85 research outputs found

    Towards Personalized Healthcare in Cardiac Population: The Development of a Wearable ECG Monitoring System, an ECG Lossy Compression Schema, and a ResNet-Based AF Detector

    Full text link
    Cardiovascular diseases (CVDs) are the number one cause of death worldwide. While there is growing evidence that the atrial fibrillation (AF) has strong associations with various CVDs, this heart arrhythmia is usually diagnosed using electrocardiography (ECG) which is a risk-free, non-intrusive, and cost-efficient tool. Continuously and remotely monitoring the subjects' ECG information unlocks the potentials of prompt pre-diagnosis and timely pre-treatment of AF before the development of any life-threatening conditions/diseases. Ultimately, the CVDs associated mortality could be reduced. In this manuscript, the design and implementation of a personalized healthcare system embodying a wearable ECG device, a mobile application, and a back-end server are presented. This system continuously monitors the users' ECG information to provide personalized health warnings/feedbacks. The users are able to communicate with their paired health advisors through this system for remote diagnoses, interventions, etc. The implemented wearable ECG devices have been evaluated and showed excellent intra-consistency (CVRMS=5.5%), acceptable inter-consistency (CVRMS=12.1%), and negligible RR-interval errors (ARE<1.4%). To boost the battery life of the wearable devices, a lossy compression schema utilizing the quasi-periodic feature of ECG signals to achieve compression was proposed. Compared to the recognized schemata, it outperformed the others in terms of compression efficiency and distortion, and achieved at least 2x of CR at a certain PRD or RMSE for ECG signals from the MIT-BIH database. To enable automated AF diagnosis/screening in the proposed system, a ResNet-based AF detector was developed. For the ECG records from the 2017 PhysioNet CinC challenge, this AF detector obtained an average testing F1=85.10% and a best testing F1=87.31%, outperforming the state-of-the-art

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    A Framework for Remote Patient Monitoring to Diagnose the Cardiac Disorders

    Get PDF
    Electrocardiogram (ECG) is an efficient diagnostic tool to monitor the electrical activity of heart. One of the most vital benefit of using telecommunication technologies in medical field is to provide cardiac health care at a distance. Telecardiology is the most efficient way to provide faster and affordable health care for the cardiac patients located at rural areas. Early detection of cardiac disorders can minimize cardiac death rates. In real time monitoring process, ECG data from a patient usually takes large storage space in the order of gigabytes (GB). Hence, compression of bulky ECG signal is a common requirement for faster transmission of cardiac signals using wireless technologies. Several techniques such as the Fourier transform based methods, wavelet transform based methods, etc., have been reported for compression of ECG data. Though Fourier transform is suitable for analyzing the stationary signals. An improved version, the wavelet transform allows the analysis of non-stationary signal. It provides a uniform resolution for all the scales, however, wavelet transform faces difficulties like uniformly poor resolution due to limited size of the basic wavelet function and it is nonadaptive in nature. A data adaptive method to analyse non-stationary signal is based on empirical mode decomposition (EMD), where the bases are derived from the multivariate data which are nonlinear and non-stationary. A new ECG signal compression technique based on EMD is proposed, in which first EMD technique is applied to decompose the ECG signal into several intrinsic mode functions (IMFs). Next, downsampling, discrete cosine transform (DCT), window filtering and Huffman encoding processes are used sequentially to compress the ECG signal. The compressed ECG is then transmitted as short messageservice (SMS) message using a global system for mobile communications (GSM) modem. First the AT-command ‘+CMGF’ is used to set the SMS to text mode. Next, the GSM modem uses the AT-command ‘+CMGS’ to send a SMS message. The received text SMS messages are transferred to a personal computer (PC) using blue-tooth. All text SMS messages are combined in PC as per the received sequence and fed as data input to decompress the compressed ECG data. The decompression method which is used to reconstruct the original ECG signal consists of Huffman decoding, inverse discrete cosine transform (IDCT) and spline interpolation. The performance of the compression and decompression techniques are evaluated in terms of compression ratio (CR) and percent root mean square difference (PRD) respectively by using both European ST-T database and Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. The average values of CR and PRD for selected ECG records of European ST-T database are found to be 23.5:1 and 1.38 respectively. All 48 ECG records of MIT-BIH arrhythmia database are used for comparison purpose and the average values of CR and PRD are found to be 23.74:1 and 1.49 respectively. The reconstructed ECG signal is then used for detection of cardiac disorders like bradycardia, tachycardia and ischemia. The preprocessing stage of the detection technique filters the normalized signal to reduce noise components and detects the QRS-complexes. Next, ECG feature extraction, ischemic beat classification and ischemic episode detection processes are applied sequentially to the filtered ECG by using rule based medical knowledge. The ST-segment and T-wave are the two features generally used for ischemic beat classification. As per the recommendation of ESC (European Society of cardiology) the ischemic episode detection procedure considers minimum 30s duration of signal. The performance of the ischemic episode detection technique is evaluated in terms of sensitivity (Se) and positive predictive accuracy (PPA) by using European ST-T database. This technique achieves an average Se and PPA of 83.08% and 92.42% respectively

    Sixth Biennial Report : August 2001 - May 2003

    No full text
    corecore