60 research outputs found

    Lightweight MDS Generalized Circulant Matrices (Full Version)

    Get PDF
    In this article, we analyze the circulant structure of generalized circulant matrices to reduce the search space for finding lightweight MDS matrices. We first show that the implementation of circulant matrices can be serialized and can achieve similar area requirement and clock cycle performance as a serial-based implementation. By proving many new properties and equivalence classes for circulant matrices, we greatly reduce the search space for finding lightweight maximum distance separable (MDS) circulant matrices. We also generalize the circulant structure and propose a new class of matrices, called cyclic matrices, which preserve the benefits of circulant matrices and, in addition, have the potential of being self-invertible. In this new class of matrices, we obtain not only the MDS matrices with the least XOR gates requirement for dimensions from 3x3 to 8x8 in GF(2^4) and GF(2^8), but also involutory MDS matrices which was proven to be non-existence in the class of circulant matrices. To the best of our knowledge, the latter matrices are the first of its kind, which have a similar matrix structure as circulant matrices and are involutory and MDS simultaneously. Compared to the existing best known lightweight matrices, our new candidates either outperform or match them in terms of XOR gates required for a hardware implementation. Notably, our work is generic and independent of the metric for lightweight. Hence, our work is applicable for improving the search for efficient circulant matrices under other metrics besides XOR gates

    On the Construction of Near-MDS Matrices

    Full text link
    The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order n≥4n\geq 4 with fixed XOR value of 1 cannot be an NMDS when raised to a power of k≤nk\leq n. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order n>4n>4 cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over F24\mathbb{F}_{2^4}, respectively

    Lifted MDS Codes over Finite Fields

    Full text link
    MDS codes are elegant constructions in coding theory and have mode important applications in cryptography, network coding, distributed data storage, communication systems et. In this study, a method is given which MDS codes are lifted to a higher finite field. The presented method satisfies the protection of the distance and creating the MDS code over the FqF_q by using MDS code over $F_p.

    On Circulant-Like Rhotrices over Finite Fields

    Get PDF
    Circulant matrices over finite fields are widely used in cryptographic hash functions, Lattice based cryptographic functions and Advanced Encryption Standard (AES). Maximum distance separable codes over finite field GF2 have vital a role for error control in both digital communication and storage systems whereas maximum distance separable matrices over finite field GF2 are used in block ciphers due to their properties of diffusion. Rhotrices are represented in the form of coupled matrices. In the present paper, we discuss the circulant- like rhotrices and then construct the maximum distance separable rhotrices over finite fields

    Construction of generalized-involutory MDS matrices

    Get PDF
    Maximum Distance Separable (MDS) matrices are usually used to be diffusion layers in cryptographic designs. The main advantage of involutory MDS matrices lies in that both encryption and decryption share the same matrix-vector product. In this paper, we present a new type of MDS matrices called generalized-involutory MDS matrices, implementation of whose inverse matrix-vector products in decryption is the combination of the matrix-vector products in encryption plus a few extra XOR gates. For the purpose of verifying the existence of such matrices, we found 4 × 4 Hadamard generalized-involutory MDS matrix over GF(24) consuming as little as 38 XOR gates with 4 additional XOR gates for inverse matrix, while the best previous single-clock implementation in IWSEC 2019 needs 46 XOR gates with 51 XOR gates for inverse matrix. For GF(28), our results also beat the best previous records in ToSC 2017

    A reduced set of submatrices for a faster evaluation of the MDS property of a circulant matrix with entries that are powers of two

    Get PDF
    In this paper a reduced set of submatrices for a faster evaluation of the MDS property of a circulant matrix, with entries that are powers of two, is proposed. A proposition is made that under the condition that all entries of a t × t circulant matrix are powers of 2, it is sufficient to check only its 2x2 submatrices in order to evaluate the MDS property in a prime field. Although there is no theoretical proof to support this proposition at this point, the experimental results conducted on a sample of 100 thousand randomly generated matrices indicate that this proposition is true. There are benefits of the proposed MDS test on the efficiency of search methods for the generation of circulant MDS matrices, regardless of the correctness of this proposition. However, if this proposition is correct, its impact on the speed of search methods for circulant MDS matrices will be huge, which will enable generation of MDS matrices of large sizes. Also, a modified version of the make_binary_powers function is presented. Based on this modified function and the proposed MDS test, some examples of efficient 16 x 16 MDS matrices are presented. Also, an examples of efficient 24 x 24 matrices are generated, whose MDS property should be further validated

    Direct Construction of Lightweight Rotational-XOR MDS Diffusion Layers

    Get PDF
    As a core component of Substitution-Permutation Networks, diffusion layer is mainly introduced by matrices from maximum distance separable (MDS) codes. Surprisingly, up to now, most constructions of MDS matrices require to perform an equivalent or even exhaustive search. Especially, not many MDS proposals are known that obtain an excellent hardware efficiency and simultaneously guarantee a remarkable software implementation. In this paper, we study the cyclic structure of rotational-XOR diffusion layer, one of the commonly used linear layers over (F2b)n{(\mathbb{F}_{\rm{2}}^b)^n}, which consists of only rotation and XOR operations. First, we provide novel properties on this class of matrices, and prove the a lower bound on the number of rotations for n≥4n \ge 4 and show the tightness of the bound for n=4n=4. Next, by precisely characterizing the relation among sub-matrices for each possible form, we can eliminate all the other non-optimal cases. Finally, we present a direct construction of such MDS matrices, which allows to generate 4×44 \times 4 perfect instances for arbitrary b≥4b \ge 4. Every example contains the fewest possible rotations, so under this construction strategy, our proposal costs the minimum gate equivalents (resp. cyclic shift instructions) in the hardware (resp. software) implementation. To the best of our knowledge, it is the first time that rotational-XOR MDS diffusion layers have been constructed without any auxiliary search

    Matriks Maximum Distance Separable Hadamard atas Lapangan Berhingga Zq

    Get PDF
    Dalam hal menyamarkan suatu data bisa terjadi suatu kesalahan, sehingga untuk menghindari hal tersebut digunakan kode pengoreksi kesalahan. Kode MDS (Maximum Distance Separable) dapat digunakan untuk mengoreksi suatu kesalahan dengan matriks generator yang terdiri dari matriks identitas dan suatu matriks A, dimana matriks A merupakan matriks MDS. Suatu matriks dikatakan MDS jika dan hanya jika setiap submatriks bujursangkar memiliki determinan yang tak nol. Dalam penelitian ini digunakan tipe matriks MDS Hadamard atas lapangan berhingga  dimana . Matriks Hadamard atas lapangan berhingga dapat menghemat penggunaan memori sehingga menjadi lebih efisien. Berdasarkan hasil penelitian, dapat disimpulkan tidak ada matriks MDS Hadamard berukuran  atas lapangan berhingga  di mana  sehingga tidak dapat digunakan pada matriks generator karena tidak akan menghasilkan performa kode yang optimal untuk mengoreksi suatu kesalahan

    Lightweight MDS Serial-type Matrices with Minimal Fixed XOR Count (Full version)

    Get PDF
    Many block ciphers and hash functions require the diffusion property of Maximum Distance Separable (MDS) matrices. Serial matrices with the MDS property obtain a trade-off between area requirement and clock cycle performance to meet the needs of lightweight cryptography. In this paper, we propose a new class of serial-type matrices called Diagonal-Serial Invertible (DSI) matrices with the sparse property. These matrices have a fixed XOR count (contributed by the connecting XORs) which is half that of existing matrices. We prove that for matrices of order 4, our construction gives the matrix with the lowest possible fixed XOR cost. We also introduce the Reversible Implementation (RI) property, which allows the inverse matrix to be implemented using the similar hardware resource as the forward matrix, even when the two matrices have different finite field entries. This allows us to search for serial-type matrices which are lightweight in both directions by just focusing on the forward direction. We obtain MDS matrices which outperform existing lightweight (involutory) matrices
    • …
    corecore