6,290 research outputs found

    EgoFace: Egocentric Face Performance Capture and Videorealistic Reenactment

    No full text
    Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Using humanoid robots to study human behavior

    Get PDF
    Our understanding of human behavior advances as our humanoid robotics work progresses-and vice versa. This team's work focuses on trajectory formation and planning, learning from demonstration, oculomotor control and interactive behaviors. They are programming robotic behavior based on how we humans “program” behavior in-or train-each other

    FaceVR: Real-Time Facial Reenactment and Eye Gaze Control in Virtual Reality

    No full text
    We introduce FaceVR, a novel method for gaze-aware facial reenactment in the Virtual Reality (VR) context. The key component of FaceVR is a robust algorithm to perform real-time facial motion capture of an actor who is wearing a head-mounted display (HMD), as well as a new data-driven approach for eye tracking from monocular videos. In addition to these face reconstruction components, FaceVR incorporates photo-realistic re-rendering in real time, thus allowing artificial modifications of face and eye appearances. For instance, we can alter facial expressions, change gaze directions, or remove the VR goggles in realistic re-renderings. In a live setup with a source and a target actor, we apply these newly-introduced algorithmic components. We assume that the source actor is wearing a VR device, and we capture his facial expressions and eye movement in real-time. For the target video, we mimic a similar tracking process; however, we use the source input to drive the animations of the target video, thus enabling gaze-aware facial reenactment. To render the modified target video on a stereo display, we augment our capture and reconstruction process with stereo data. In the end, FaceVR produces compelling results for a variety of applications, such as gaze-aware facial reenactment, reenactment in virtual reality, removal of VR goggles, and re-targeting of somebody's gaze direction in a video conferencing call

    Digitally interpreting traditional folk crafts

    Get PDF
    The cultural heritage preservation requires that objects persist throughout time to continue to communicate an intended meaning. The necessity of computer-based preservation and interpretation of traditional folk crafts is validated by the decreasing number of masters, fading technologies, and crafts losing economic ground. We present a long-term applied research project on the development of a mathematical basis, software tools, and technology for application of desktop or personal fabrication using compact, cheap, and environmentally friendly fabrication devices, including '3D printers', in traditional crafts. We illustrate the properties of this new modeling and fabrication system using several case studies involving the digital capture of traditional objects and craft patterns, which we also reuse in modern designs. The test application areas for the development are traditional crafts from different cultural backgrounds, namely Japanese lacquer ware and Norwegian carvings. Our project includes modeling existing artifacts, Web presentations of the models, automation of the models fabrication, and the experimental manufacturing of new designs and forms

    Parameter Efficient Local Implicit Image Function Network for Face Segmentation

    Full text link
    Face parsing is defined as the per-pixel labeling of images containing human faces. The labels are defined to identify key facial regions like eyes, lips, nose, hair, etc. In this work, we make use of the structural consistency of the human face to propose a lightweight face-parsing method using a Local Implicit Function network, FP-LIIF. We propose a simple architecture having a convolutional encoder and a pixel MLP decoder that uses 1/26th number of parameters compared to the state-of-the-art models and yet matches or outperforms state-of-the-art models on multiple datasets, like CelebAMask-HQ and LaPa. We do not use any pretraining, and compared to other works, our network can also generate segmentation at different resolutions without any changes in the input resolution. This work enables the use of facial segmentation on low-compute or low-bandwidth devices because of its higher FPS and smaller model size.Comment: Accepted at CVPR 202

    Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz

    Full text link
    The reconstruction of dense 3D models of face geometry and appearance from a single image is highly challenging and ill-posed. To constrain the problem, many approaches rely on strong priors, such as parametric face models learned from limited 3D scan data. However, prior models restrict generalization of the true diversity in facial geometry, skin reflectance and illumination. To alleviate this problem, we present the first approach that jointly learns 1) a regressor for face shape, expression, reflectance and illumination on the basis of 2) a concurrently learned parametric face model. Our multi-level face model combines the advantage of 3D Morphable Models for regularization with the out-of-space generalization of a learned corrective space. We train end-to-end on in-the-wild images without dense annotations by fusing a convolutional encoder with a differentiable expert-designed renderer and a self-supervised training loss, both defined at multiple detail levels. Our approach compares favorably to the state-of-the-art in terms of reconstruction quality, better generalizes to real world faces, and runs at over 250 Hz.Comment: CVPR 2018 (Oral). Project webpage: https://gvv.mpi-inf.mpg.de/projects/FML
    • 

    corecore