1,999 research outputs found

    Detecting Drive-by-Download Attacks based on HTTP Context-Types

    Get PDF
    Recently, Drive-by-Download attacks have been prevailing. A user’s PC may be infected with a malware derived from tampered web pages. Malicious attackers easily construct Drive-by-Download websites using a software tool, called Exploit Kit. This paper proposes a new method for detecting Drive-by-Download attacks and preventing download of malwares. Our method is based on fine-grained analysis of Drive-by-Download attacks based on HTTP Context-Types. We also evaluate a new detection method for detecting Drive-by-Download attacks, whose effectiveness is proved by the experimental results

    FraudDroid: Automated Ad Fraud Detection for Android Apps

    Get PDF
    Although mobile ad frauds have been widespread, state-of-the-art approaches in the literature have mainly focused on detecting the so-called static placement frauds, where only a single UI state is involved and can be identified based on static information such as the size or location of ad views. Other types of fraud exist that involve multiple UI states and are performed dynamically while users interact with the app. Such dynamic interaction frauds, although now widely spread in apps, have not yet been explored nor addressed in the literature. In this work, we investigate a wide range of mobile ad frauds to provide a comprehensive taxonomy to the research community. We then propose, FraudDroid, a novel hybrid approach to detect ad frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI state transition graphs and collects their associated runtime network traffics, which are then leveraged to check against a set of heuristic-based rules for identifying ad fraudulent behaviours. We show empirically that FraudDroid detects ad frauds with a high precision (93%) and recall (92%). Experimental results further show that FraudDroid is capable of detecting ad frauds across the spectrum of fraud types. By analysing 12,000 ad-supported Android apps, FraudDroid identified 335 cases of fraud associated with 20 ad networks that are further confirmed to be true positive results and are shared with our fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure

    Wireless and Physical Security via Embedded Sensor Networks

    Full text link
    Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CIES/CNS 0520166, CNS/ITR 0205294, CISE/ERA RI 0202067

    Malware detection with artificial intelligence: A systematic literature review

    Get PDF
    In this survey, we review the key developments in the field of malware detection using AI and analyze core challenges. We systematically survey state-of-the-art methods across five critical aspects of building an accurate and robust AI-powered malware-detection model: malware sophistication, analysis techniques, malware repositories, feature selection, and machine learning vs. deep learning. The effectiveness of an AI model is dependent on the quality of the features it is trained with. In turn, the quality and authenticity of these features is dependent on the quality of the dataset and the suitability of the analysis tool. Static analysis is fast but is limited by the widespread use of obfuscation. Dynamic analysis is not impacted by obfuscation but is defeated by ubiquitous anti-analysis techniques and requires more computational power. Sophisticated and evasive malware is challenging to extract authentic discriminatory features from and, combined with poor quality datasets, this can lead to a situation where a model achieves high accuracy with only one specific dataset

    Intelligent multi-agent system for intrusion detection and countermeasures

    Get PDF
    Intelligent mobile agent systems offer a new approach to implementing intrusion detection systems (IDS). The prototype intrusion detection system, MAIDS, demonstrates the benefits of an agent-based IDS, including distributing the computational effort, reducing the amount of information sent over the network, platform independence, asynchronous operation, and modularity offering ease of updates. Anomaly detection agents use machine learning techniques to detect intrusions; one such agent processes streams of system calls from privileged processes. Misuse detection agents match known problems and correlate events to detect intrusions. Agents report intrusions to other agents and to the system administrator through the graphical user interface (GUI);A sound basis has been created for the intrusion detection system. Intrusions have been modeled using the Software Fault Tree Analysis (SFTA) technique; when augmented with constraint nodes describing trust, contextual, and temporal relationships, the SFTA forms a basis for stating the requirements of the intrusion detection system. Colored Petri Nets (CPN) have been created to model the design of the Intrusion Detection System. Algorithmic transformations are used to create CPN templates from augmented SFT and to create implementation templates from CPNs. The implementation maintains the CPN semantics in the distributed agent-based intrusion detection system

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    Defending Browsers against Drive-by Downloads: Mitigating Heap-Spraying Code Injection Attacks

    Full text link
    Abstract. Drive-by download attacks are among the most common methods for spreading malware today. These attacks typically exploit memory corruption vul-nerabilities in web browsers and browser plug-ins to execute shellcode, and in consequence, gain control of a victim’s computer. Compromised machines are then used to carry out various malicious activities, such as joining botnets, send-ing spam emails, or participating in distributed denial of service attacks. To counter drive-by downloads, we propose a technique that relies on x86 instruc-tion emulation to identify JavaScript string buffers that contain shellcode. Our de-tection is integrated into the browser, and performed before control is transfered to the shellcode, thus, effectively thwarting the attack. The solution maintains fair performance by avoiding unnecessary invocations of the emulator, while ensur-ing that every buffer with potential shellcode is checked. We have implemented a prototype of our system, and evaluated it over thousands of malicious and le-gitimate web sites. Our results demonstrate that the system performs accurate detection with no false positives

    InSight2: An Interactive Web Based Platform for Modeling and Analysis of Large Scale Argus Network Flow Data

    Get PDF
    Monitoring systems are paramount to the proactive detection and mitigation of problems in computer networks related to performance and security. Degraded performance and compromised end-nodes can cost computer networks downtime, data loss and reputation. InSight2 is a platform that models, analyzes and visualizes large scale Argus network flow data using up-to-date geographical data, organizational information, and emerging threats. It is engineered to meet the needs of network administrators with flexibility and modularity in mind. Scalability is ensured by devising multi-core processing by implementing robust software architecture. Extendibility is achieved by enabling the end user to enrich flow records using additional user provided databases. Deployment is streamlined by providing an automated installation script. State-of-the-art visualizations are devised and presented in a secure, user friendly web interface giving greater insight about the network to the end user
    • …
    corecore