7,705 research outputs found

    Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems

    Get PDF
    This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliablility are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an `expert system' that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the Real-Time Embedded Systems group.Comment: 2nd Workshop on Engineering of Autonomic Systems (EASe), in the 12th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS), Washington, DC, April, 200

    Lightweight Asynchronous Snapshots for Distributed Dataflows

    Full text link
    Distributed stateful stream processing enables the deployment and execution of large scale continuous computations in the cloud, targeting both low latency and high throughput. One of the most fundamental challenges of this paradigm is providing processing guarantees under potential failures. Existing approaches rely on periodic global state snapshots that can be used for failure recovery. Those approaches suffer from two main drawbacks. First, they often stall the overall computation which impacts ingestion. Second, they eagerly persist all records in transit along with the operation states which results in larger snapshots than required. In this work we propose Asynchronous Barrier Snapshotting (ABS), a lightweight algorithm suited for modern dataflow execution engines that minimises space requirements. ABS persists only operator states on acyclic execution topologies while keeping a minimal record log on cyclic dataflows. We implemented ABS on Apache Flink, a distributed analytics engine that supports stateful stream processing. Our evaluation shows that our algorithm does not have a heavy impact on the execution, maintaining linear scalability and performing well with frequent snapshots.Comment: 8 pages, 7 figure
    • …
    corecore