2 research outputs found

    Lightweight authenticated encryption for embedded on-chip systems

    No full text
    Summarization: Embedded systems are routinely deployed in critical infrastructures nowadays, therefore their security is increasingly important. This, combined with the pressing requirement of deploying massive numbers of low-cost and low-energy embedded devices, stimulates the evolution of lightweight cryptography and other green-computing security mechanisms. New crypto-primitives are being proposed that offer moderate security and produce compact implementations. In this article, we present a lightweight authenticated encryption scheme based on the integrated hardware implementation of the lightweight block cipher PRESENT and the lightweight hash function SPONGENT. The presented combination of a cipher and a hash function is appropriate for implementing authenticated encryption schemes that are commonly utilized in one-way and mutual authentication protocols. We exploit their inner structure to discover hardware elements usable by both primitives, thus reducing the circuit’s size. The integrated versions demonstrate a 27% reduction in hardware area compared to the simple combination of the two primitives. The resulting solution is ported on a field-programmable gate array (FPGA) and a complete security application with input/output from a universal asynchronous receiver/transmitter (UART) gate is created. In comparison with similar implementations in hardware and software, the proposed scheme represents a better overall status.Παρουσιάστηκε στο: Information Security Journa
    corecore