331 research outputs found

    Implementation and Analysis of Communication Protocols in Internet of Things

    Full text link
    Internet of Things (IoT) is the future of all the present-day devices around the globe. Giving them internet connectivity makes IoT the next frontier of technology. Possibilities are limitless as the devices communicate and interact with each other which make it even more interesting for the global markets. For example, Rolls-Royce announced that it would use the Microsoft Azure IoT suite and also the Intelligence suite of Cortana to keep track of the fuel usage, for performance analysis, to optimize the fly routes etc. which improves the airline efficiency. The devices must communicate with each other, the data from these devices must be collected by the servers, and the data is then analyzed or provided to the people. For all this to happen, there is a need for efficient protocols to ensure that the communication is secure and to avoid loss of data. This research is about the implementation and analysis of various protocols that can be used for the communication in IoT. Various protocols with various capabilities are required for different environments. The internet today supports hundreds of protocols from which choosing the best would be a great challenge. But each protocol is different in its own way when we have the specifics like security, reliability, range of communication etc. This research emphasizes on the best available protocols and the environments that suit them the most. It provides an implementation of some of the protocols and analyzes the protocols according to the results obtained. The data collected from the sensors/devices through a protocol is also subject to predictive analysis which improves the scope of the project to performing data analysis on the data collected through IoT

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    A Pervasive Computational Intelligence based Cognitive Security Co-design Framework for Hype-connected Embedded Industrial IoT

    Get PDF
    The amplified connectivity of routine IoT entities can expose various security trajectories for cybercriminals to execute malevolent attacks. These dangers are even amplified by the source limitations and heterogeneity of low-budget IoT/IIoT nodes, which create existing multitude-centered and fixed perimeter-oriented security tools inappropriate for vibrant IoT settings. The offered emulation assessment exemplifies the remunerations of implementing context aware co-design oriented cognitive security method in assimilated IIoT settings and delivers exciting understandings in the strategy execution to drive forthcoming study. The innovative features of our system is in its capability to get by with irregular system connectivity as well as node limitations in terms of scares computational ability, limited buffer (at edge node), and finite energy. Based on real-time analytical data, projected scheme select the paramount probable end-to-end security system possibility that ties with an agreed set of node constraints. The paper achieves its goals by recognizing some gaps in the security explicit to node subclass that is vital to our system’s operations

    IoMT Malware Detection Approaches: Analysis and Research Challenges

    Get PDF
    The advancement in Information and Communications Technology (ICT) has changed the entire paradigm of computing. Because of such advancement, we have new types of computing and communication environments, for example, Internet of Things (IoT) that is a collection of smart IoT devices. The Internet of Medical Things (IoMT) is a specific type of IoT communication environment which deals with communication through the smart healthcare (medical) devices. Though IoT communication environment facilitates and supports our day-to-day activities, but at the same time it has also certain drawbacks as it suffers from several security and privacy issues, such as replay, man-in-the-middle, impersonation, privileged-insider, remote hijacking, password guessing and denial of service (DoS) attacks, and malware attacks. Among these attacks, the attacks which are performed through the malware botnet (i.e., Mirai) are the malignant attacks. The existence of malware botnets leads to attacks on confidentiality, integrity, authenticity and availability of the data and other resources of the system. In presence of such attacks, the sensitive data of IoT communication may be disclosed, altered or even may not be available to the authorized users. Therefore, it becomes essential to protect the IoT/IoMT environment from malware attacks. In this review paper, we first perform the study of various types of malware attacks, and their symptoms. We also discuss some architectures of IoT environment along with their applications. Next, a taxonomy of security protocols in IoT environment is provided. Moreover, we conduct a comparative study on various existing schemes for malware detection and prevention in IoT environment. Finally, some future research challenges and directions of malware detection in IoT/IoMT environment are highlighted

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-
    corecore