe that every stage Bk runs in time poly(k). It is easily seen that Bk0

runs in constant time. Assume that Bk−1 runs in poly(k −1) time. At stage k, the time taken
to compute f∗ on m(k) many inputs of length k is O(m(k) ·d(k) ·poly(k−1)) ≤ poly(k). After
this, A takes O(kd) time to output hk of size at most kd, which is used by the poly(k)-time
self-corrector to compute f∗ on all inputs of size k with high probability. Thus, Bk runs in
time poly(k) = poly(n). Since there at most n stages, the total running time of Bn is poly(n).
This shows that f∗ ∈ BPP and contradicts the original assumption. ◀

Using a very similar proof idea, we obtain an analogous statement to Lemma 3.2, but
now for worst-case learning EXP/poly using membership queries.

▶ Lemma 3.3. Suppose that EXP/poly is (1/nc, 1/20n)-learnable in the worst case for every
c ≥ 0 over the uniform distribution Un using membership queries in time poly(n). Then,
EXP = BPP.

Informally (see Appendix A for a formal definition), the task of an (ε, δ)-average-case
learner for a class C over the uniform distribution using random examples, is to (ε, δ)-learn
an unknown target function which is be generated according to a fixed distribution over
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C (defined as an ensemble of distributions over appropriate representations for C). The
ideas from Lemma 3.2 can also be extended to show similar implications for the setting of
average-case learning EXP/poly using random examples (and membership queries too).

▶ Lemma 3.4. Suppose that EXP/poly is (1/nc, 1/20n)-learnable on average for every
c ≥ 0 with respect to polynomially samplable distributions over EXP/poly and the uniform
distribution Un using random examples in time poly(n). Then, EXP = BPP.

▶ Remark 3.5. In Lemma 3.4, the samplable distributions we consider are over SIZEEXP[nk]-
circuit encodings in Rn ⊆ {0, 1}r(n), where r(n) = O(n2k+1) (see Remark A.3 for more
details). In particular, for the distribution P over SIZEEXP[nk] supported only on the function
g∗ (or f∗) used in the proof of Lemma 3.2, the sampler S′

P takes 1nk as input and outputs a
SIZEEXP[nk]-circuit encoding of g∗ (or f∗) which is just an EXP-oracle gate on n inputs and
this encoding is of size O(n2). The running time of this sampling algorithm is polynomial in
the input size.

We use the same ideas as that of Lemma 3.2 to prove that even learning EXP/poly in
polynomial time using random examples from the uniform distribution with respect to just
these two distributions over EXP/poly, is enough to collapse EXP to BPP.

The formal details of the intermediate results can be found in the full version. We now
prove the equivalences for efficiently learning EXP/poly.

Proof of Theorem 1.2. The following implications establish the desired equivalences.
(b) =⇒ (a), (c) =⇒ (a): The contrapositives of each of these implications follow from Lemma
3.1. In particular, PAC-learning EXP/poly with error at most 1/nc for any c > 0 using
random examples, implies PAC-learnability of EXP/poly using membership queries, where
the queries are just made on the random examples given to the learner.
(d) =⇒ (b), (e) =⇒ (c): Follows from the definitions, since PAC-learning EXP/poly in the
worst case in poly(n) time using random examples implies PAC-learnability for EXP/poly
on average in poly(n) time using random examples, for any distribution over EXP/poly. A
similar implication holds for learning with membership queries too.
(a) =⇒ (b): For any c > 0, suppose EXP/poly is (1/nc, 1/20n) PAC-learnable in polynomial
time using random examples over every arbitrary distribution. In particular, this means that
EXP/poly can be (1/nc, 1/20n)-learnt in polynomial time using random examples over the
uniform distribution. The implication follows from the contrapositive of Lemma 3.2.
(a) =⇒ (c): Similar to the previous implication, we see that EXP/poly is (1/nc, 1/20n)-
learnable in polynomial time using membership queries over the uniform distribution. The
implication holds from the contrapositive of Lemma 3.3.
(a) =⇒ (d), (a) =⇒ (e): The implications follow from Lemma 3.4 and its corresponding
extension to learning on average with membership queries. ◀

The proof of Corollary 1.3 (equivalences for learning PSPACE/poly) follows from the
same ideas as Theorem 1.2. In more detail, Lemma 3.1 extends easily as the procedure
which searches for a polynomial-sized consistent hypothesis also runs in polynomial space.
Lemmas 3.2, 3.3 and 3.4 can also be extended, by learning the downward-self-reducible and
self-correctible PSPACE-Complete function f∗ (from Theorem A.8) directly, and using it to
compute f∗ on every input.
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4 Reducing Succinct Search to Decision

The key concepts in this section are verifiability and succinct search. We define verifiers first.

▶ Definition 4.1. Given language L ⊆ {0, 1}∗ and polynomial-time computable relation
V (·, ·), we say that V is a verifier for L if for each x ∈ {0, 1}∗, x ∈ L iff ∃yV (x, y).

Given language L, a verifier V for L, and function f : N → N, we say that L has f(n)-size
proofs with respect to V , such that for each x ∈ {0, 1}∗, x ∈ L implies ∃y, |y| ≤ f(|x|) : V (x, y).
We say that L has f(n)-size proofs if there is a verifier V for L such that L has f(n)-size
proofs with respect to V .

Given language L, a verifier V for L and a machine class D, we say that L has D-
computable proofs with respect to V if there is a machine M ∈ D such that for each
x ∈ {0, 1}∗, x ∈ L implies V (x, M(x)). We say that L has D-computable proofs if there is a
verifier V for L such that L has D-computable proofs with respect to V .

Note that NP is the class of languages with polynomial-sized proofs, NEXP is the class
of languages with exponential-sized proofs, and for D ∈ {EXP, PSPACE}, D is the class of
languages with D-computable proofs (where we abuse notation and use D to refer both to a
machine class and to the class of languages computable by such machines).

Next we define succinct search. We will assume w.l.o.g. that the proof size for any verifier
is a power of 2 - this can be ensured by padding the proof if necessary.

▶ Definition 4.2. Given language L and verifier V for L, we say that succinct search is
easy for L with respect to V if there is a probabilistic polynomial-time machine N such that
for each x ∈ L, there is a V -proof y such that with probability 1 − o(1), tt(N(x)) = y, where
for Boolean circuit C, tt(C) denotes the truth table of the function computed by C.

Thus succinct search is easy for L with respect to a verifier V if there is a probabil-
istic polynomial-time machine outputting compressed descriptions of V -proofs with high
probability for any positive instance of L.

Using the downward self-reducibility of SAT, it is straightforward to see that NP ⊆ BPP
iff for each L ∈ NP and for every verifier V such that L has poly-size proofs with respect
to V , succinct search is easy for L with respect to V . We now show analogous results for
PSPACE, EXP and NEXP. First we show for each of these classes that easiness of the class
implies easiness of succinct search.
We need the Easy Witness Lemma of Impagliazzo, Kabanets and Wigderson [24].

▶ Lemma 4.3 ([24]). If NEXP ⊆ P/poly, then for each L ∈ NEXP and for each verifier V

for L such that L has exponential-size proofs with respect to V , for each x ∈ L, there is a
polynomial-size circuit Cx such that V (x, tt(Cx)) holds.

▶ Lemma 4.4. The following implications hold:
1. Let D ∈ {PSPACE, EXP}. If D = BPP, then for each L ∈ D and for each verifier V

such that L has D-computable proofs with respect to V , succinct search is easy for L with
respect to V .

2. If NEXP = BPP, then for each L ∈ NEXP and for each verifier V such that L has
exponential-size proofs with respect to V , succinct search is easy for L with respect to V .

Proof. We establish the first item. Let D ∈ {PSPACE, EXP}, and assume D = BPP. Let
L ∈ D and V be a verifier for L such that L has D-computable proofs with respect to V .
We construct a probabilistic poly-time machine N such that for each input x ∈ L, there is a
V -proof y such that with high probability tt(N(x)) = y. Let M be a D-machine outputting
V -proofs for positive instances of L.
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Consider the language L′ = {⟨x, i⟩|ith bit of M(x) is 1}. Since M is a D machine, we
have that L′ ∈ D. By assumption, D = BPP, therefore there is a probabilistic poly-time
machine N ′ deciding L′. Assume w.l.o.g. that N ′ has error at most 2−|y|2 on any input y.
Given input x, N operates as follows. It first computes a probabilistic poly-size circuit C ′

simulating N ′. This can be done using the standard efficient conversion of efficient algorithms
into small circuits. It then hardwires x into the first part of the input for C ′, obtaining a
circuit C ′

x. It then fixes the random input of the circuit C ′
x to a uniformly generated random

string r to obtain a circuit D′
x,r, which it outputs.

Since the error of N ′ is smaller than 2−|y|2 on any input y, by a simple union bound,
with probability 1 − o(1) over the choice of the random string r, D′

x,r correctly computes the
i’th bit of M(x) for each i ∈ [m]. For x ∈ L, V (x, M(x)) holds, and therefore N efficiently
solves succinct search for L with respect to V .

We establish the second item. Assume NEXP = BPP and let L ∈ NEXP and V be a
verifier for L such that L has exponential-size proofs with respect to V . Since NEXP = BPP,
we have that NEXP ⊆ P/poly. By Lemma 4.3, there is a polynomial p such that for each
x ∈ L, there is a circuit Cx of size at most p(|x|) such that V (x, tt(Cx)) holds.

Consider the language L′ = {⟨x, i⟩| There is a circuit C of size p(|x|) such that V (x, tt(C))
is 1, and the ith bit of the lexicographically first such circuit is 1}. Clearly L′ ∈ EXP, just by
enumerating circuits of size p(|x|) in lexicographic order and finding the first one encoding a
V -proof for x, if one exists. Since EXP = BPP, there is a probabilistic poly-time machine N ′

deciding L′ with error exponentially small. We construct a probabilistic poly-time machine
N as follows: on input x, N runs N ′ on {⟨x, i⟩} for each i at most the description length of a
circuit of size p(|x|). It outputs the circuit C whose description has bit i set to 1 iff N ′ accepts
on {⟨x, i⟩}. Since N ′ has error exponentially small, we have that with error exponentially
small, N outputs a circuit C encoding a V -proof of x, and therefore N efficiently solves
succinct search for L with respect to V . ◀

For the reverse directions, we use the PCP characterization of NEXP [6, 16], where we
only require polynomial upper bound on query complexity of the verifier.

▶ Theorem 4.5 ([6, 16]). Let L ∈ NEXP. There is a probabilistic poly-time oracle machine
V ′ such that:
1. For each x ∈ L, there is y of length exponential in |x| such that V ′(x) accepts with

probability at least 2/3 when given oracle access to y.
2. For each x ̸∈ L and for all y, V ′(x) accepts with probability at most 1/3 when given oracle

access to y.
We now show that easiness of succinct search implies easiness of decision for any L ∈ NEXP.

▶ Lemma 4.6. Let L ∈ NEXP and V be a verifier such that L has exponential-size proofs
with respect to V . If succinct search is easy for L with respect to V , then L ∈ BPP.

Proof. Let L ∈ NEXP. We show that L ∈ BPP. By Theorem 4.5, there is a probabilistic
poly-time oracle machine V ′ such that if x ∈ L, there is y of length exponential in |x| for
which V ′ accepts with high probability on x when given oracle access to y, and if x ̸∈ L

rejects with high probability irrespective of the oracle.
Now consider a verifier V for L which given input x and proof y, accepts iff V ′(x) accepts

with oracle y on a majority of its computation paths. Since succinct search is easy for L with
respect to V , there is a probabilistic poly-time machine N such that for input x ∈ L, there
is a V -proof y for x such that with high probability tt(N(x)) = y. We define a probabilistic
poly-time machine W that on input x simulates V ′(x) as follows. It first runs N(x) to find
a circuit C. It then runs V (x), answering all oracle calls to y by simulating C on input
corresponding to the bit of y that is queried. It accepts iff V (x) accepts.
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If x ∈ L, by using the assumption that N solves succinct search, W (x) accepts with
probability close to 2/3. If x ̸∈ L, W (x) rejects with probability close to 2/3 since the circuit
C output by N(x) corresponds to some purported V ′-proof, and every such V ′-proof is
rejected with high probability by V when given oracle access to the proof. ◀

▶ Theorem 4.7. Let D ∈ {PSPACE, EXP}. D = BPP iff for each L ∈ D and for each verifier
V for L such that L has D-computable proofs with respect to V , succinct search is easy for L

with respect to V .
NEXP = BPP iff for each L ∈ NEXP and for each verifier V such that L has exponential-

size proofs with respect to V , succinct search is easy for L with respect to V .

Proof. The forward directions of both items follow from Lemma 4.4. The backward direction
of the second item follows Lemma 4.6. The backward direction of the first item follows
from Lemma 4.6 and the fact that for D ∈ {PSPACE, EXP}, if L ∈ D and V is a verifer
for L such that L has D-computable proofs with respect to V , then L ∈ NEXP and L has
exponential-size proofs with respect to V . ◀

We now prove Theorem 1.4. Define RKt as the language consisting of strings x such that
Kt(x) ≥ |x|/2. Similarly, RKS is the language consisting of strings x such that KS(x) ≥ |x|/2
[3] (see Appendix A.3 for formal definitions of Kt and KS complexity).

▶ Theorem 4.8 (Theorem 1.4 stated formally). RKt ∈ BPP iff for each verifier V for RKt such
that RKt has EXP-computable proofs with respect to V , succinct search is easy for RKt with
respect to V .

RKS ∈ BPP iff for each verifier V for RKS such that RKS has PSPACE-computable proofs
with respect to V , succinct search is easy for RKS with respect to V .

Proof. The backward directions of both items follow from Lemma 4.6 and the facts that
RKt and RKS are in NEXP.

For the forward direction of the first item, we use the result shown in [3] that RKt ∈ BPP
implies EXP = BPP. Combining this with the first item of Lemma 4.4 completes the proof.

For the forward direction of the second item, we use the theorem shown in [3] that
RKS ∈ BPP implies PSPACE = BPP. Combining this with the first item of Lemma 4.4
completes the proof. ◀
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A Preliminaries

Let F = {Fn}, where Fn is set of all Boolean functions over {0, 1}n, where each fn ∈ Fn is
a function fn : {0, 1}n → {0, 1}. Define tt(f) as the truth table of a function fn of length
2n. On the other hand, given a string x ∈ {0, 1}2n , define fn(x) as the function on n inputs
whose truth table is x. For every n ∈ N, define Un as the uniform distribution over {0, 1}n.

A.1 Samplability and Learnability
Let C = {Cn}, where Cn ⊆ Fn be a class of functions over {0, 1}n and D = {Dn} be a
distribution family over {0, 1}∗, where Dn is a distribution over {0, 1}n.

▶ Definition A.1 (Worst-case PAC-learning using random examples). For any 0 ≤ ϵ, δ < 1/2,
a class C is (ϵ, δ)-PAC-learnable in the worst-case using random examples in time T (n), if
there exists a randomized algorithm A such that

For every n ∈ N , for every f ∈ Cn, for every Dn over {0, 1}n, A takes inputs 1n, ϵ, δ, a
set of m = m(n) labeled samples (x1, f(x1)), . . . , (xm, f(xm)) where each xi ∼ Dn, and
w ∈ {0, 1}r(n) as internal randomness. A then outputs the description of a circuit h such
that

Pr
w∈{0,1}r(n),x1,...,xm∼Dn

{
Pr

y∈Dn

{h(y) = f(y)} ≥ 1 − ε

}
≥ 1 − δ

A runs in time at most T (n).11

We can also restrict the learnability to a fixed distribution like the uniform distribution Un,
where the learner takes random examples chosen over the uniform distribution and hypothesis
error is also measured over the uniform distribution. Unless specified otherwise, we use the
class of polynomial-sized Boolean circuits P/poly, as the hypothesis class for our learning
algorithms.

Furthermore, we can extend this definition to PAC-learning over membership queries
by giving the learner A oracle access to the function f ∈ Cn, in addition to the random
examples drawn from some fixed distribution Dn over {0, 1}n.

To define learnability on average, let P = {Pn} be a distribution ensemble over C, where
Pn is a fixed distribution over Cn.

▶ Definition A.2 (Samplable distributions). Let P be a distribution ensemble over C, where
for every n ∈ N, Pn is a distribution over the truth tables of Cn. Let N = 2n. For any
non-decreasing function S(N) ≥ N , we say that P is samplable in time S(N), if there exists
a randomized algorithm A such that for every N = 2n, using m(N) bits of randomness (where
m(N) ≤ S(N)), A(1N , y) is distributed identically to Pn, where the distribution is over the
string y picked uniformly at random from {0, 1}m(N) and A runs in time S(N).

In other words, if y is picked uniformly at random from {0, 1}m(N) then A(1N , y) outputs
a truth table from Cn which is distributed according to Pn. Furthermore, we say that P is
polynomially samplable if S(N) = poly(N).

▶ Remark A.3. For the special case where C is a class of fixed polynomial sized circuits like
SIZE[nk] (or SIZEEXP[nk]) for any arbitrary fixed k, we define a circuit representation scheme
for Cn given by the set Rn ⊂ {0, 1}r(n), where r(n) = O(nk log n), such that every σ ∈ Rn is

11 Note that this immediately implies that m(n) ≤ T (n)
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a C-circuit encoding of a function in Cn. Note that this mapping is onto and each function
in Cn has many representations in Rn. We also assume that there exists a uniform circuit
sequence in C, which interprets this encoding as a C-circuit and evaluates computations given
this encoding.

Now, we can define a distribution ensemble P over C, where each Pn is a distribution
over the C-circuit encodings, which implicitly defines a distribution over Cn. We also define
S(r(n))-samplability of P , if there exists a randomized algorithm A running in time S(r(n))
such that for every n ∈ N, A(1r(n), y) is distributed identically to Pn, where the distribution
is over the random strings y ∈ {0, 1}m(n).

▶ Definition A.4 (Average-case learnability [8]). Let C be a class of Boolean functions and
P = {Pn} be a distribution ensemble over C. For any 0 < ϵ, δ < 1/2, we say that C is
(ϵ, δ)-PAC-learnable on average using random examples with respect to P in time T (n), if
there exists a randomized algorithm A running in time at most T (n) such that

For every large enough n, for any fixed f drawn according to Pn, for every Dn over {0, 1}n,
A takes inputs 1n, ε, δ, a set of m = m(n) labeled samples (x1, f(x1)), . . . , (xm, f(xm))
where each xi ∼ Dn and w ∈ {0, 1}∗ (the internal randomness of A) and outputs the
description of a circuit h such that

Pr
f∼Pn

w∈{0,1}∗

x1,...,xm,y∼Dn

{
Pr

y∈Dn

{h(y) = f(y)} ≥ 1 − ε

}
≥ 1 − δ

A runs in time at most T (n).

Furthermore, for any 0 < ϵ, δ < 1/2, we say that C is (ϵ, δ)-PAC-learnable on average
with respect to polynomially samplable distributions over C using random examples in time
T (n) if there exists a learning algorithm A that runs in time T (n) such that for every
polynomially samplable distribution ensemble P over C, we have that for every large enough
n, A (ϵ, δ)-PAC-learns Cn on average using random examples with respect to Pn.

We can naturally extend this definition to average-case learning C with respect to P and a
fixed distribution over the examples like Un, as well as average-case PAC-learning C with
membership queries with respect to P.

A.2 Self-Reducibility
In our reductions, we use the following special properties of a function.

▶ Definition A.5 (Downward self-reducibility). A function fn : {0, 1}n → {0, 1} is downward-
self-reducible if there is a deterministic polynomial time algorithm A such that for all
x ∈ {0, 1}n, Afn−1(x) = fn(x).

▶ Definition A.6 (Self-Correctibility). A function f : {0, 1}n → {0, 1} is said to be self-
correctible if there exists a constant c ≥ 0 and a probabilistic polynomial-time algorithm A

such that, for every large enough n, for any function O : {0, 1}n → {0, 1} that agrees with fn

with probability (1 − 1/nc) over the uniform distribution on inputs of length n, we have that
Pr{AO(x) = fn(x)} ≥ 2/3 for any x ∈ {0, 1}n.

[7] show that any function f on n Boolean inputs can be transformed into a function f∗

on n inputs from a large enough finite field, such that f∗ coincides with f on the subset
{0, 1}n.
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▶ Theorem A.7 ([7]). There exists an EXP-Complete problem g∗ which is self-correctible.

Furthermore, Trevisan and Vadhan [38] construct a PSPACE-Complete problem which is
based on a careful arithmetization and padding of TQBF (using the interactive proof system
for PSPACE), which has both these properties.

▶ Theorem A.8 ([38]). There exists a PSPACE-Complete language f∗ ∈ DSPACE[n] that is
both self-correctible and downward self-reducible (DSR).

We also use the following results.

▶ Lemma A.9. If EXP ⊆ P/poly, then EXP = PSPACE. In particular, the function f∗ (from
Theorem A.8) is complete for EXP.

▶ Lemma A.10 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables
such that 0 ≤ Xi ≤ 1 for every i ∈ [n]. Let X =

∑n
i=1 Xi. Then, for any t > 0, we have

Pr{|X − E[X]| ≥ t} ≤ 2 exp(−2t2/n)

The following Lemma proves that a random function cannot even be approximated
bysmall-sized circuits and follows from an application of Lemma A.10.

▶ Lemma A.11 (Lemma 4 [36]). For any s(n) ≥ n and δ ∈ [0, 1/2], we have

Pr
f∼Fn

{∃ circuit of size ≤ s(n) computing f on ≥ (1/2 + δ)-fraction of the inputs}

≤ exp(−δ22n + 10s log s)

A.3 Kolmogorov Complexity
Fix a universal machine U . Levin [33] defined the following notion of time-bounded
Kolmogorov complexity: The Kt complexity of a string x is the minimum Kt(x) over
|p| + log(t) such that U(p) = x in at most t steps. it is known [2] that Kt(x) is polynomially
related to the size of the smallest EXP-oracle circuit computing the function with truth table
x (truncating x to its longest initial segment with length a power of two).

Similarly, KS(x) is the minimum over |p| + s such that U(p) = x in at most space s. It
is known [2] that KS(x) is polynomially related to the size of the smallest PSPACE-oracle
circuit computing the function with truth table x (truncating x to its longest initial segment
with length a power of two).

Let RKt be the language consisting of strings x such that Kt(x) ≥ |x|/2 [3]. Similarly, let
RKS be the language consisting of strings x such that KS(x) ≥ |x|/2 [3].

B Barriers for Conditional Hardness of Learning

Firstly, we formally define what it means to have a Black-Box Turing reduction from a
language L to a PAC-learning algorithm for a class C. Fix the error of the learner to be
ε = 1/poly(n) (we ignore the confidence parameter, but this only makes our hardness results
stronger).

▶ Definition B.1 (Turing Reduction to Learning C.). A B-adaptive black-box reduction from
deciding L to PAC-learning C using random examples up to error ε, is a tuple of probabilistic
polynomial time algorithms R = (T1, . . . , TB , M) where R is given an input z ∈ {0, 1}n

and randomness w ∈ {0, 1}∗. For each query, R constructs a joint distribution (X, f(X))
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over {0, 1}r × {0, 1} for some r ≤ n and f ∈ C, samples a set S = {(xi, yi)}i≤poly(n) of
independent labeled examples according to (X, Y ) and passes it to the learner. Let t(n) be the
query complexity of each round of adaptivity. R decides z by doing the following -

For each 1 ≤ j ≤ B, Tj gets input z, fresh random bits from w and all the (j − 1) ·
t(n) hypothesis circuits answered for the queries from the previous rounds (T1 only
has z and randomness w as input), and outputs t(n) new queries Sj1, . . . , Sjt for the
learner, each of which are sets of labeled examples sampled from joint distributions
(Xj1, Yj1), . . . , (Xjt, Yjt).
R only has oracle access to the learner.
M takes as input z, fresh random bits from w and the B · t(n) hypothesis circuits which
are the answers made by the learner for all the queries asked by T1, . . . , TB, and outputs
the answer.
The reduction guarantees that if for every oracle A that is a C-circuit learner, if every
hypothesis circuit returned by the learner is (1 − ε)-close with respect to its corresponding
query given to the learner by T1, . . . , TB, then M(z) = L(z) with high probability over the
internal randomness of the reduction R.

▶ Definition B.2. For any B-adaptive black-box reduction R = (T1, . . . , TB) from deciding L

to PAC-learning C using random examples up to error ε, we have
R is called strongly black-box, if T1, . . . , TB , M only have oracle access to the hypothesis
circuits and M decides L given access to any (1 − ε)-close hypothesis circuit answered to
each query made by T1, . . . , TB.
If B = 1, we call the reduction as non-adaptive, and if R is strongly black-box and M

also makes only non-adaptive queries to the hypotheses circuits, we call the reduction as
fully non-adaptive.
R is oblivious, if T1, . . . , TB output new queries using only fresh randomness from w as
input and access to the hypotheses generated during the previous rounds. Furthermore,
M accesses each hypothesis using non-adaptively generated, identically distributed queries
made from the corresponding distribution over which each hypothesis is guaranteed to be
a good approximation. In particular, the obliviousness of the reduction implies the fact
that the queries to the learner do not depend on the input z.

Unless mentioned we think of the query complexity t(n) = poly(n). It is worth to note
that since the algorithms T1, . . . , TB are polynomial time algorithms, each joint distribution
(X, Y ) must be efficiently samplable.

We first prove Lemma 1.5. This is a reformulation of the proof of Lemma 3.2 used to show
hardness of learning PSPACE/poly from a PSPACE-Complete language, into the framework
of a black-box reduction.

Proof of Lemma 1.5. This a readaptation of the proof of Corollary 1.3 (via Lemma 3.2).
Consider R = (T1, . . . , Tn, M) as an n-adaptive reduction from deciding f∗ to learning
PSPACE/poly using random examples over the uniform distribution, where T1, . . . , Tn, M are
probabilistic polynomial time algorithms which are defined as follows.

For every k ≤ n, Tk makes exactly one query to the learner which is the set of examples
Sk = {(xi, yi)}i≤poly(n) drawn from the joint distribution (Uk, f∗(Uk)), where Uk is the
uniform distribution over {0, 1}k. In the kth round of adaptivity, Tk only makes oracle
queries to the hypothesis hk−1 output in the last round. Indeed, let h′

k−1 be the oracle circuit
which uses hk−1 as an oracle in the self-corrector algorithm for f∗, and computes f∗ on all
k − 1 length inputs with high probability. It then outputs a set Sk of independent labeled
samples (xi, yi), where each xi is sampled uniformly at random from Uk and yi = f∗(xi)
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computed by using the downward self-reducibility of f∗ with h′
k−1. M takes the final

hypothesis hn output by the learner over n inputs and outputs the value of the self-corrector
of f∗ with the oracle hn. The correctness of R and the run-time analyses of T1, . . . , Tn, M

follow from the proof techniques of Lemma 3.2.
We next show that R has the required properties. As the self-corrector and the downward

self-reduction for f∗ work for any oracle which satisfy the appropriate constraints, R is
correct for any oracle which outputs any correct hypothesis for f∗ with respect to the
uniform distribution (over different input lengths). Further, it makes only oracle queries to
the learner, as well as to all the hypothesis circuits h1, . . . , hn. This makes the reduction
strongly black-box. By the property of the self-corrector, M only makes queries sampled
from Un to hn, which is the same as the query made to the learner. The obliviousness now
follows, since only f∗ is learnt in each query, irrespective of the choice of z. ◀

The main result of the section is the following.

▶ Theorem B.3. There exists a universal constant c > 0 such that the following holds. For
any language L, ε0 = 1/nc and any B = poly(n), if there exists an oblivious, B-adaptive,
strongly black-box reduction from L to PAC-learning NP/poly using random examples over
polynomially samplable distributions up to error ε0, then L ∈ AMpoly.

Recall that the class AMpoly refers to the class of languages recognized by constant-round
interactive protocols with advice, where we require proper acceptance/rejection probabilities
only when the advice is correct. [14] show that AMpoly = NP/poly. Using Theorem B.3 with
L = SAT, we get

▶ Corollary B.4. There exists a universal constant c > 0 such that the following holds. For
ε0 = 1/nc and any B = poly(n), if there exists an oblivious, B-adaptive, strongly black-box
reduction from deciding SAT to learning NP/poly using random examples from polynomially
samplable distributions up to error ε0, then coNP ⊆ NP/poly.

Corollary B.4 easily implies Theorem 1.6, since coNP ⊆ NP/poly implies that ΣP
3 = ΠP

3 [39].
▶ Remark B.5. In addition, we can also extend the proof to the case where M still makes
non-adaptive queries but is not constrained distributionally in its access to all the hypotheses,
by directly applying the techniques of [10] for the simulation of R in AMpoly.

The details of the proof of Theorem B.3 can be found in the full version (see Section 1.4
for a sketch).
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