1,539 research outputs found

    Perturbed Three Vortex Dynamics

    Full text link
    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated to completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half-plane, three coaxial slender vortex rings in three-space, and `restricted' four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser and Poincare-Birkhoff type arguments; and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.Comment: 26 pages, 9 figures, submitted to the Journal of Mathematical Physic

    The Hess-Appelrot system and its nonholonomic analogs

    Full text link
    This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of phase space) is discussed

    2D String Theory as Normal Matrix Model

    Full text link
    We show that the c=1c=1 bosonic string theory at finite temperature has two matrix-model realizations related by a kind of duality transformation. The first realization is the standard one given by the compactified matrix quantum mechanics in the inverted oscillator potential. The second realization, which we derive here, is given by the normal matrix model. Both matrix models exhibit the Toda integrable structure and are associated with two dual cycles (a compact and a non-compact one) of a complex curve with the topology of a sphere with two punctures. The equivalence of the two matrix models holds for an arbitrary tachyon perturbation and in all orders in the string coupling constant.Comment: lanlmac, 21 page

    An Exactly Solvable Model for the Integrability-Chaos Transition in Rough Quantum Billiards

    Full text link
    A central question of dynamics, largely open in the quantum case, is to what extent it erases a system's memory of its initial properties. Here we present a simple statistically solvable quantum model describing this memory loss across an integrability-chaos transition under a perturbation obeying no selection rules. From the perspective of quantum localization-delocalization on the lattice of quantum numbers, we are dealing with a situation where every lattice site is coupled to every other site with the same strength, on average. The model also rigorously justifies a similar set of relationships recently proposed in the context of two short-range-interacting ultracold atoms in a harmonic waveguide. Application of our model to an ensemble of uncorrelated impurities on a rectangular lattice gives good agreement with ab initio numerics.Comment: 29 pages, 5 figure
    corecore