72,837 research outputs found

    Confidence Intervals and Prediction Intervals for Feed-Forward Neural Networks

    Get PDF
    The chapter opens with an introduction to regression and its implementation within the maximum-likelihood framework. This is followed by a general introduction to classical confidence intervals and prediction intervals. We set the scene by first considering confidence and prediction intervals based on univariate samples, and then we progress to regarding these intervals in the context of linear regression and logistic regression. Since a feed-forward neural network is a type of regression model, the concepts of confidence and prediction intervals are applicable to these networks, and we look at several techniques for doing this via maximum-likelihood estimation. An alternative to the maximum-likelihood framework is Bayesian statistics, and we examine the notions of Bayesian confidence and predictions intervals as applied to feed-forward networks. This includes a critique on Bayesian confidence intervals and classification

    Dropout Inference in Bayesian Neural Networks with Alpha-divergences

    Full text link
    To obtain uncertainty estimates with real-world Bayesian deep learning models, practical inference approximations are needed. Dropout variational inference (VI) for example has been used for machine vision and medical applications, but VI can severely underestimates model uncertainty. Alpha-divergences are alternative divergences to VI's KL objective, which are able to avoid VI's uncertainty underestimation. But these are hard to use in practice: existing techniques can only use Gaussian approximating distributions, and require existing models to be changed radically, thus are of limited use for practitioners. We propose a re-parametrisation of the alpha-divergence objectives, deriving a simple inference technique which, together with dropout, can be easily implemented with existing models by simply changing the loss of the model. We demonstrate improved uncertainty estimates and accuracy compared to VI in dropout networks. We study our model's epistemic uncertainty far away from the data using adversarial images, showing that these can be distinguished from non-adversarial images by examining our model's uncertainty

    Bayesian network-based over-sampling method (BOSME) with application to indirect cost-sensitive learning

    Get PDF
    Traditional supervised learning algorithms do not satisfactorily solve the classification problem on imbalanced data sets, since they tend to assign the majority class, to the detriment of the minority class classification. In this paper, we introduce the Bayesian network-based over-sampling method (BOSME), which is a new over-sampling methodology based on Bayesian networks. Over-sampling methods handle imbalanced data by generating synthetic minority instances, with the benefit that classifiers learned from a more balanced data set have a better ability to predict the minority class. What makes BOSME different is that it relies on a new approach, generating artificial instances of the minority class following the probability distribution of a Bayesian network that is learned from the original minority classes by likelihood maximization. We compare BOSME with the benchmark synthetic minority over-sampling technique (SMOTE) through a series of experiments in the context of indirect cost-sensitive learning, with some state-of-the-art classifiers and various data sets, showing statistical evidence in favor of BOSME, with respect to the expected (misclassification) cost.The authors are supported by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, project ref. PGC2018-097848-B-I0

    Conditional probability estimation

    Get PDF
    This paper studies in particular an aspect of the estimation of conditional probability distributions by maximum likelihood that seems to have been overlooked in the literature on Bayesian networks: The information conveyed by the conditioning event should be included in the likelihood function as well
    • …
    corecore