32,325 research outputs found

    Likelihood-based Imprecise Regression

    Get PDF
    We introduce a new approach to regression with imprecisely observed data, combining likelihood inference with ideas from imprecise probability theory, and thereby taking different kinds of uncertainty into account. The approach is very general and applicable to various kinds of imprecise data, not only to intervals. In the present paper, we propose a regression method based on this approach, where no parametric distributional assumption is needed and interval estimates of quantiles of the error distribution are used to identify plausible descriptions of the relationship of interest. Therefore, the proposed regression method is very robust. We apply our robust regression method to an interesting question in the social sciences. The analysis, based on survey data, yields a relatively imprecise result, reflecting the high amount of uncertainty inherent in the analyzed data set

    Robust regression with imprecise data

    Get PDF
    We consider the problem of regression analysis with imprecise data. By imprecise data we mean imprecise observations of precise quantities in the form of sets of values. In this paper, we explore a recently introduced likelihood-based approach to regression with such data. The approach is very general, since it covers all kinds of imprecise data (i.e. not only intervals) and it is not restricted to linear regression. Its result consists of a set of functions, reflecting the entire uncertainty of the regression problem. Here we study in particular a robust special case of the likelihood-based imprecise regression, which can be interpreted as a generalization of the method of least median of squares. Moreover, we apply it to data from a social survey, and compare it with other approaches to regression with imprecise data. It turns out that the likelihood-based approach is the most generally applicable one and is the only approach accounting for multiple sources of uncertainty at the same time

    Binary credal classification under sparsity constraints.

    Get PDF
    Binary classification is a well known problem in statistics. Besides classical methods, several techniques such as the naive credal classifier (for categorical data) and imprecise logistic regression (for continuous data) have been proposed to handle sparse data. However, a convincing approach to the classification problem in high dimensional problems (i.e., when the number of attributes is larger than the number of observations) is yet to be explored in the context of imprecise probability. In this article, we propose a sensitivity analysis based on penalised logistic regression scheme that works as binary classifier for high dimensional cases. We use an approach based on a set of likelihood functions (i.e. an imprecise likelihood, if you like), that assigns a set of weights to the attributes, to ensure a robust selection of the important attributes, whilst training the model at the same time, all in one fell swoop. We do a sensitivity analysis on the weights of the penalty term resulting in a set of sparse constraints which helps to identify imprecision in the dataset

    On the implementation of LIR: the case of simple linear regression with interval data

    Get PDF
    This paper considers the problem of simple linear regression with interval-censored data. That is, n pairs of intervals are observed instead of the n pairs of precise values for the two variables (dependent and independent). Each of these intervals is closed but possibly unbounded, and contains the corresponding (unobserved) value of the dependent or independent variable. The goal of the regression is to describe the relationship between (the precise values of) these two variables by means of a linear function. Likelihood-based Imprecise Regression (LIR) is a recently introduced, very general approach to regression for imprecisely observed quantities. The result of a LIR analysis is in general set-valued: it consists of all regression functions that cannot be excluded on the basis of likelihood inference. These regression functions are said to be undominated. Since the interval data can be unbounded, a robust regression method is necessary. Hence, we consider the robust LIR method based on the minimization of the residuals' quantiles. For this method, we prove that the set of all the intercept-slope pairs corresponding to the undominated regression functions is the union of finitely many polygons. We give an exact algorithm for determining this set (i.e., for determining the set-valued result of the robust LIR analysis), and show that it has worst-case time complexity O(n^3 log n). We have implemented this exact algorithm as part of the R package linLIR

    On Sharp Identification Regions for Regression Under Interval Data

    Get PDF
    The reliable analysis of interval data (coarsened data) is one of the most promising applications of imprecise probabilities in statistics. If one refrains from making untestable, and often materially unjustified, strong assumptions on the coarsening process, then the empirical distribution of the data is imprecise, and statistical models are, in Manski’s terms, partially identified. We first elaborate some subtle differences between two natural ways of handling interval data in the dependent variable of regression models, distinguishing between two different types of identification regions, called Sharp Marrow Region (SMR) and Sharp Collection Region (SCR) here. Focusing on the case of linear regression analysis, we then derive some fundamental geometrical properties of SMR and SCR, allowing a comparison of the regions and providing some guidelines for their canonical construction. Relying on the algebraic framework of adjunctions of two mappings between partially ordered sets, we characterize SMR as a right adjoint and as the monotone kernel of a criterion function based mapping, while SCR is indeed interpretable as the corresponding monotone hull. Finally we sketch some ideas on a compromise between SMR and SCR based on a set-domained loss function. This paper is an extended version of a shorter paper with the same title, that is conditionally accepted for publication in the Proceedings of the Eighth International Symposium on Imprecise Probability: Theories and Applications. In the present paper we added proofs and the seventh chapter with a small Monte-Carlo-Illustration, that would have made the original paper too long

    Bayesian Linear Regression

    Get PDF
    The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when observed data are rather unexpected under the prior (and the sample size is not large enough to eliminate the influence of the prior). Two approaches for Bayesian linear regression modeling based on conjugate priors are considered in detail, namely the standard approach also described in Fahrmeir, Kneib & Lang (2007) and an alternative adoption of the general construction procedure for exponential family sampling models. We recognize that - in contrast to some standard i.i.d. models like the scaled normal model and the Beta-Binomial / Dirichlet-Multinomial model, where prior-data conflict is completely ignored - the models may show some reaction to prior-data conflict, however in a rather unspecific way. Finally we briefly sketch the extension to a corresponding imprecise probability model, where, by considering sets of prior distributions instead of a single prior, prior-data conflict can be handled in a very appealing and intuitive way

    Logistic regression on Markov chains for crop rotation modelling.

    Get PDF
    Often, in dynamical systems, such as farmer's crop choices, the dynamics is driven by external non-stationary factors, such as rainfall, temperature, and economy. Such dynamics can be modelled by a non-stationary Markov chain, where the transition probabilities are logistic functions of such external factors. We investigate the problem of estimating the parameters of the logistic model from data, using conjugate analysis with a fairly broad class of priors, to accommodate scarcity of data and lack of strong prior expert opinions. We show how maximum likelihood methods can be used to get bounds on the posterior mode of the parameters

    Statistical modelling under epistemic data imprecision : some results on estimating multinomial distributions and logistic regression for coarse categorical data

    Get PDF
    Paper presented at 9th International Symposium on Imprecise Probability: Theories and Applications, Pescara, Italy, 2015. Abstract: The paper deals with parameter estimation for categorical data under epistemic data imprecision, where for a part of the data only coarse(ned) versions of the true values are observable. For different observation models formalizing the information available on the coarsening process, we derive the (typically set-valued) maximum likelihood estimators of the underlying distributions. We discuss the homogeneous case of independent and identically distributed variables as well as logistic regression under a categorical covariate. We start with the imprecise point estimator under an observation model describing the coarsening process without any further assumptions. Then we determine several sensitivity parameters that allow the refinement of the estimators in the presence of auxiliary information
    corecore