
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2017

InSight2: An Interactive Web Based Platform for Modeling and InSight2: An Interactive Web Based Platform for Modeling and

Analysis of Large Scale Argus Network Flow Data Analysis of Large Scale Argus Network Flow Data

Hansaka Angel Dias Edirisinghe Kodituwakku
University of Tennessee, Knoxville, hkoditu1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Kodituwakku, Hansaka Angel Dias Edirisinghe, "InSight2: An Interactive Web Based Platform for Modeling
and Analysis of Large Scale Argus Network Flow Data. " Master's Thesis, University of Tennessee, 2017.
https://trace.tennessee.edu/utk_gradthes/4885

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F4885&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Hansaka Angel Dias Edirisinghe Kodituwakku

entitled "InSight2: An Interactive Web Based Platform for Modeling and Analysis of Large Scale

Argus Network Flow Data." I have examined the final electronic copy of this thesis for form and

content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Computer Engineering.

Jens Gregor, Major Professor

We have read this thesis and recommend its acceptance:

Mark E. Dean, Audris Mockus

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

InSight2: An Interactive Web Based
Platform for Modeling and Analysis of
Large Scale Argus Network Flow Data

A Thesis Presented for the
Master of Science

Degree
The University of Tennessee, Knoxville

Hansaka Angel Dias Edirisinghe Kodituwakku
August 2017

ii

Copyright © 2017 by Hansaka Angel Dias Edirisinghe Kodituwakku

All rights reserved.

iii

In loving memory of Jovi

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor and mentor, Dr. Jens Gregor for his excellent

guidance, infallible support and prospective wisdom throughout the course of my

Master‟s program, without which I could not have completed this immense task

within this time frame. I learned a great deal from his effectiveness in planning

and optimizing. His timely decisions saved me a lot of time and enabled me to

streamline my workflow to do more in less time. It was an honor and a joy to work

with him and I am looking forward to continue working with him in the coming

years.

I am thankful for Dr. Mark E. Dean and Dr. Audris Mockus for their time in serving

in my thesis committee and their guidance during class work.

I would like to extend my sincere gratitude to Mr. Greg S. Cole for his unfailing

faith in me and giving me the opportunity to be a part of GLORIAD family. He

saw my potential more than me and encouraged me to achieve it even though at

the time it seemed impossible to me. His visionary ideas inspired me to achieve

more and made me realize that there is no limit for one‟s potential.

I would like to thank my parents for their incredible love, sacrifice and support

they gave for me throughout my life. I would like to thank my mom who stood up

for me when the tides were rough. I learned to always do the right thing and that

hard work always pays in the end, from her. All my virtues and good

characteristics are inherited from her outstanding parenting and shrewdness. I

would like to thank my dad who worked hard to support our family and being my

hero. His fearless behavior observed over the years primed my ability to face any

circumstance head-on. I would like to thank my sister for her never-ending love

and being there all the time for me. She is the best sibling anyone would hope

for.

I would like to thank Fan Zhang for her support and never giving up on me. Her

encouragement and appreciation enabled me to work harder and discover new

potentials I never knew I had. I would like to thank Michele Norris for treating me

as her own family and being there for me all the time. I would like to thank Dana

Bryson for helping me out countless times with paperwork amidst her busy work

schedule. I would like to thank Saeed, Seena and Mustafa for being my brothers

which I never had in my childhood.

v

I would like to thank Jovi and Sasha for giving me their unconditional love. Jovi,

you left your paw-prints of joy on our hearts and we will never forget you. You are

a warrior and you fought through battles life unfairly bestowed upon you. Sasha

you are the sweetest and one of a kind. No wonder why you steal everyone‟s

hearts!

I would also like to thank The University of Tennessee for letting me be a part of

the Big Orange to study the cutting edge technology from the best professors in

the world via its Masters of Science program. I would like to thank Laurel

Residence for being my home away from home half-way across the globe, for all

the great memories and for all the amazing friends I made during my stay.

The work presented in this thesis was supported by the National Science

Foundation under Grant No. IRNC-1450959. Any opinions, findings, and

conclusions or recommendations expressed are those of the author and do not

necessarily reflect the views of the National Science Foundation.

vi

ABSTRACT

Monitoring systems are paramount to the proactive detection and mitigation of

problems in computer networks related to performance and security. Degraded

performance and compromised end-nodes can cost computer networks

downtime, data loss and reputation. InSight2 is a platform that models, analyzes

and visualizes large scale Argus network flow data using up-to-date geographical

data, organizational information, and emerging threats. It is engineered to meet

the needs of network administrators with flexibility and modularity in mind.

Scalability is ensured by devising multi-core processing by implementing robust

software architecture. Extendibility is achieved by enabling the end user to enrich

flow records using additional user provided databases. Deployment is

streamlined by providing an automated installation script. State-of-the-art

visualizations are devised and presented in a secure, user friendly web interface

giving greater insight about the network to the end user.

vii

TABLE OF CONTENTS

1. Introduction .. 1

1.1 Motivation: Need for Network Monitoring and Analytics 1

1.1.1 GLORIAD: A Research and Education Network 1

1.1.2 Argus Network Flow Data .. 3

1.1.3 GLORIAD InSight (2013-2014) .. 4

1.1.4 InSight2 (2017) .. 8

1.2 Thesis Outline .. 13

2. Overview of network Monitoring Software ... 14

2.1 Network Data Capture Techniques .. 14

2.1.1 Packet Level Data Capture .. 14

2.1.2 Flow Level Data Capture ... 16

2.2 Existing Network Monitoring Solutions ... 21

2.2.1 Performance Monitoring ... 21

2.2.2 Security Monitoring .. 23

3. Server Configuration .. 24

3.1 Hardware Configuration ... 24

3.2 Argus Archives and Other Data Recovery .. 29

3.2.1 Extracting Argus Archives .. 29

3.2.2 Data Forensics ... 30

3.3 Preventive Measures Taken ... 32

3.3.1 Contingency Backups .. 32

3.3.2 Hardware and Software Setup ... 34

4. Description and Assessment of GLORIAD InSight .. 39

4.1 Software Architecture ... 39

4.2 Description of „Farm of Animals‟ ... 44

4.3 Global Science Registry ... 53

4.4 Assessment .. 56

viii

4.4.1 Software Architecture... 56

4.4.2 „Farm of Animals‟ ... 59

4.4.3 Global Science Registry (GSR) ... 60

4.4.4 Hardware Capabilities .. 62

4.4.5 Recommendations ... 64

5. Development of InSight2 .. 69

5.1 Software Architecture ... 69

5.2 Data Pre-Processing .. 74

5.3 Data Enrichment ... 75

5.3.1 Information Sources ... 76

5.3.2 Distributed Database Structure .. 83

5.3.3 High Maintainability .. 85

5.3.4 Lean System Design .. 87

5.4 Data Analytics .. 88

5.5 Data Visualization ... 91

5.5.1 Performance Dashboard .. 92

5.5.2 Security Dashboard ... 96

5.5.3 Dashboard Components .. 99

5.6 InSight2 Security Features ... 109

5.7 One-Step Installation Package ... 113

6. Results and Conclusion ... 116

7. Future Work ... 120

References ... 121

Appendices ... 125

Vita .. 147

ix

LIST OF TABLES

3.1 Reachability Assessment of GLORIAD Servers………………...…...……… 25

3.2 Disk Configuration………………………………………………………………. 34

4.1 GLORIAD servers and their functionality…………………………………….. 63

5.1 Argus Fields Used in InSight2…………………………………………………. 77

5.2 Elasticsearch Scripted Fields Used in InSight2……………………………... 80

5.3 Parameters for the InSight2 Installation Script………….…………..…...… 114

A.1 Core Argus Clients…………………………………………………………….. 126

A.2 All Other Argus Clients………………………………………………………... 127

A.3 Regular Argus Fields………………………………………………………….. 130

A.4 Calculated Argus Fields………………………………………………………. 133

A.5 Fields Stored in Elasticsearch………………………………………………… 134

A.6 GSR Information Stored in Elasticsearch……………………………………. 136

x

LIST OF FIGURES

1.1 GLORIAD Logo……………………………………………………………. 1

1.2 Little GLORIAD……………………………………………………………. 2

1.3 GLORIAD Coverage 2011……………………………………………….. 3

1.4 GLORIAD InSight Traffic Information…………………………………… 6

1.5 GLORIAD InSight Geographical Information…………………………... 7

1.6 InSight2 User Interface…………………………………………………… 9

2.1 Cisco NetFlow Components……………………………………………... 17

2.2 QoSient Argus Components…………………………………………….. 20

3.1 Output of the High Speed Camera Capture……………………………. 27

3.2 Obtaining Access to Mithril………………………………………………. 28

4.1 GLORIAD InSight System Architecture………………………………… 41

4.2 Architecture of the „Elephant‟ Animal…………………………………… 46

4.3 Architecture of the „Guarddog‟ animal………………………………….. 48

4.4 Architecture of the „Spider‟ animal………………………………………. 49

4.5 Architecture of the „Scorpion‟ animal……………………………………. 51

5.1 GLORIAD InSight vs. InSight2 Architecture……………………………. 71

5.2 High-level Data Flow Architecture of InSight2…………………………. 72

5.3 InSight2 System Architecture……………………………………………. 73

5.4 Elasticsearch Database Shard Allocation……………………………… 84

5.5 Markov Chains State Diagram…………………………………………... 88

5.6 Markov Chains Transition Matrix………………………………………... 89

5.7 Markov Chains Steady State Matrix…………………………………….. 90

5.8 Markov Chains Prediction for next 24 Hours…………………………... 91

5.9 Performance Dashboard…………………………………………………. 94

5.10 Security Dashboard……………………………………………………... 98

5.11 Network Usage by Data Transmitted…………………………………. 99

5.12 At-a-glance Gauges…………………………………………………….. 99

xi

5.13 Aggregated Unique Counts…………………………………………….. 100

5.14 Geographical Information Globe………………………………………. 101

5.15 Geographical Information – Country…………………………………... 101

5.16 Geographical Information – City……………………………………….. 101

5.17 Tag Cloud of Top Users………………………………………………… 102

5.18 Tag Cloud After Selection………………………………………………. 102

5.19 Geographical Information of Top Users………………………………. 103

5.20 Organizational Information……………………………………………… 104

5.21 Domain Information……………………………………………………… 104

5.22 Usage by Source Country by Time……………………………………. 105

5.23 Usage by Destination Country by Time……………………………….. 105

5.24 Usage by Country by Time After Selection…………………………… 106

5.25 Network Connection Graph of Organizations………………………… 106

5.26 Total Packet Delay………………………………………………………. 107

5.27 Connection Setup Time Gap…………………………………………… 107

5.28 InSight2 Jitter…………………………………………………………….. 108

5.29 Producer Consumer Ratio……………………………………………… 108

5.30 Average Number of Hops………………………………………………. 109

5.31 Network Load Prediction………………………………………………... 109

5.32 InSight2 Security Features……………………………………………... 112

5.33 InSight2 Login Page…………………………………………………….. 113

B.1 Mithril‟s File System Failure…………………………………………….. 137

B.2 Checking Mithril‟s Drive Configuration………………………………… 138

B.3 Checking Mithril‟s Physical Disk Drives……………………………….. 138

B.4 Degraded State of RAID Configuration……………………………….. 139

B.5 Mithril‟s Unconfigured Drive in CIMC………………………………….. 139

B.6 Unconfigured Drive in WebBIOS………………………………………. 140

B.7 Checking Drive Health………………………………………………….. 140

B.8 ZFS Reassembly and Verification……………………………………… 141

B.9 Setting up RAID 6………………………………………………………... 141

xii

B.10 Booting Single User Mode…………………………………………….. 142

B.11 QNAP Disk Failure……………………………………………………... 142

C.1 Mean Value Distribution of the Markov Chain………………………….. 143

C.2 Log of Mean Value Distribution of the Markov Chain…………………. 144

C.3 Variance Distribution of the Markov Chain……………………………... 145

C.4 Log of Variance Distribution of the Markov Chain……………………... 146

1

1. INTRODUCTION

1.1 Motivation: Need for Network Monitoring and Analytics

Computer networks need to be constantly monitored to ensure optimal service.

As they grow to include multiple sub networks and end nodes with different

bandwidths, managing them increases in complexity. Modern networks are also

constantly being targeted by malware and malicious users for malignant

intentions. One of the key challenges in managing large scale networks spanning

across the globe is being able to proactively detect systemic problems related to

performance and security in near real-time. Many solutions are tailor-made

implementations; proprietary solutions aimed towards particular needs of a

specific organization. There is no single platform that can apply to a wide variety

of applications ranging from performance to security which also gives the end

user the complete control over the visualizations, dashboard layout and the

custom data to be enriched.

1.1.1 GLORIAD: A Research and Education Network

The Global Ring Network for Advanced Applications Development (GLORIAD)

was an advanced internet network for science applications in research and

education across the globe initiated by Greg Cole [1]. Figure 1.1 shows the

GLORIAD logo.

Greg Cole is a graduate of The University Tennessee (UT) Knoxville. He

received a Master's degree in Computer Science in 1987. He first started working

in the UT Knoxville Office of Research Administration and became the Director of

the Office of Research Services at The University of Tennessee. Then he

became Director of the Center for International Networking Initiatives at the

University of Tennessee in 1995.

Figure 1.1 GLORIAD Logo [2]

2

Greg Cole started a project called MIRNET in 1997 which connected scientific

communities in the U.S. and Russia [3]. Over time, MIRNET evolved into

GLORIAD starting with the single ring covering the northern hemisphere shown

in Figure 1.2 and ending with the global network shown in Figure 1.3. GLORIAD

connected over 15 million end-point addresses across the Research and

Education internetwork during its active service from 1999 – April, 2016. It was

supported by the National Science Foundation (NSF) as well as various

institutions and organizations in the many member countries including national

science ministries, national research and education networks, science institutions

and universities. The network provided an advanced infrastructure supporting a

broad range of joint science and education projects and included partners in

Russia, China, Korea, Egypt, India, Singapore, Canada, Netherlands and the five

Nordic countries. [4]

GLORIAD had a significant academic presence. The program not only actively

worked on initiation, active development and improvement of computer networks

across the globe but also contributed to the community through activities related

to global networking and community building during its 16 years of existence

through the ʺNet Challengesʺ series of initiatives.

Figure 1.2 Little GLORIAD [5]

3

Figure 1.3 GLORIAD Coverage 2011 [6]

1.1.2 Argus Network Flow Data

A network flow is a record of metadata about one or more data transactions that

share a predetermined set of parameters such as IP address, port and protocol.

In other words, it summarizes a series of packets associated with a transaction.

Network flow information of one type or another is routinely collected across

large-scale networks to monitor their performance since compared to the packet

size itself, the size of the flow data is much smaller and yet provides substantial

insight into all the network traffic transactions allowing them to be archived for

analysis.

Argus is open-source software developed by Carter Bullard and his company

QoSient. Argus is a bidirectional network flow generator and aggregator [7]. The

software consists of a server and a suite of clients. The server generates Argus

records which can be read by clients. There are 25 Argus clients that specialize

in different functions. They can be used in a pipeline to perform processing on

flow records. It is a rich network flow data generation platform that is widely used

by many universities, corporations and government entities including GLORIAD.

Chapter 2 provides more information about Argus.

GLORIAD collected Argus flow data from its network from 2012 to 2015

amounting to 14.6TB of historical data [8]. Argus is capable of generating 127

4

features per network flow record. Appendix A gives a description of these

features. For the work presented here, 37 Argus features were carefully selected

to be extracted from these flow records; 27 of the features are common to both

the source and the destination, while 10 of the features are unique to either the

source or the destination.

We enrich the Argus flow data by adding 15 fields that convey information from

the Global Science Registry (GSR), which is a database that relates IP

addresses with research organizations and institutes. We add an additional 6

fields using information from the MaxMind GeoIP database which maps each

individual IP address to a geographical location using latitude and longitude

coordinates and assigns it a country, city, province, and zip code. Finally, we

generate 11 dynamic features on-the-fly using „Scripted Fields‟ within an

Elasticsearch database. Elasticsearch is a noSQL database that has an

integrated full-text search engine and is part of the Elastic Suite [9]. It is capable

of storing data in arbitrary formats and provides an Application Programming

Interface (API) to search for records. Appendix A gives a full list of these

additional features. Geographical coordinates are used to show each flow record

in a global map in the user interface of InSight2 which is described in-depth in

Chapter 5.

1.1.3 GLORIAD InSight (2013-2014)

GLORIAD InSight is a network monitoring platform developed in 2013 in order to

monitor the performance and security aspects of the GLORIAD network [10]. The

main focus of it was to display network measurements such as packet loss, jitter,

and load in order to detect systemic problems related to performance, routing

and security that can contribute to reliability issues, and security vulnerabilities.

GLORIAD InSight consists of a „Farm of Animals‟ where farm is a collective

reference to a suite of Perl 5 scripts that have been given animal names such as

„Elephant‟, „Mouse‟, „Rabbit‟, and „Sheepdog‟. Each animal carries out a specific

task. Animal welfare is taken care by a script called the „vet‟. Animals

communicate with each other through a special message passing bus called

ZeroMQ [11]. All components of the farm are maintained by Monit software [12]

which monitors process numbers and ensures that all scripts are running. If a

script terminates prematurely, be that an animal or even the vet, Monit re-invokes

http://insight.gloriad.org/

5

it. This was done to ensure continuous operation of the farm despite possible

programmer or system errors that lead to malfunction of the software suite. A

detailed description of the architecture and functionality of GLORIAD InSight is

given in Chapter 4.

GLORIAD InSight sought to provide a complete suite of tools that can feed off of

an Argus data source as its input, process the flow data using user-defined

databases and render visualizations according to user requirements, rather than

requiring user to adapt to predefined measurements and user interfaces.

GLORIAD InSight was the most comprehensive and most flexible network

monitoring software available at the time.

Using different so-called dashboards, GLORIAD InSight could display network

traffic as illustrated in Figures 1.4 and 1.5. The data was categorized as follows:

 Region: Africa, Asia, Australia, Central America, Europe, Middle East,

North America, Scandinavia, and South America.

 Country: GLORIAD partners, USA, Canada, Russia, China, South Korea,

Egypt, Singapore, India, Malaysia, Netherlands, and Scandinavia.

 Organization: Government agency, research institute, corporation, and

university.

 Application: All applications, other TCP, other UDP, file and data transfer,

web, mail, remote access, audio and video, database, network, peer-to-

peer, icmp, personar, and others.

 Discipline: All disciplines, atmospheric sciences, biological sciences,

engineering, environment, genome, geophysical sciences, health

sciences, mathematics, military science, nuclear sciences, oceanography,

physics, space science, technology, university and other, and

interdisciplinary.

 Security: Bad actors, scanners, spammers, suspicious DNS, ICMP events

6

Figure 1.4 GLORIAD InSight Traffic Information.

7

Figure 1.5 GLORIAD InSight Geographical Information

8

Argus network flow information is enriched into one of the above categories and

stored in an Elasticsearch database. Kibana, a visualization rendering software

that has tight integration with Elasticsearch and is a part of the Elastic Suite, is

used to visualize the data in various graphs, charts, tables and geographical

maps [9]. Topological information was displayed using regions and states as

seen in Figure 1.5. Each of them is accompanied by textual information which

showed top information sorted in descending order. Collections of visualizations,

known as dashboards, are created to show different aspects of the network.

GLORIAD InSight was a valuable and unique tool that offered an unprecedented

amount of information about the activity inside a network in a visually coherent

manner.

When the GLORIAD project came to an end, maintenance of the servers used to

store the Argus flow data, enrichment databases and the web based user

interface stopped which lead to catastrophic operating system and disk failures.

Development and maintenance of the InSight platform also stopped. This caused

the software to fall behind on several updates of Elasticsearch, Kibana, and Java

which in turn meant that GLORIAD InSight became inoperable.

1.1.4 InSight2 (2017)

As part of the NSF project “The InSight Advanced Performance Measurement

System” sponsored under the IRNC-AMI (International Research Network

Connections - Advanced Measurement Network Infrastructure) program, a new

InSight platform, henceforth referred to as InSight2, has been developed as

detailed in Chapter 5.

The complex software architecture of GLORIAD InSight with the many moving

parts decreased maintainability and introduced many points of failure. From the

hardware layout to the software implementation, GLORIAD InSight had to be

actively maintained. This involved performing regular system health checks,

keeping up to date with the changes to the APIs and software tools, replacing

tools that stop being actively developed etc. The more complex the hardware

setup became and the more components the software architecture needed, the

less robust the entire system became. InSight2 with its fresh code base has been

focused on addressing these issues from the very start of the development. A

new user interface was furthermore designed and implemented and is shown in

the Figure 1.6.

9

Figure 1.6 InSight2 User Interface

10

InSight2 implements a new setup for the hardware servers which simplifies and

improves efficiency, security, portability and ease of replication, a new software

system architecture geared towards lean system design by eliminating multiple

software components in favor of less moving parts, Python programming

language and a custom web interface incorporating robust security features and

state-of-the-art visualizations.

InSight2 migrates from Perl 5 scripts to Python which enables all the advantages

of the latter more modern programming language. Python has native support for

multi-threading and has a faster interpreter both of which contributes to increase

the overall throughput of the platform. Due to its strict structure of coding a more

maintainable and readable code base could be produced. Python also is

advantageous in deployment since target host systems do not need to compile

libraries since Linux-based operating systems either already come with Python

pre-installed or is readily available from their respective repositories. GLORIAD

InSight needed the Comprehensive Perl Archive Network (CPAN) repository to

install its core components while native Python libraries are available from OS

repositories. These libraries are furthermore constantly being updated allowing

the installation package to easily execute a command to download and install

relevant libraries directly.

One of InSight2‟s core development principles is the use of free and/or open

source software to make it beneficial for everybody. All the related software and

information sources used for the development and operation of InSight2 all

readily and freely available. GLORIAD InSight used some fee-based databases

for security tagging of the misbehaving IP addresses such as different types of

botnets and bogons. InSight2 disposes of these databases in favor of only the

free versions available online and are constantly being updated but at the same

time keeping the option of adding paid information sources if provided by the end

user. Databases used in InSight2 are described in depth in Chapter 5.

GLORIAD InSIght used separate scripts that processed data individually. They

communicated with each other using a third-party tool called ZeroMQ. Monit was

required to keep track of each script. Usage of sequential databases such as

MySQL further increased the system complexity; when an asynchronous script

needs access, the database gets locked and becomes unavailable to other

scripts [13]. In order to mitigate this problem, the „Elephant‟ kept a copy of the

main MySQL database inside of a SQLite database. While this increased the

data throughput, it also lead to increased disk usage which reduced their lifespan

11

significantly [14]. Furthermore, sequential databases are not optimized for

searching. The content is not indexed so any search query has to be performed

sequentially. Any change to one of the many supporting software is prone to

break the entire system which requires system-wide rewrite of the farm scripts.

InSight2 successfully addresses these drawbacks by changing the core

architecture into a more robust and resilient one. The functionality of the farm is

condensed into a core code named Enrichment Module (EM) eliminating

processing and memory overhead incurred by invoking multiple instances of Perl

interpreter for each animal.

GLORIAD InSight used an asynchronous event model and the implementation

was single core based. The former lead to a complicated software architecture.

The latter required some animals to schedule their processing at midnight since

the blocking database transactions, decompression of the Argus archives and

the processing would impact the performance of other critical animals. InSight2

has moved towards a synchronous multi-processing model by performing

enrichment in a pipelined manner using multiple threads utilizing the modern

multi-core CPU architecture. Information flows from different sources into the EM

where the data is processed in parallel using all cores available on the host

system and is subsequently sent to the Elasticsearch database without the need

for intermediate message queues.

InSight2 disposes of the sequential MySQL and SQLite databases thereby

eliminating blocking transactions that impact system performance by delaying

read and write events. Instead, the superior Elasticsearch database is used for

all storage needs. As an added benefit, this minimizes disk usage allowing the

hardware to last its optimum lifespan, reducing the risk of drive failure in the long

run.

Argus archives are compressed using „GZIP‟ compression, and every

decompression requires CPU time and memory, which are highly valuable in

production environment. GLORIAD InSight required that this process take place

every time an animal would access the archives. InSight2 eliminates the need for

the archives to be decompressed more than once by decompressing the

archives, reading them into memory, performing the enrichment and uploading

into the database in a single pipeline.

12

InSight2 also aims to reduce the number of dashboards required to show the

information since it requires the user and the browser to do extra work by having

to load multiple web pages. This is achieved by designing the user interface to

contain more information in a given area for a high information density. Improved

and modern visualizations are chosen to combine information about various

related aspects in a given dashboard. This not only results in high density

dashboards but also improves the visual appeal. It is also optimized to be used in

large monitors that constantly and frequently update and show real-time network

information in dedicated areas ranging from network operations centers (NOC) to

small-scale displays such as laptops and mobile interfaces.

InSight2 is engineered for speed and convenience by making sure that the

platform is available from any compatible browser running on any platform

regardless of the OS, CPU power and architecture, and memory capacity.

InSight2 is optimized to download the dashboards only once. Subsequent

updates that result in user applying different filters are handled dynamically using

JavaScript. This enables InSight2 to update already downloaded visualizations

with new data quickly and seamlessly. It also reduces the amount of data

transmitted from web server for each filter applied. This is especially

advantageous for mobile devices where they are limited by performance as well

as network speed and bandwidth.

InSight2 has streamlined its deployment by providing one step installation

package that handles checking of the target system for compatibility, installation

of prerequisite software and setting up their configuration, installing database

software and setting of the web interface. InSight2 deployment comes in two

flavors, „Demo‟ version and „Full‟ version. „Demo‟ version is for the purposes of

demonstration which is geared towards quickly setting up the platform. It comes

with 5 days of sample data, all the dashboards, and the web interface. The full

version comes with compiled EM, GSR database in addition to the components

in the „Demo‟ version, which enables the end user to enrich and visualize their

own Argus archives. Additional information sources are downloaded by InSight2

after being installed, such as Threats Database (TD), MaxMind GeoIP database.

Site Specific Enrichment (SSE) database contains user specified information. It is

loaded from the Elasticsearch database and used for enrichment.

Next steps include improving InSight2 by closely working with network

administrators at Stanford University and Korea Institute of Science and

13

Technology Information (KISTI) to develop new features. This work is discussed

in Chapter 7.

1.2 Thesis Outline

Chapter 2 discusses the overview of network monitoring software from network

data capture to analysis. Different techniques for data capture including packet

level and flow level is outlined. Existing traffic analysis solutions that utilize

different data capture techniques are discussed. Chapter 3 outlines the recovery

of the Argus data as well as the new setup of the servers and systems software.

This chapter describes file system recovery, data extraction, data forensics and a

design and implementation of computer server setup that is more manageable

and resilient for failure in the future. Chapter 4 discusses the architecture of

GLORIAD InSight and its drawbacks. A detailed description of the „Farm of

Animals‟ is provided along with a discussion of the Global Science Registry

(GSR) database. Chapter 5 details the development of InSight2 including the

new software architecture, database structure, data analysis and visualizations,

user interface and security. It discusses the design and implementation of the

Enrichment Module (EM), multi-core processing and the pipeline architecture.

Chapter 6 discusses the deployment of InSight2 in the production environment.

Chapter 7 provides results and conclusion. Chapter 9 outlines future work.

14

2. OVERVIEW OF NETWORK MONITORING SOFTWARE

In this chapter various techniques that are used to capture network data, data

processing and data representation are explored. GLORIAD InSight and a few

other related proprietary software that exist for network performance monitoring,

are explored and discussed in comparison to InSight2.

2.1 Network Data Capture Techniques

In order to perform network data analysis either a passive or an active method

has to be used for the data collection. Different data collection methodologies

require different hardware and software setups that are applicable in different

situations. We discuss strengths and weaknesses of each technique. There are

two major network data collection techniques and they provide information at

different levels of granularity. They are packet level and flow level data collection.

In this section TCPDump, NetFlow and Argus are discussed. For the purpose of

this research Argus has been selected as the data collection technique and the

applicability and suitability of Argus is presented in depth compared to other

existing techniques.

2.1.1 Packet Level Data Capture

At the packet level, either all the network data is directed through high

performance capture device with two high bandwidth network ports acting as

input and output respectively or mirrored using a network span port. A network

span port is a specially configured port in a network device such as switch or

router to output an exact copy of the traffic that is seen in all other ports. Packets

are captured at the operating system (OS) level using TCPDump [15] and written

to disk or internally piped to processing software for analysis purposes. This

method yields the highest amount of information retention since the all the

information in the packet is captured including user data. However, there are

several significant disadvantages of this method.

15

 Since the entire network data is being directed through one capture device

this capture device has to be of very high bandwidth and capable of

processing the total amount of data transmitted per second, in real time

without dropping packets. In other words, it is significantly expensive to

device and maintain.

 In most cases, it is not feasible to route all the network traffic through one

location due to geographic restrictions and topology.

 Increased latency is observed due to increased distance provisioned in

order to accommodate to the new routing topology [16].

 Disk space and bandwidth requirements rise in linear relation to the

incoming data rate. For growing systems, this translates to frequent

upgrades of capture device components such as memory and network

interfaces. This is not a solution that scales well.

 With the advancement of encryption techniques such as SSL and TLS

packet level analysis of network data is impossible without SSL decryption

or cryptanalysis because the content of the packet is encrypted, rendering

the whole series of packets belonging to that particular connection

between those source and destination to be unusable.

 In some cases, it is not legal to collect packet level information where

sensitive information is transmitted and should not be stored, such as

research and education networks where government agencies and

research institutions share data with each other, which accounts for the

majority of the users of GLORIAD.

As per the above reasons packet level data collection is not feasible for the

purposes of this research. In order to mitigate these issues flow level data

collection in the network is used instead.

16

2.1.2 Flow Level Data Capture

The basic principle of flow level data collection is to aggregate network packets

into flows categorized by some given metrics. Below are five widely used metrics:

1. Source IP address

2. Destination IP address

3. Source port

4. Destination port

5. Protocol

This is called “Five Tuple” standard [17]. Most flow standards are based on this

Five Tuple and in some cases adding more metrics. The most commonly used

standards are Cisco Netflow, Juniper JFlow, Flow tools Inmon's sflow and Argus.

We describe NetFlow and Argus in this section due to highest market adaptation

of NetFlow and Argus being used in InSight2. Other flow capture standards are

comparative to NetFlow.

Network data collection at the flow level yields much lower file size if archived to

the disk and uses less memory to process if piped to processing software. This

poses significant advantage over packet level data collection. Network flow

capture devices can be smaller, generic/off-the-shelf and consumes less energy

at the same time costing significantly less than packet capture devices. While

packet capture devices require fast storage devices with higher write speeds

such as SSDs flow level packet capture devices can utilize conventional hard

disk drives (HDD) in most cases depending on the scale of the network.

Cisco NetFlow v9

Cisco defines a network flow standard named “Cisco NetFlow” [18]. It is the most

widely used network flow standard. The latest version is NetFlow v9. As a uni-

directional flow monitor, NetFlow reports state of each half of each conversation

independently. It is proprietary and is implemented in many high-end Cisco

devices such as switches and routers. NetFlow components and data flow is

shown in the Figure 2.1. NetFlow standard categorizes flows using the seven

metrics defined below:

17

 Source IP address

 Destination IP address

 Source port for UDP or TCP, 0 for other protocols

 Destination port for UDP or TCP, type and code for ICMP, or 0 for other

protocols

 IP protocol

 IP Type of Service

 Ingress interface

Figure 2.1 Cisco NetFlow Components

NetFlow standard defines three main components,

1. Flow exporter: Export flow information to one or more flow collectors.

2. Flow collector: Receive data from flow exporters, store and pre-process.

3. Analysis application: Used for analyzing the received data for various

applications, such as NTOP.

18

QoSient Argus

Argus is an open-source network flow information generation and collection

technique. InSight2 uses the Argus flow‐monitoring system as its primary

network activity data source. However, InSight2 is also capable of adapting to

other protocols such as reading from Cisco NetFlow source. InSight2 has

coupled Argus data generation and collection to its own data transport,

processing and storage technology, using Elasticsearch, Kibana, and other

technologies to provide an advanced network situational awareness capability.

Argus supports collection of advanced network flow measurements. It provides

near‐real‐time comprehensive, multi‐layer, bi‐directional network data monitoring

that is designed to support network operations, performance and security

management. Argus provides structured data models and metrics for network

entities such as Level 2 and Level 3 addresses, overlay identifiers, tunnel

identifiers, service and application identifiers, as well as flow oriented utilization,

transactional reachability, connectivity, availability, throughput, demand, load,

loss and packet dynamics metrics, that can be used to describe complex

application, system and path behaviors. Argus is capable of providing

measurements from the flow information to a greater detail than NetFlow. Its core

advantage is that it provides much more information from flow level network

traces such that it almost negates the need for packet level data capture. Argus

uses following six metrics to categorize packets into flows:

1. Source IP address

2. Destination IP address

3. Source port

4. Destination port

5. Protocol

6. Direction

Argus is a bi-directional flow aggregation protocol. This approach enables Argus

to provide availability, connectivity, fault, performance and round trip

measurements. These metrics are suitable for large-scale networks where

network flows from different networks are aggregated into one place where

directional information is more important than interface information as provided

by Cisco NetFlow. Argus offers a superset of the functionalities offered by other

flow monitoring protocols, thus it is compatible with competing technologies

19

which enables it to read and convert Cisco Netflow, Juniper JFlow, Flow tools,

and Inmon's sflow data without data loss since those technologies provide less

information compared to Argus.

Argus also defines data exportation tools and collection nodes similar to Cisco

NetFlow‟s Flow Exporter and Flow Collector. They are server and client

components. The Argus server client architecture is shown in the Figure 2.2.

Server is responsible for converting packet traces into Argus format while

collection agent named Radium server collects Argus records sent by the Argus

server. In addition, Argus provides supporting tools to read and filter records

which are called Argus clients. Argus clients as a collective provide various filters

and aggregation methods. We use these tools to read Argus filter and data.

These Argus-clients are in the form of binaries and scripts and are provided with

the Argus-clients package. They can be installed using system repositories and

is labeled as „argus-clients‟ or can be compiled and installed individually. Argus

clients are described in the Appendix A. As of the writing the Argus-server

package was in its version 3.0.8.2 and the clients package 3.0.8.2. This suite of

tools are being used by universities, corporations, and government entities to

keep track of their network traffic that belongs to internal communication,

incoming and outgoing. Argus clients are capable of reading from Argus files

from the disk or network resources or directly from network sockets as a live

stream. Its configuration is stored in „raconf‟ file. The Argus-clients package

consists of 8 core clients and 27 peripheral clients. In order to compile the Argus

server and the client packages „gcc‟, „make‟, „bison‟, „libpcap‟, „libpcap-dev‟, and

„flex‟ are prerequisite. These clients can be stacked together using Linux

pipelines. Pipelines allow processing Argus data in a serial manner using the

output of one client for the input of another client iteratively. This enables the

user to take advantage of the different functionalities of the clients in order to

achieve complex processing functions.

Argus requires very few system resources and has been proven to run even in

router firmware such as OpenWRT, allowing it to achieve the functionality of

Cisco NetFlow within a router. Figure 2.2 outlines the components of Argus and

its dataflow.

20

Figure 2.2 QoSient Argus Components

21

2.2 Existing Network Monitoring Solutions

There exist a few solutions for the purpose of network traffic analysis with

different advantages and disadvantages of specific to each other. Some are

focused on network performance analytics while others are security focused.

Input data ranges between Cisco NetFlow and Argus.

2.2.1 Performance Monitoring

There exist a few software solutions that address performance monitoring needs

of a network. Most of them take input from NetFlow while some take Argus input.

NTOP-NG is web-based traffic analysis and flow collection software that is aimed

at monitoring network usage [19]. This software is cross platform and capable of

sorting network traffic according to IP address, port, Layer 7 protocol, throughput

and autonomous systems (AS). It is capable of producing reports on statistics on

geo-location information on IP protocol usage sorted by protocol type. It is also

capable of displaying Layer 2 information such as ARP statistics. It allows

exploration of historical data that is stored in MySQL database. However it lacks

customizability and only provides information provided by NetFlow standard. Its

biggest advantage is that it is capable of directly reading from NetFlow output.

However, NTOP-NG lacks the ability to enrich data according to user maintained

database. This limits the functionality of the software to only visualize essential

information about the network defined by the software maintainers. No security

information is generated and it is incapable of detecting evolving threats. That

said, NTOP-NG may be an adequate solution overall for small-scale networks

that only need the functionality of a performance monitor.

Spiceworks Network Monitor displays network and server related information in a

dashboard including CPU disk and memory usage [20]. The extension into the

server health includes I/O performance, individual OS processes and services as

well as packet loss. The software is capable of restarting applications from within

the software in a preprogrammed sequence. One of the unique features it offers

is checking if connected servers are up and running using ping, HTTP, SIP, or

SSH. The greatest advantage of Spiceworks Network Monitor is that it is

completely free for use. However, it‟s not open source, making it impossible for

22

the end user to customize the software beyond its intended functionality such as

tagging network flows by the user-defined databases. Having insight into the

server components provides an extra layer of information which can compensate

for the lack of security features, depending on the needs of the end user.

Logic Monitor is capable of automatically discovering network devices and

interfaces without needing manual setup [21]. It can monitor CPU, memory,

temperature, fan and other hardware metrics which gives it a unique edge among

the software used for network and server health information. Network capabilities

of this software include network throughput, packet rates, error rates and

utilization, which includes Power over Ethernet (PoE) loads and wireless access

point (AP) monitoring. Higher tiers of this fee-based software includes support for

quality of service (QoS) policies IP service level agreement (IP-SLA) profiles,

virtual private networks (VPN) and Voice over IP (VoIP) features.

This solution is better suited for applications where server health is needed to be

monitored in conjunction with firewalls, routers, switches and wireless devices

that are used to connect end users to these servers. It provides different aspect

of server maintenance compared to NTOP-NG while providing insight into server

hardware. One of the best features of this is the capability of integrating into the

output of NetFlow, Jflow, and sFlow providing flexibility as to which network flow

information source it can be plugged into. Lack of customizability in the form of

user-defined information makes the system more suitable for specific

applications where policy enforcement should be monitored and given priority

compared to security features or customizability.

Pressler AG PRTG [22], focuses on the Windows environment. It supports data

sources from SNMP, WMI Windows performance counters, secure shell (SSH),

database, and packet sniffing. One of the differentiating factors of this software is

capability of monitoring database held such as SQL databases. Compared to the

other aforementioned solutions, apart from the database monitoring capabilities

no significant features are offered. Strengths in common with the other solutions

include CPU load, uptime, memory usage, disk usage, QoS measurements and

cloud services health metrics.

23

2.2.2 Security Monitoring

Security monitoring software that utilize standard flow protocols that provide a

standard set of tools applicable for wide variety of systems are less prevalent

than performance monitoring tools. This can be explained by the fact that most

security focused tools are developed “in-house” by each organization to suit to

their requirements and environment.

Alienvault is a Network Vulnerability Assessment [23] tool which excels in

intuitive and easy user interface. It is proprietary software that can also act as an

intrusion detection system (IDS) on its own. It is capable of analyzing packets

using its proprietary USM appliance. One of the biggest strengths of Alienvault is

that it is capable of running from cloud-based deployments where the user is not

required to install any software at the customer premises. However, as the

complete system it lacks the ability to extend its functionality for performance

metrics that NTOP-NG offers. The biggest drawback of Alienvault is that it is

proprietary and subscription is needed for the operation.

24

3. SERVER CONFIGURATION

Before the development of the new platform InSight2 could be started, some

preparation work was needed. During the time gap when GLORIAD stopped

actively developing the InSight platform and the new InSight2 development

started, the data server holding the four years of historical Argus flow data

experienced a catastrophic file system failure causing the data contained within

the server to be inaccessible. This chapter discusses the measures taken in

order to recover these valuable archives and preventive measures taken to

prevent such mishaps in the future. Limited resources were available to diagnose

the cause of the failure since the OS debugging tools such as „dmesg‟ and

system files were out of reach. Unconventional diagnosis methods such as

capturing the output of frame buffer based remote login client provided by Cisco

Integrated Management Controller (CIMC) interface using high speed camera

were used for data recovery of the GLORIAD Argus archives and they were

successfully recovered. Finally, servers were formatted and their set-up was

changed to a more robust, manageable, optimized scheme focused on speed

and data protection.

3.1 Hardware Configuration

The GLORIAD project had 15 servers. None of them were being maintained at

the time work on this thesis started. Appendix B provides a list of servers, the

services they ran, their OS version, memory capacity, disk capacity, processor

and disk arrangement. Some servers were offline and were not reachable and

the assessment results are listed in the Table 3.1 The individual IP addresses

were ping swept to check their status, whether there were online or not, their

reach ability through secure shell (SSH), reachability of the Cisco management

interface CIMC and additional comments are listed. Access to some of the

servers could not be established since they were not documented. With the help

of Joel Dickens, the system administrator at Cisco facility where the servers are

located, access to the critical servers that held valuable data was established.

25

Table 3.1 Reachability Assessment of GLORIAD Servers

Server

Name

CIMC

reachable?

SSH

reachable?
Comments

Bluemac YES YES Fully functional

Anodos NO NO
CIMC HTTP port is open, login page does

not load

Wingfold NO NO
CIMC HTTP port is open, login page does

not load

Princess YES NO SSH port closed

Goblin YES NO SSH port closed

Curdie YES NO SSH port closed

Mithril UNKOWN YES CIMC IP is unknown

Bulika UNKOWN YES CIMC IP is unknown

Lona UNKOWN YES CIMC IP is unknown

Lilith UNKOWN YES CIMC IP is unknown

It was found that „Bluemac‟ which held a copy of the InSight web interface and

GSR database server had problems with its battery backup as well as degraded

RAID configuration.

„Mithril‟, the data storage server used for archiving purposes of Argus data of the

GLORIAD network contains 12 spinning hard drives with capacity of 3TB each

amounting to 30 TB in total, arranged in a redundant array using ZFS RAIDz2 file

system. It is a Cisco Blade server with 16 cores, 32 threads and 64 GB Random

Access Memory (RAM). It was running on FreeBSD version 10.1 at the time. ZFS

is a robust file system that can tolerate up to 2 drive failures and still continue to

function thanks to its parity drive mechanism similar to standard Redundant Array

of Independent Disks (RAID). It provides a strong error correction algorithm that

scans drive errors in real time and corrects those errors while the server is

26

operational and online, alleviating the necessity to bring the server offline to fix

block level file-system errors. ZFS was first developed by FreeBSD development

team and was later reported into other Linux operating systems. When the

development of InSight2 started, this server had degraded due to lack of

maintenance causing multiple OS level components to fail rendering the server

into an unbootable state. This server held 14.6 TB of Argus flow archives from

2012 to 2015, inaccessible due to ZFS failure. Remote login into the OS was not

possible and network stack failed to function, preventing data extraction. Root

cause of the failure was investigated and it was found that multiple kernel

modules were corrupted due to lack of maintenance.

Since all the attempts to boot the „Mithril‟ server remotely using SSH, which was

the only remote login protocol that was enabled at the time, were futile, it was

booted from the CIMC interface. CIMC provides an additional interface using a

Java applet that combines the frame-buffered video output, keyboard and mouse

inputs, named „Keyboard Video Mouse‟ (KVM) interface. It is also capable of

remotely formatting to system, change the drive RAID configuration, uploading

an ISO image so that new OS can be installed remotely, turning on and shutting

down installed operating systems. It was seen that FreeBSD OS would hang

midway during the boot process since further modules cannot be loaded without

the corrupt prerequisite modules. It was not possible to find out which modules

were corrupted since the output of the boot process is not recorded and the log

files are not accessible. Each time when the server was rebooted it would quickly

scroll the output of the boot process and hang at the same position.

High speed camera that is capable of shooting video at 240 frames per second

was used to capture the output of the boot process and 2 relevant frames that

show the file system corruption is shown in Figure 3.1. By reviewing the video

frame by frame corrupted system modules were identified and listed since there

was no way to record the text output to file or scroll up the output, as it was

displayed frame by frame.

The following screenshots show the output of the high-speed video of the output

of the boot information. It can be seen that several system modules are corrupted

and prevents loading relevant kernel modules.

27

Figure 3.1 Output of the High Speed Camera Capture

CIMC‟s ability to load ISO images remotely was utilized to upload a standard Kali

Linux Lite edition, Ubuntu 16.04 server and desktop live images. Most Linux

operating systems including Ubuntu can be booted without actual installation into

the hard disk drive. This is greatly beneficial for diagnostics and fixing unbootable

systems. Kali Linux Lite edition, Ubuntu 16.04 server live images were not

supported in this Cisco Blade servers and only Ubuntu 16.04 desktop edition

booted up properly. This image was mounted using CIMC image mounting tool

then the server was rebooted into the setup mode to configure the boot order to

redirect the bootloader to load from the uploaded ISO image instead of the

internal hard disk drive. The final reboot loaded the live OS. This allowed the

access to the system modules. However, it was not possible to use the live OS to

extract the data, since the ZFS file system was not assembled and was spread

across multiple hard disk drives. The necessary configuration for the ZFS drive

assembly was found in the root partition of „Mithril‟ and without properly booting

into the FreeBSD OS it was not possible to assemble the array of drives.

28

Corrupted system modules were replaced with fresh ones. The health of the

individual disk drives was tested using the „fdisk‟ tool found in the Ubuntu live

OS. „Mithril‟ was booted back into the setup mode to revert the changes to the

boot order in the bootloader section and rebooted. This setting allowed it to boot

back to the internal FreeBSD installation on its own hard disk drive.

Boot process went past the point where it hung last and was prompted with

FreeBSD boot screen. This boot screen had options to select user mode ranging

from single user to multi-user. First attempt to boot using the default boot mode,

multi user mode, failed. During subsequent attempts to boot using the multi user

mode server would hang again trying to load additional modules that are required

for multi-user environment. Instead of trying to fix the modules preventing booting

into this default mode server was booted into the single user mode by dropping

into shell in „single user mode‟ in the FreeBSD bootloader. „Single user mode‟ is

a mode used for emergency purposes for data recovery in Linux systems. Finally

„Mithril‟ showed a terminal which indicated the OS recovery was a success.

Figure 3.2 shows the successful recovery of the „Mithril‟ server. It is indicated by

the date prompt in the end. More related screenshots are provided in the

Appendix B.

Figure 3.2 Obtaining Access to Mithril

29

3.2 Argus Archives and Other Data Recovery

Within „Mithril‟ server contained all the Argus flow archives from 2012 to 2015.

This data is highly valuable since they represent real activity from the GLORIAD

network. Recovery of this dataset was integral for this research and for the future

study. With the rich feature set provided by Argus valuable insights and analytics

can be derived from this dataset about the behavior of large-scale networks. First

the corrupted ZFS assembly of disks array was reconstructed. Then the Argus

and other data sets were extracted and backed up. This section illustrates this

process and describes data contained within these datasets. ZFS manipulation

tools „zfs‟ and „zfsutils‟ were installed into the Ubuntu live OS using the online

Ubuntu repositories and the ZFS assembly was verified for any errors using the

„zpool’ tool. After verification passed ZFS pool was reconstructed.

3.2.1 Extracting Argus Archives

Network connectivity was checked with the replaced system modules but could

not gain functionality to get Secure Shell („ssh‟) working to securely transmit the

archives even though system was recovered to a state that it completes boot

procedure and provides a login prompt. As seen in the Figure 3.2 some of the

replaced crypto modules did not work as expected which led to login and data

transfer tools that use Secure Socket Layer (SSL) encryption unusable, which is

a requirement for Secure Copy („scp‟) to run.

Solution to this problem was found with the help of data processing servers,

„Bulika‟, „Lona‟ and „Lilith‟ which are high-end servers intended to be used for

processing located at the same server room at the Cisco facility. These servers

have 20 CPU cores, 384GB RAM and 12TB Solid State Drive (SSD) high-speed

storage capacity. However the combined capacity of all 3 servers was adequate

to store all the data from „Mithril‟. Data copy was initiated by physically re-routing

„Mithril‟ to „Bulika‟, „Lona‟ and „Lilith‟ using Ethernet cable physically one at a time

in order to isolate the connection from Internet. This required physical presence

at the Cisco facility, since it was not performed using remote login but using the

physical keyboard and mouse connected to the server. Physical isolation was

required since the standard secure tool for data copy using SSL encryption, „scp‟,

failed to function and „rcp‟, which one of the tools in the minimalistic „rcp’, „rlogin’

and „rsh’ family of tools which offers no data confidentiality was used to copy the

30

data to Bulika, Lona and Lilith. Even though end-to-end encryption was not used

it was perfectly safe since connection was directly peer-to-peer and isolated from

the internet. This procedure took over 2 weeks. This resulted in an exact copy of

all Argus archives being copied into 3 servers. At this point the Argus archives

were safely extracted from failing „Mithril‟.

3.2.2 Data Forensics

Additional information was required to be backed up from the GLORIAD

archives. Global Science Registry (GSR) which was an integral part of

GLORIAD, paid versions of geo IP databases which contains IP address to

location mapping and legacy archives of security information which were

collectively known as „Bad Actors‟ were backed up from the relevant servers. So

the following databases were recovered and backed up:

1. GSR MySQL database

2. GeoIP database

3. „Bad Actors‟ database

GSR database

GSR is a carefully curated repository of 14,000+ institutions and projects using

global research and education networks. This database contains information that

maps IP addresses to domains, domain name servers (DNS), names of

institutions, disciplines, countries, provinces, cities, and zip codes etc. GLORIAD

InSight used these archives to tag each network flow with its information. It was

stored in a MySQL database and was recovered from the server „Bluemac‟ which

was in the format of MySQL dump of 8.6GB. „Bluemac‟ was one of the servers

that GLORIAD that used to host the InSight and store GSR. This was in the form

of a large script which when executed through MySQL terminal Imports all the

information contained in the dump to be added into the database creating

necessary table definitions. It was useful in building InSight2 where this

information was uploaded into Elasticsearch database for faster access since

Elasticsearch supports indexing which is optimized for searching. This

information was the most up-to-date information at the time when the GLORIAD

project ended.

31

GeoIP database

Old archives of geographical location data provided by Maxmind geo IP database

was also found in the „Bluemac‟ server where the old „Farm of Animals‟ used to

be when it was operational. These provided up to date geo locations of the IP

addresses at the time when GLORIAD InSight was operational. Currently InSight

uses free version of the up to date Maxmind geographical location information.

Collecting this information would enable us in the future to implement advanced

metrics how IP addresses belonging to the GLORIAD network change overtime.

Bad Actors database

„Bad Actors‟ archives contained the following information:

 Emerging threats

 CYMRU Bogons

 IP addresses belonging to Zues botnet

 IP addresses belonging to Feodo botnet

 IP addresses belonging to Palevo botnet

 IP addresses belonging to Spyeye botnet

First dataset, a paid-for dataset containing emerging threats by Proofpoint [24],

was subscription-based, that provided reputation intelligence about IP addresses

which is built using its proprietary algorithm. This helps identify IP addresses

domains that pose risk in order to prevent attacks. This database consists of

separate list for IP addresses and domains, they confidence score about its

reputation and constant updates. The bogon dataset provided by Team CYMRU

[25] lists the IP addresses that belong to bogons. Internet routing table contains

IP addresses that are allocated for public and private purposes. A bogon is a

prefix of IP addresses that are not intended to be present in the internet routing

table. IP addresses that belong to these bogon prefixes are malicious and should

not be routed through the internet and they are commonly found during

Distributed Denial-of-Service attacks (DDoS) as the source IP. The other

datasets belong to different kinds of botnets. A botnet is a collection of computers

belonging to individuals that are infected with malicious software and controlled

as a group to perform the commands of the botnet master. These networks are

used to launch denial-of-service attacks send spam messages, Bitcoin mining,

32

distribution of spyware, and performing click fraud, which occurs when the

infected computer visits websites without user‟s knowledge to generate

manufactured traffic to earn money. Some of these Bad Actors in the network are

unaware of the fact that they are infected making them hard to detect by the

owners. They are controlled by either centralized or decentralized command and

control mechanism performed using Technologies such as Internet Relay Chat

(IRC) and peer-to-peer protocol (P2P) respectively. Currently InSight uses a

subsection of these datasets which are free in addition to the other free security

data sets that were found during the development phase. These archived data

sets provide up to date information about such infected computers at the time

GLORIAD InSight was operational which will enable us in the future to determine

how those bad actors evolved over time, whether they compromised IP

addresses return to normal state or vice versa.

3.3 Preventive Measures Taken

3.3.1 Contingency Backups

GLORIAD used a backup storage device named „QNAP‟ to back-up the essential

information which contained a backup of Argus archives from 2012 to 2014 and

the GSR. QNAP data storage device with the capacity of 16 hard disk drives is

basically an ARM server optimized for data storage needs. It is essentially a

network attached storage (NAS) server system that uses a proprietary operating

system based on Linux, which offers advanced functionality built into the OS,

such as Digital Living network Alliance (DLNA) multimedia streaming, data

encryption, cloud backup, built-in dynamic DNS service which allows it to have a

public dynamic IP address such as the IP addresses which are received from

ISPs which change every time the uplink connection is refreshed and still be

accessible over the internet by giving it a domain name that updates the IP

address mapping automatically, the ability to manage the server using web

browser and the ability to install third-party apps to extend functionality. However

none of the advanced functionalities of this server were used and it was only

used as a storage server for Argus archives. Login username and password for

QNAP were not documented which prevented access. The only other way was to

physically remove the hard drives, install them in another server, reassemble the

RAID configuration, and copy the data, since the data was not encrypted in the

hard disk drives. But due to the lack of such equipment it was impossible to

33

access the data located in QNAP even though it contained Argus archives and

GSR.

QNAP has a reset switch which pressed for more than 10 seconds will reset the

configuration and delete all the files stored within. As a last resort to gain access

into the system this method was used during which process all the data was

destroyed. But since the purpose was to use the system to back up the already

extracted data this was not an issue. After gaining access it was discovered that

one of the hard disk drives was failed. This was replaced by a new one and OS

was updated to apply the latest security patches. Screenshot in the Appendix B

shows the QNAP drive information.

Redundant array of Independent disks (RAID) is the technology used to merge

multiple drives into one virtual drive that provides higher degree of data

protection compared to single drives. RAID has different versions suited for

different levels of data redundancy, RAID 1 Is a mirror of all the data stored,

RAID 5 uses Block Level striping with distributed parity which offers continued

function after one drive failure. RAID 6 uses 2 parity drives to offer data

redundancy for 2 drive failures. Both these methods require one or two drives

respectively used for parity purposes which cannot be used for data storage

purposes. QNAP‟s disk drives were arranged in an RAID 5 configuration which

allowed the system to function even though there was a failed hard drive. This

essentially reduces the number of usable hard drives by one which is used as a

parity drive.

When data is stored in physical hard drives it consumes more than the total

capacity of the data. This space is consumed by formatting block information and

file header information. So even though total Argus archive capacity was 14.6TB,

the capacity of QNAP of 16TB was not adequate to set up any RAID

configuration. The RAID configuration was therefore removed in favor of „linear

drive merge‟ to accommodate all the of Argus archives into QNAP. Linear drive

mode will combine all the hard drives of the system into one virtual hard drive

which can be used to continuously store data without physical boundary between

different hard disk drives. However, this mode does not offer any failure tolerance

for any of the hard drives. In normal cases, it is highly advised against since it

does not offer any protection by redundancy when a potential disk failure

happens.

34

QNAP was geographically separated from „Mithril‟ and was stored in Department

of Electrical Engineering and Computer Science‟s server room. Data was copied

back to „Mithril‟ from „Bulika‟, „Lona‟ and „Lilith‟ after „Mithril‟ was formatted of its

configuration and OS was reinstalled which is described in the following section.

3.3.2 Hardware and Software Setup

The new processing servers, „Bulika‟, „Lona‟ and „Lilith‟, were donated by Cisco

each of which are capable of handling 40 parallel processing threads at once,

hosts 384GB RAM, and has a total of 12TB SSD capacity.

GLORIAD had setup the 11 out of 12 drives in JBOD (Just a Bunch of Disks)

configuration which bypassed the built-in hardware RAID controller. FreeBSD

then merged them using redundancy scheme, the ZFS file system. After the data

was recovered there was the option to completely change the configuration or

keep the previous set up. This opportunity was used to change the drive setup

from ZFS RAIDz2 (which is equivalent to standard RAID 5) to standard RAID 6

and format entire virtual drive the EXT4 and also to utilize the unused drive for

data storage. At first the reason for not using the drive was assumed to be due to

damage or failure but after applying new configuration to include this drive, it was

found to be fully functional. More information about the previous drive

configuration is shown in the Appendix B.

In this method two LSI MegaRaid SAS-9271-8i hardware RAID controllers that

were present in each of these servers are used in the configuration shown in the

Table 3.2.

Table 3.2 Disk Configuration

Controller

Slot

Number of

Drives

Usable

Capacity

Number of actual

usable drives

Purpose

1 4 2TB 2 OS

2 8 6TB 6 Data Storage

35

This new scheme converts 4 SSDs into parity drives which become unavailable

for storage. But it offers the highest protection for the data by segregating the two

hardware RAID controllers into OS and data storage separately and setting up all

the drives in each controller in RAID 6 configuration which can tolerate up to 2

drive failures. The system can thus withstand 4 drive failures in total and still

function properly. The second controller allocated for data storage was mounted

at „/home‟ which transparently maps physically isolated disks and RAID controller

into the OS seamlessly. Software and configuration is stored in the „OS‟ set of

drives (slot 1) and permanent storage is held at „Data Storage‟ set of drives (slot

2). Furthermore, in the unlikely event of complete OS failure, simply replacing the

drives related to the „OS‟ RAID controller the system (slot 1) and installing the OS

the system can be brought back up to full functionality since data storage is in a

separate RAID controller which handles all the separate SSDs. This scheme also

offers better software independence by making it easier to replicate the setup in

wide variety of systems since it is transparent to the OS.

By utilizing the built-in RAID controllers the CPU and memory overhead to

maintain ZFS redundancy and data protection is offloaded to the built-in RAID

controller, freeing up processing capacity and memory for the function of the new

InSight2.

Operating system was changed from FreeBSD to Ubuntu Server 14.04 Long-

Term Support (LTS) which is based on Debian, a Linux distribution that is geared

toward stability and performance. Ubuntu uses mainstream latest Linux kernel

which integrates latest updates from Intel, the manufacturer of the Intel(R)

Xeon(R) CPU E5-2690 v2 @ 3.00GHz processor, which contains latest SSE

instructions and stability improvements. The overall philosophy of Ubuntu is the

stability so only the most stable version of the software is pushed to the end user

systems during an upgrade. This is essential for systems that need to be kept up-

to-date to make sure they have the latest security patches as they are facing the

internet which can pose outside threats. Since upgrades are low-risk it

encourages end user to upgrade the system without worrying about the system

breaking by new versions of the software installed.

For the installation of GLORIAD many software had to be compiled increasing

the complexity for the end user to install the system. All of InSight2‟s software is

installed from Ubuntu repositories. They are also carefully curated in order to

avoid conflicts with other software which makes upgrading them reliable and low

risk. All of this software is readily available in the online Ubuntu repositories

36

which makes it easy and reliable as well as secure to install them since they are

managed by the maintainers of the OS distribution and are installed by

downloading via built-in public key based encryption system mitigating the

chance for man-in-the-middle (MITM) attacks during the installation procedure.

The following software environment was setup in „Bulika’, „Lilith’ and „Lona’:

 Argus server and clients

Argus server is used to generate network flow information while this

information is displayed using Argus clients.

 Elasticsearch database and Kibana

Elasticsearch is the full text search engine used to store and search

enriched Argus data. It is highly capable of scaling up to the

growing needs of large-scale network metadata storage.

Elasticsearch is based on Apache Lucene and is known for its

ability to handle large volumes of data in the scale of hundreds of

millions of records per day. It is being used by a growing list of

companies that handle “big data” such as Netflix, Facebook,

Wikipedia, Atlassian and Github. It uses JavaScript Object Notation

(JSON) formatted data documents, format that is known to be

highly flexible that uses no scheme to define the records inside of a

document which allows the arbitrary definition of documents and

flexible typing of data contained within. It is based on a subset of

the JavaScript Programming Language, Standard ECMA-262 3rd

Edition. This format makes it easy for humans to read and write

JSON encoded documents and it makes it trivial for machines to

parse and generate them.

 Python modules

python-elasticsearch: Python client for connecting to the

Elasticsearch database and upload enriched records.

python-mysqldb: Python client to connect to the MySQL database

to extract the GSR into Elasticsearch database.

37

 Apache server, JavaScript, PHP

Linux, Apache, MySQL, and PHP/Python/Perl are known as the

LAMP stack. This LAMP stack is used for web-based software

deployments. MySQL portion of this is disposed of in favor of

Elasticsearch since it offers superior search engine and the rest of

the Apache2, JavaScript and PHP is kept inclusive.

GLORIAD InSight was written using the Perl 5 programming language, which

was superseded by Perl 6 in 2015. Perl stands for Practical Extraction and

Reporting Language which was originally developed by Larry Wall in 1987 and

was intended to be used as a general-purpose high-level scripting language to

process reports. It has powerful text processing capabilities making it suitable for

variety of applications ranging from system administration to network

programming. Perl is a flexible programming language which comes with the

slogan "There's more than one way to do it" (TMTOWTDI). For many cases this

is an advantage since code can be written in variety of ways to achieve the same

goal. Perl code can benefit from many of the third-party repositories that host

many different libraries that extend the core functionality such as comprehensive

Perl Archive Network (CPAN). However, when developing large-scale software

platforms this makes it hard to maintain code, since there is no standard way of

coding. Perl does not have native implementation of Object-Oriented

Programming (OOP). However third-party libraries exist that offer OOP

functionality if needed such as Perl Object Environment (POE) which was used

by GLORIAD and is available through CPAN. POE achieves OOP functionality

by having layered components on top of the ground layer POE::Kernel. Perl OOP

is not a native implementation and introduces more moving parts and extra

libraries to be installed to be functional in addition to the core language. Since the

competition from other programming languages such as C, C++, Java, and

Python for software development Perl programming language was mainly used in

the niche usage of quickly writing scripts without considering long term readability

or maintainability, to perform a few automation tasks regarding network or

system administration, and not for coding multi-developer large-scale projects.

InSight2 is built from ground up using the Python programming language. First

released in 1991, Python is a widely used language today, intended for general

purpose programming at a high-level compared other languages such as C. A

38

main focus of Python is to increase the readability of the code. It uses

whitespace indentation instead of curly brackets or keywords and provides better

syntax. Not only this allows code to be written with fever lines, it also comes with

large amount of official libraries which supplements the core functionality.

Compared to third party libraries and repositories, these modules are developed

by the official maintainers of the Python programming language. They are also

available from Linux OS official repositories making the installation streamlined

and safe. Python is installed by default in all Linux distributions. The installation

package that comes with InSight2 is greatly simplified by the use of Python

libraries from the repositories. These are carefully curated in order to avoid

conflict with other modules and installation is guaranteed to cover all the

dependencies by OS package management system such as „apt‟ found in

Ubuntu.

Elasticsearch, Logstash and Kibana are referred to as the ELK stack. We use

Elasticsearch and Kibana to store the data in the database, search necessary

documents and visualization. Alongside the development of InSight2

Elasticsearch was upgraded from version 1.4 to 5.3 and Kibana from version 3 to

5.3 due to various issues associated with the old version. More details about the

specific changes are discussed in depth in the Chapter 5.

39

4. DESCRIPTION AND ASSESSMENT OF GLORIAD INSIGHT

GLORIAD InSight architecture was a collection of Perl scripts that perform

reading from either Argus archives or Radium server (a collection node for

aggregating Argus data from multiple nodes), processing and inserting into

Elasticsearch (ES) database to be visualized in a customized version Kibana

webpage.

4.1 Software Architecture

It is important to understand the system architecture of GLORIAD InSight to

improve upon that and make progress. Limited documentation was provided by

the GLORIAD team about the purpose of each server such as whether they were

used for hosting Elasticsearch, Kibana and other databases, what OS they run

on, what Argus flow information are extracted from the flow records, and the

general skeleton of an animal of the GLORIAD InSight platform. For in-depth

understanding about each animal, the code base has been investigated to find

out how each animal functions, what databases it accesses at what time, how

intermediate data is stored, how the final results are posted and where, and how

they communicate with each other.

GLORIAD InSight used FreeBSD on the ZFS RAIDz2 file system for the OS and

its data storage purposes. While ZFS offers many advantages compared to

traditional file systems such as being able to add new disks without breaking the

disks array, perform compression, de-duplication, caching and quota

management, it requires constant maintenance. During the investigation to find

out the causes of failure of the file system it was found that ZFS has emailed the

system administrator cautionary messages about the file system being used over

the quota. ZFS requires significant amount of free space for its operations to

perform as a scratch space and low disk space can lead to file system failure.

InSight2 utilizes the standard RAID 6 redundancy enabled file system that allows

the tolerance of failure of up to 2 drives. As opposed to the setup used by

GLORIAD which involves bypassing the built-in hardware RAID controller to

handing over the disk redundancy and error recovery two the software ZFS, the

new server setup beginning with InSight2 involves using the built-in RAID

controller to offload these functions to the hardware controller which frees up

valuable system resources for data enrichment. While ZFS can transparently

40

perform redundancy and error recovery while the file system is online disc write

and read operations need to be performed through these extra file system layers.

The standard implementation of RAID does not require expertise on ZFS file

system to maintain it properly, and it is a truly set-up-and-forget-about-it solution.

Each function call was an event in the event-loop and was executed

asynchronously with time-independence. In order for this event model to function

properly the function calls needs to be non-blocking. For example, if a function

gets blocked waiting on results from a database query then all the other events in

the loop had to wait for this event to complete. Main database used by GLORIAD

is stored in a MySQL database which is a sequential database. Since it only

allows single read or write action at a time, database accesses every animal

need to be optimized for database transactions to prevent bottlenecks.

„Elephant‟, the most significant animal of the farm needed to have access to this

database more frequently than the others. It was invoked every 30 seconds and

posted data into Elasticsearch database to be visualized. In order to make sure

proper functionality of „Elephant‟ it was paramount that „Main‟ MySQL database

was not blocked for read-write access. To achieve this, „Elephant‟ kept a simpler

and separate database in the form of a SQLite table called „ip_cache‟. SQLite is

a lightweight database which stores is database in a file. This makes it suitable

as a secondary database for the use of „Elephant‟ since updates to the database

can be performed easily and without blocking other animals from accessing the

„Main‟ database.

This event model required a mechanism to pass messages between each script

to be able to communicate with each other. It was achieved through ZeroMQ

publisher subscriber style message passing queue. Animals were not restricted

in the way they are allowed to access system resources. It enabled different

animals to access any database, Argus archives, start new processing tasks and

access memory at any given time. The architecture is outlined in the Figure 4.1.

41

Figure 4.1 GLORIAD InSight System Architecture

42

Some animals may take longer time than others to process data, post the results

and terminate. Because of this reason all animals need to be synchronized to

pass and receive processed results correctly. Most animals are invoked using

Linux system tool „crontab‟ that runs jobs at certain programmed time intervals.

„crontab‟ is an automated tool that is used to perform system administration

functions such as checking if a file content was changed, making sure certain file

permissions are preserved, and periodical backups to a remote server. Timing

has to be carefully benchmarked and determined beforehand due to the

unpredictable nature of animals that occurs due to unpredictability of network

performance such as spikes in the network utilization e.g. Denial of Service

(DoS) attack.

Due to various unexpected events such as receiving unexpected data formatted

out of scheme or programmer bugs scripts can exit before their tasks have been

completed. Asynchronous event model requires separate daemon process which

is capable of monitoring the said scripts from terminating prematurely. This

program will keep track of the process numbers of the processes that it is

programmed to monitor and in case such process exit for some reason it will re-

invoke them and log it into its log file. These log files can be used to debug

problems that might have caused the script to terminate. The asynchronous

event model handles a number of moving parts. Continued functionality of the

farm is guaranteed using monitoring tools, invoking scripts at the right time, and

using message passing queues to enable communication between different

independent animals.

The GLORIAD InSight has been written in Perl 5 programming language. The

event-loop logic was taken care of Perl POE module [26] all animals run

POE::IKC::Server. And all the animals are required to include this library in their

code. Each IKC server runs sessions which is a collection of functions called as

events or states. Generally each animal runs 3 sessions:

1. S_eat: This session reads input data and processes it.

2. S_clean: This session runs periodic events to do grooming jobs such as

trimming the databases, cleaning up caches etc.

3. S_answer: This session has events to terminate the animal or keep it

alive.

43

This posed limitations where behaviors of some animals require deviation from

the standard sessions such as Elephant that has custom sessions to talk to other

animals such as „Rabbit‟ and „Mouse‟.

The „Farm of Animals‟ architecture allows users to add new animals to the

system to get new functionality. For example to get the functionality to add new

type of metric the end user or developer could develop a new animal that will

publish the desired information to the pub-sub proxy, „Sheepdog‟. Then by

modifying the „Elephant‟ that information can be included in the JSON document

sent to the Elasticsearch database via „Mouse‟. The intention was to allow of

developers to write their own animals to extend the functionality of the system.

The drawback of the system was that there were no guidelines or a structure that

developers need to adhere to in order to ensure the proper maintenance and

compatibility between animals, causing potential disarray if released as open

source software.

Zero Message Queue is a communication bus queue and is used for passing

messages between the animals. ZeroMQ is a free and open-source distributed

messaging platform which allows multiple codes working on different aspects of a

software system to communicate with each other. It supports message passing

over inproc, IPC, TCP, TIPC, and multicast. Its core focus is asynchronicity. This

is useful for any software platform that implements asynchronous architecture. It

is being actively developed and available for many different programming

languages. It is being used by companies such as AT&T, Cisco, Spotify,

Samsung Electronics, and Microsoft. Unlike other message passing buses which

only uses a broker system to delegate the messages as seen in architectures

such as “hub-and-spoke” ZeroMQ Is capable of adopting different kinds of

techniques for data transfer such as „broker‟, „no broker‟, „broker as a directory

service‟ and „distributed broker‟. The messages are transmitted through the

network and transmitter and receiver nodes are uniquely identified by the

network socket address. GLORIAD InSight used the „broker‟ functionality of

ZeroMQ. Messages are passed into the network socket of the broker to be

delivered to the intended recipient. Until the intended recipient polls the queue to

check for new messages two messages are kept within the queue. In the case of

InSight, processed and enriched data is pushed into this queue to be read by

another animal which either uses that information to enrich more data or to

upload into the Elasticsearch database.

44

ZeroMQ provides a reliable message brokering platform. It guarantees point-to-

point reliability. The sender only needs to make sure that the message has been

successfully passed into the broker. One disadvantage of this system is that it

itself is a complex software and involves processing and memory overhead.

It is suitable for the architecture used by GLORIAD InSight since information is

iterative enriched by different animals independently and asynchronously.

Animals are complex in nature and differ by their function; some of them directly

communicate with Elasticsearch to upload data while some passes data to

another animal. Having this robust message passing platform makes it possible

to unite the animals into one cohesive software platform.

Monit is an application used for monitoring processes. InSight used this to

monitor each animal. If for some reason an animal gets killed Monit would re-

invoke that particular animal. Monit would keep a log of the invoked animals

which enabled easy debugging and investigation to find out why that animal died

(no pun intended). While using a background service such as Monit eases the

use of scripted animals, it is not an ideal solution, since the InSight software suite

is not integrated tightly into the OS. This also introduces other software to be

installed in the target system further contributing to the complexity as a whole.

4.2 Description of ‘Farm of Animals’

The Perl scripts were collectively known as the „Farm of Animals‟. Animals are

given names such as „Elephant‟, „Mouse‟ and „Guarddog‟. However it should be

noted that animal names in the real life does not necessarily reflect the function

of the script. For example, „Elephant‟ is responsible for filtering out traffic to select

the large network flows and attach information „published‟ by other animals such

as „Scorpion‟ another animal whose functionality is to detect network and port

scanners within the network. These two animals in the real life do not reflect the

functionality of the script itself. On the other hand, „Guarddog‟ that publishes „Bad

Actors‟ found within the network into the publisher subscriber queue known as

pub-sub queue, does provide semantic resonance to a real world „guard dog‟

which watches out for threats. Publisher subscriber proxy, „Pub-sub proxy‟ in

short, is a message passing bus that enables different animals within the farm to

communicate with each other. Publishers will publish data into the queue in the

form of JSON format, such as „Scorpion‟ which will publish the list of IP

addresses that it detects as scanners, while the subscriber will collect this

45

information from the queue and use for its own purpose, such as the „Elephant‟

which will use the information published by the „Scorpion‟ to tag those IP

addresses before sending to an instance of „Sheepdog‟ to be send to the

Elasticsearch database using „Mouse‟.

In its final version GLORIAD InSight was capable of incorporating different

dashboards to show different aspects of the network ranging from network

telemetry such as the number of bytes transmitted, number of packets

transmitted, geographical information, institutional information such as

organization name, discipline, and security information such as bad actors

scanners and spammers. The user interface of GLORIAD InSight allows

switching between different categories of dashboards that displays a range of

information based on regions to operations. Each of these categories contains a

suite of dashboards that offer relevant information. The dashboards are static,

pre-configured collection of visualizations. When each dashboard is selected

they are loaded allowing the user to visualize the network status during the given

time period.

Each farm animal was designated one task, built on „asynchronous event based

model‟. Key animals are described next.

Elephant

This animal was the critical component of the farm. Due to the processing being

performed using a single thread first icmp, udp, ntp traffic is filtered out and

network flows that are less than 1500 Bytes are discarded. This made sure that

all the incoming traffic is processed without packet drop. Argus flow information

sent from these locations was collected at the Radium server in „Bluemac‟. The

architecture of the „Elephant‟ is outlined in the Figure 4.2.

Elephant keeps copies of the tables it needs in a SQLite database named

„ip_cache‟. While this allows faster access compared to accessing the main

MySQL database, it consumes more space since the data in the main database

is duplicated. This also prevents the main table from locking up due to read

access. This is a significant drawback of using sequential databases such as

MySQL and SQLite, and asynchronous event model. In the asynchronous event

model different animals are allowed to access the main MySQL database at any

time, which can result in spikes in disk access incurring longer-than-usual wait

46

times since sequential databases only allow one activity to be performed at the

time. When the „Elephant‟ process starts, it loads all the relevant data to local

SQLite temporary tables and builds „ip_cache‟ table as It reads all the IP

addresses seen in Argus files in last 30s and attaches geo-location and domain

info corresponding to each of those IP addresses into the „ip_cache‟.

Records older than 2 hours are purged from the „ip_cache‟ SQLite database.

This ensures that this cached version of the main database is relatively up-to-

date. However, if an IP address was updated in the main database within the last

2 hours it will not be reflected in „ip_cache‟.

Figure 4.2 Architecture of the „Elephant‟ animal

Core data structure of Elasticsearch is JSON documents, which are simple

objects that contain keyword and value pairs in a nested format. Before a record

can be uploaded to Elasticsearch database it is constructed locally until the

47

record is complete. Elephant keeps these records inside this SQLite database.

„Elephant‟ reads from Argus archives every 30 seconds and all the flows in this

30 seconds are processed first by using the filters described above, then are

tagged with the information sent by other animals and finally uploaded to

Elasticsearch.

Mouse

Mouse accepts JSON encoded enriched documents and submits them to the

Elasticsearch database. In this way, it abstracts animals from the details of

interaction with Elasticsearch.

Rabbit

If „Elephant‟ or any other animal in finds an IP which has no entry in the local

„ip_cache‟ cache table in SQLite database then it sends a message to „Rabbit‟.

„Rabbit‟ tries to get the IP‟s info such as city, country, latitude, longitude,

Autonomous System (AS) numbers – „asnum‟, GSR based institute information

called „domain records‟ and Domain Name Server (DNS) from the GSR tables in

„Main‟ MySQL database. If it is not in the database, it goes upstream and gets

the info from Maxmind GeoIP database. It updates the „ip_cache‟ database with

the new information and sends a reply back to the animal which initiated the

request.

Sheepdog

This is a ZeroMQ pub-sub proxy, which abstracts animals from details of

implementing ZeroMQ related functions such as adding records to the queue or

extracting from it to enable multiple clients to publish or subscribe to a ZeroMQ

message queue. Animals such as „Guarddog‟ and „Scorpion‟ publishes IP labels

to „Sheepdog‟. „Elephant‟ subscribes to those messages. Architecture of the

„Scorpion is outlined in the Figure 4.3.

48

Guarddog

Guarddog is responsible for tagging network flows that belong to malicious IP

addresses. It gathers these information from the „bad actors‟ database. The

Architecture of „Guarddog‟ is outlined in the Figure 4.3.

Figure 4.3 Architecture of the „Guarddog‟ animal

Spider

According to Symantec Monthly report in October 2010 [27] percentage of spam

messages sent via email in the world was 89.4% of all the messages sent in

September and it was increased to 92.51% in August. This trend not only wastes

the valuable bandwidth resource within the network that could otherwise be used

for research and education purposes, but also poses risk to the recipients of

these emails. Employees might open these messages thinking that they are from

an official source only to be infected by malware. They can spread from one

computer to another costing the organization time, money, and reputation.

Research and education networks are not an exception to spam messages.

During the development of spider several nodes were identified as spammers.

And „Spider‟ continue to identify more and more IP addresses that involve in

spam activity. While it is not the practice nor the policy of GLORIAD to record or

49

look at the contents of the spam messages they are very likely to be marketing

materials where massive number of email addresses are targeted for spreading

unsolicited advertisements, „phishing attacks‟ where a large number of end users

are tricked into doing something while pretending to be doing something else,

and „spear phishing‟ attacks where specific individual is targeted and messages

are sent pretending to be from a bank or their employer tricking them to expose

their credit card, Social Security Numbers (SSN) or other personally identifiable

information (PII) in order to perform fraud. Spamming inside the network is a

nuisance and a threat to its users and should be identified in order to take actions

against these nodes such as blocking their access to the network or limiting their

ability to send a large-scale email messages. Responsibility of „Spider‟ stops

here and later this information is visualized using the web interface. Figure 4.4

shows the data flow and architecture of „Spider‟ animal.

Figure 4.4 Architecture of the „Spider‟ animal

50

Scorpion

Scanning is a network functionality which involves sending a series of packets in

covert or in rapid succession in order to glean information about the target

device. This information can vary from devices that are up and running, number

of open ports, open port numbers, services running in these ports and their

versions, of these devices.

Scanning is the first step of reconnaissance during a cyber-attack. This gives

attackers enough information to find a suitable exploit to use against target

service. For example, if a node is running a website, which is evidenced by the

open port 80 to the outside world, that user should be running some version of a

web server. First step is to identify which device is up in the network which is

known as „ping sweep‟ which sends a series of packets to a subnet of the

network and see which devices reply. Unless the end user has taken measures

to prevent replies to these probe messages the device will let its presence be

known by sending a reply to the sender of this probe. Scanning allows to identify

that the user is in fact have left the port 80 open which gives away that there is

some service running in this port and it is accessible to the outside world. This is

known as „port scanning‟. Furthermore, using a „service scan‟, which sends a

series of predetermined and crafted TCP packets in a certain sequence and

observing the sequence of the replies version of the web server can be guessed

fairly accurately. By looking-up this information in vulnerability postings that are

publicly available, such as Common Vulnerabilities and Exposures (CVE),

attacker is capable of finding an attack that this specific version of web server is

vulnerable to. This process of reconnaissance is generally identified as „network

scanning‟ and „port scanning‟.

Identifying these misbehaving nodes early in their process of launching an attack

gives a window of opportunity to act before the actual attack happens. „Scorpion‟

reads Argus archives in order to detect which nodes perform scanning activity

within the network. This is a time critical problem to detect scanners so scorpion

is invoked every five minutes. Timing is essential since all animals in the farm are

asynchronous in behavior and it is important to publish this information into the

ZeroMQ message bus just before the invocation of the „Elephant‟. When

scanning IP addresses are identified „Scorpion‟ will publish this information so

that when elephant looks up in the queue it will extract this information using

„Sheepdog‟. IP addresses seen in the stream of flow information read within the

last 5 minutes that matches the scanner IP addresses are tagged with the

51

„scanner‟ identifier. Then they are uploaded to Elasticsearch. Responsibility of

„Scorpion‟ stops here and later this information is visualized using the web

interface. Figure 4.5 shows the data flow and architecture of „Scorpion‟ animal.

Figure 4.5 Architecture of the „Scorpion‟ animal

52

Other animals

General functionality of these other animals was learned from their respective

code and are categorized below. They perform minor tasks on behalf of the main

animals.

Elasticsearch related

Cow – Create new tables in Elasticsearch database

Horse – Search for a given record in Elasticsearch database

Mice – Bulk create Elasticsearch documents of an arbitrary length

Turkey – Extract and hold records from Elasticsearch to be visualized

Duck – Extract a given subset of data from database

MySQL, SQLite and database caches related

Dog – Update information in the MySQL GSR table

Rooster – Create temporary records of daily flow information

Cat – Perform database and cleanup functions.

Barn – Create, update and clean caches

Message passing related

Raccoon – Dump data from a ZeroMQ message queue for debugging

Sheep – Create Perl::POE session kernels

Administrative functions

Farmer – Keep track of the farm of animals.

Squirrel – Create more „Elephant‟ sessions if needed

53

4.3 Global Science Registry

GLORIAD InSight uses sequential databases in addition to Elasticsearch in order

to keep GSR and other flow related information such as services, information

about equipment, VLANs, AS numbers etc. MySQL and SQLite databases are

used to store permanent data and temporary data respectively. SQLite Database

is primarily used by „Elephant‟ to keep a cached copy of the information readily

accessible that is separate from the main database using MySQL. Information is

trickled down from the main MySQL database to the SQLite database as needed

basis.

‘Main’ MySQL Database

The GLORIAD InSight „Main database‟ is stored in a MySQL database which is a

form of sequential database that allows data to be kept in a pre-configured

manner. This format is in the form of tables and records, and each of these

tables can contain either data or a foreign key that links a record to another

record in another table. This pre-configured format is called the „database

schema‟. Insertions into the database should adhere to this schema and if any

data differs from this schema it cannot be inserted without change to the schema

which requires creation of new table and copying back of the old data along with

the new fields added as null values or zeros. While the use of sequential

databases is suited for data that does not change its fields over time, they are not

suited for data that are dynamic in nature such as information about IP

addresses; geo location coordinates country, city and zip code. This „Main

database‟ consists of information ranging from disciplines, organization class,

application name, and region information. They are distributed across 29 tables,

of which 12 tables contains the information relevant for data enrichment, such as

„classes‟, „domains‟, „ipsdns‟, „ip_unassigned‟, „ccodes‟, „disciplines‟, „asnums‟,

„iplabels‟, „govagencies‟, „apps‟, „ips‟, and „ipstext‟ which are explained below

after the description of the SQLite temporary database.

‘ip_cache’ SQLite Database

Unlike MySQL which requires a server to hold the database and execute query

functions, SQLite is self-contained, server-less, transactional sequential query

database language engine. This makes SQLite very lightweight and easy to

54

deploy for requirements that focus on portability. While MySQL can be disk input

output (I/O) intensive SQLite is focused on keeping its data mainly in memory.

the larger the database gets the more memory it needs to function efficiently. It is

cross platform and open source. It has database access clients written in almost

any programming language.

„Elephant‟ keeps a local SQLite database with copies of tables it needs from

„Main‟ MySQL database. This is to speed up the data reading and also to avoid

table locks on the main database. When „Elephant‟ process starts it loads all the

relevant data into local SQLite table building up the „ip_cache‟. It reads all the IP

addresses seen in Argus files in last 30 seconds and loads geo-location and

domain info corresponding to each of the IPs into the cache.

During the S_clean session it expires all IP addresses that haven‟t been seen in

last 2 hours from the cache.

Tables in the ‘Main’ MySQL Database

MySQL database dump was uploaded to a temporary MySQL instance to explore

the contents in order to reconstruct the GSR by de-duplicating entries and

converting the sequential tables into JSON documents for faster searching using

Elasticsearch database.

Domains: „Domains‟ table contains organization class, world class, government

ID, discipline, country, city region, postal code, and latitude and longitude

information. This table is an aggregation of „ipsdns‟, „govagencies‟, „Disciplines‟,

and „ips‟ tables. „Elephant‟ in GLORIAD InSight makes a copy of this table every

time it is invoked into a SQLite database for faster access. This table is also the

table that has largest number of fields, as well as the highest amount of

information. Each time „Elephant‟ encounters new IP address for which there is

no information in the „domains‟ table it will invoke a new instance of „Rabbit‟ to

fetch geo location related information, which „Rabbit‟ will insert into the „Main

database‟. Subsequent searches for the same IP address will be taken directly

from the SQLite database instead of consulting Maxmind GeoIP database. So

over the time this database will expand to include all the IP addresses seen in

the particular network.

55

Classes: IP addresses in the GLORIAD network are categorized into one of

several classes. „Classes‟ table contains information paired between Class ID

and Class Name. Here Class ID accesses a foreign key that links record from

other tables to the „Classes‟ table. It also contains application ID, country code,

direction and network information as well. Flow direction information is also

present in flow records which essentially duplicate that information. Information

such as country code network router and application ID information should be in

their respective tables so that the most significant table „Domains‟ table contains

foreign keys which can be used to retrieve textual information. This allows having

flatter architecture of the tables with less depth instead of hierarchical

architecture of tables which result in higher complexity as well as information

redundancy and longer-than-necessary look up times. InSight2 as described in

the later chapters keeps all information in a separate index in the Elasticsearch

database utilizing a simplified structure which results in faster access as well as

ease of maintenance.

IPsDNS: This table is used to map key ID to IP address and DNS server. Other

tables can use the key ID field to map records to records in this table. The DNS

information stored in this table is used to determine which domain name lookup

resulted in the information transaction. Create time and modify time information

are also stored within the table which are redundant information since these

records does not need to contain create time and modify time as they are static

information.

Disciplines: This table uses „discid‟ to map discipline ID into the discipline and

name. However, it was noted that ‟domains‟ table duplicates this information in its

table rendering this table redundant.

IPlabels: Key ID is used as the unique key for the records in this table which

contains information such as IP address, IP name, and other labels. In practice

this table is used to match IP address to the IP name. This table also contains

create time and modify time fields which are redundant information.

GovAgencies: This table contains foreign key from „domains‟ table, „govid‟ and

matches it with the agency name and country code. This table also contains

„modify time‟ field which is redundant information.

56

Apps: By looking at the port numbers, the application each flow belongs to can

be determined. But these applications to port number matching have to be stored

first. This table contains this mapping. „appid‟ is matched with application name,

service ID, and application category.

IPs: Records in this table give mapping for key ID, domain ID, autonomous

system numbers and country codes. It also contains IP address in string format

as well as hexadecimal encoding. Even though hex encoding can improve space

efficiency keeping both string version and hex encoded version is an inefficient

use of space.

IPsText: „keyid‟ Field is matched with IP name, region code, city, postal code,

latitude, longitude, ISP, organization name, country code, IP address, domain ID,

autonomous system numbers („asnum‟), source and destination traffic in Bytes,

minimum traffic and maximum traffic by month.

4.4 Assessment

4.4.1 Software Architecture

Originally intended for sequential programming for text processing applications,

Perl is probably not the best choice for a system such as GLORIAD InSight.

Other programming languages are better suited for software development and

maintenance. Low-level languages such as C++, and high-level languages such

as Python and Java are better suited for large-scale software projects. They have

native implementation for the creation of objects and their use. In order to use

object orientation features in Perl, the third-party Perl::POE package must first be

installed along with the community driven repository known as Comprehensive

Perl Archive Network (CPAN). This increases system overhead with regard to

disk usage as well as memory to maintain and update the additional software

repositories apart from the system managed software repositories such as „apt‟.

Furthermore dependency requirements have the potential to change over time

causing incompatibilities with previous versions, which in fact was the cause of

the degradation of GLORIAD InSight. In these cases one option is to hold back

onto older versions to maintain compatibility with the old code or upgrade the

code to suit for the changes of the new modules. The former option is not

recommended since overtime lagging behind too many software versions can

increase the vulnerability of the whole system for cyber threats and these

57

previous versions may contain bugs that are fixed in the newer versions which

would not be applied if they are not updated. The other approach is to keep up

with the changes of these modules and update the code appropriately. However

these third-party maintained codes are more likely to be abandoned by their

developers due to change of interest or management, compared to software

modules maintained by the original development team of the programming

language itself.

Perl Foundation released the new version of their language, Perl 6, which is a

significant update to the older version, Perl 5. Perl 6 has been in the

development for 29 years. It introduces a long list of changes that are aimed

towards better maintenance of code, from the inclusion of static typing of

variables to core changes to its syntax. Compared to Perl 5 where subroutines

had to be defined without formal parameter list and calling the subroutine with

arguments was using a list of elements. This deviation from most other

programming languages required the programmer to change the way of thinking

specific to Perl 5 and in Perl 6 this has been changed to formal parameters

similar to other mainstream programming languages. Among the many core

changes the ability to natively implement object orientation as well as multi-

threading proves Perl 6‟s suitability for large-scale software development over

Perl 5. However these changes make the code written in Perl 5 incompatible with

Perl 6 migrating to the newer programming language requiring a complete rewrite

of the old code.

Perl 6 has been released as a specification instead of an implementation.

Consequently, there are more than one implementation of the same language.

As of this writing none of the Linux distributions ship with any Perl 6

implementation. The recommended implementation by the Perl 6 developers is

„Rakudo Star‟ which comes with support for the MoarVM backend. The latest

version adheres to the implementation guidelines of Perl v6.c. While there are

stable releases it is still in the development which can cause instabilities for code

written in Perl 6.

Versions of software used by GLORIAD InSight were outdated by 2 years.

During this course of time support for the older versions of the software had

ended causing them to just display a message asking to update to the newer

version. But the compatibility of the enriched data using the older version was

removed in these new versions. Elasticsearch moved from JSON based scheme

for uploading and accessing data stored within the database into a RESTful

58

Application Programming Interface (API). RESTful API is based on

representational state transfer technology. This is a standard API for web related

application development. It is also known as the language of the internet.

RESTful API makes use of the HTTP methodologies Defined in the RFC 2616

protocol. It can abstract the functions of a web service into just 4 commands:

 GET - Retrieve a resource

 PUT - Update a resource or change its state

 POST - Create a resource

 DELETE - Delete a resource

This minimalistic protocol of communication is simple and effective as any

function related to web can be fulfilled using this API. Elasticsearch‟s decision to

migrate into this new standard protocol is beneficial to achieve uniformity across

many different technologies since it is current and widely used. But it is not

backwards compatible with JSON encoded documents. This not only broke the

compatibility of communication with Elasticsearch but also rendered the

dashboards created in the earlier version Incompatible. So the data that is

already enriched cannot be easily imported without re-enrichment. As a

workaround Elasticsearch introduced an experimental library that allows re-

indexing databases that are already indexed using old versions into the new

version. However this library was met with issues since not all the newer

functionality could be replicated during indexing.

Apart from these core changes Java version from 1.7 was updated to 1.8 as a

requirement for the latest Elasticsearch, version 5.3 Elastic suite of tools

consisting of Elasticsearch and Kibana was used which was the latest at the time

of development, and Nginx web server was replaced by Apache2 web server.

Requiring the use of other software such as script status monitoring software,

such as Monit, for the proper functionality of the suite of Perl scripts incurs

additional overhead with regard to processing power, memory, and disk space

usage for logging purposes. Using the Linux system‟s built-in tool, „crontab‟ to

invoke scripts periodically is not a feature of a large-scale software suite. As a

better alternative each animal maybe daemonized and run as a system service.

Linux system services are the most robust way to run programs in the

background. Systemd is a low level system and service manager which is

59

compatible with SysV and LSB scripts that replaces older sysVinit, and is found

in most modern Linux distributions today. It allows native parallelization

capabilities, and uses standard socket and D-Bus activation to start services,

which allows the user to start, restart, stop, and probe status using a single

command, „systemctl‟. Systemd Implements transactional dependency-based

service control logic where are the processes are tracked using Linux „cgroups‟.

This is a powerful method to ensure each demon is running as intended and

provides a standard way of investigating the status of each. Compared to other

system-level demonizing technologies such as „Upstart‟ found in the older

versions of Ubuntu „Systemd‟ has become the standard for all mainstream Linux

variants including Red Hat Linux, Debian Linux , openSUSE, and Ubuntu and its

derivatives which increase is the ease of deployment due to uniformity. This

helps lower the complexity of the implementation by reusing tools readily

available in the system that are intended to be used by user software. This also

negates the need to log independently from system logs since „Systemd‟ logs to

the central logging system which reduces the disk usage. This would have

increased the throughput of the hardware used by GLORIAD for InSight which

mainly uses hard disk drives which utilize spinning disks and is I/O intensive in

nature. Spinning hard drives are slower than solid state disks (SSD) and are

better suited for sequential reading and writing. Constant logging environment

increase is random write calls into the hardware platters which causes the

movement of the platter head out of sequence causing „seek delay‟ diminishing

the overall performance of the storage system. Since InSight is heavily

dependent on disk activity to store and search enriched Argus records, it is

important to reduce the usage of the disks by other non-essential programs.

4.4.2 ‘Farm of Animals’

The asynchronous nature of the farm requires timing constraints when animals

are passing messages using the ZeroMQ message queue. This poses several

challenges when the software platform grows in scale especially since all the

animals are run using a single thread of the CPU hence the unpredictability of the

time each animal takes to ingest Argus archives, digest the results, and output

the results back into ZeroMQ. If the window of opportunity to push the data into

the next animal is missed this data would not be enriched until the next cycle of

that particular animal. ZeroMQ was only used to pass data and not control

signals. So even though animals are invoked and given the freedom to operate

60

asynchronously they are not truly event-driven. If control signals were sent at the

end of each animal then the next animal can be started as soon as the previous

one ends, eliminating the chance of out of sync message passes.

Another disadvantage of asynchronous event model is that there's no regulation

or outlined structure that animals needs to adhere to in order to use the system

resources. This causes system instability and unpredictability. Argus archives are

stored on the disk using „gzip‟ compression method and every time and Argus

client needs to access these archives they need to be decompressed into

memory. When multiple animals access these archives simultaneously and

independently the same archives may be decompressed by each of them. For

example „Elephant‟ is most likely the first animal to read a certain archive since it

pulls Argus archives every 30 seconds followed by other animals such as

„Spider‟' and „Scorpion‟ since the decompressed archives are only kept in

memory until the animal that decompress the archive uses the data, after which

the data is discarded. This incurs the system unnecessary disk read actions to

read the archives, processing overhead for the decompression, increased

memory consumption to temporarily store the decompressed archives

repeatedly. For a system that requires all its power to enrich the network flow

records as well as for other software such as Elasticsearch database to index

and sort records, and web server to present InSight to each request by the users,

needs a robust mechanism to distribute and allocate system resources efficiently

without causing frequent bottlenecks in performance.

4.4.3 Global Science Registry (GSR)

GLORIAD kept GSR in a MySQL database, consisting of 29 tables. MySQL is a

sequential database which requires „schema‟ to be defined before data can be

stored. Elasticsearch on the other hand is a NoSQL implementation or a non-

sequential database which can contain data belonging to arbitrary structure. This

is especially important to store data which is constantly evolving. For example

currently the domain table consists of information about geo location,

organization and government information. If at some point of time new

information is to be added such as security information a new field cannot be

created in one of these tables without changing the database schema hence the

cluttered and inefficient structure of the „Main‟ MySQL database of GLORIAD. It

is almost impossible to predict the exact schema for the database and expect it

61

not to change over time. This poses the challenge of either knowing the structure

of the data beforehand or migrate all the data into a new table, both options are

not feasible. A third option is to create new tables when new information is added

which destroys the clean and well-designed structure of the database.

Elasticsearch by definition contains JSON encoded documents which can have

arbitrary structure. It has built-in mechanisms to detect what type of data is being

sent into the database and update the data types. Data types defined in

Elasticsearch are loosely typed. This allows it to have dynamic mapping.

Furthermore it allows the user to define their own data types known as an „Index

Template‟. Index template can either accept new fields and create new data

types on-the-fly or completely reject documents that deviate from the original

index template. Index template of InSight 2 is defined using partial strict mapping

of the data types which will ignore the malformed data fields and accept the rest

of the document in case corrupt data is transmitted along with good data. This

produces balanced and maintainable index structure which is suitable for

production environment.

This further simplifies the overall architecture by reducing the number of

secondary databases needed such as MySQL and SQLite. It also helps to

reduce the number of steps the installation program has to perform in order to

install InSight 2 in a client system.

Another advantage of using the same Elasticsearch database is that every

transaction is non-blocking. Blocking databases prevent further access or insert

or delete into the database until the original transaction is complete. This impacts

the performance of the system since the farm of animals are created to be

asynchronous. Asynchronous event model has no protocol for accessing the

database and all the animals are allowed to perform any operation into any of

these sequential databases at any time. This increases the wait time and causes

system instability since certain animals which have to wait until I/O lockup is

released for the database access. Event based model further increases the

unpredictability of the performance of the system since it makes it hard to model

the wait time for database access at a given time.

62

4.4.4 Hardware Capabilities

GLORIAD used 6 servers for data visualization. „Bluemac‟ is the main server at

“insight.gloriad.org” that is responsible for hosting the web server, „nginx‟. „nginx‟

is a lightweight web server Which instead of relying on threads uses an event-

driven architecture. This allows small scale web pages such as InSight to be

served with a small memory footprint. All the other servers are used to store the

Elasticsearch database.

GLORIAD Elasticsearch cluster had 11 nodes distributed across 6 physical

servers. Following is the list of servers used by GLORIAD InSight:

 Bluemac – 1 Elasticsearch data-less node

 Anodos – 1 Elasticsearch node

 Wingfold – 4 Elasticsearch nodes

 Goblin – 2 Elasticsearch nodes

 Princess – 2 Elasticsearch nodes

 Curdie – 1 Elasticsearch S node

Out of these highest performing servers „Bulika‟, „Lona‟ and „Lilith‟ are used for

InSight2. Others are decommissioned or shutdown.

All the Elasticsearch nodes have the same configuration directory structure to

make maintenance and updates easy. All the Elasticsearch related files were in

“/data/es”. Network metadata was collected in a central server located at Chicago

running an instance of Radium server. Argus nodes were located in „nprobe-ord‟,

„nprobe-sea‟ and „argus-ord‟. GLORIAD maintained 15 servers at the time the

project ended. A complete list of servers and their functionality used by

GLORIAD is provided in table 4.1

63

Table 4.1 GLORIAD servers and their functionality

Server

Name
Services OS

RA

M
Disk Space CPU(s) ZFS

Bluemac

Mysql

Workers,

Farm, ES,

Kibana

(InSight)

FreeBSD

10

192

GB

10x1T(7200;

SAS 5Gbps);

Intel

Xenon R

8 core, 16

thread x 4

2 x mirror

zroot; 8 x

raidz2 (~6T)

zdata

Anodos

Mysql,

Gearman,

ES(2 nodes)

FreeBSD

10.0

262

GB

12 x 2 T (7200

rpm; SAS

6Gbps)

Intel

Xenon 8

core, 16

thread x 2

zdata raidz2

10 ~14T;

zroot mirror

~1.8T

Wingfold

ES(4 nodes),

Kibana(InSight

)

FreeBSD

10.0

764

GB

12 x 1 T

(7200rpm;SAT

A 6Gbps)

Intel

Xenon 8

core, 16

thread x 4

2 x mirror

zroot; 10 x

raidz2 (~8T)

zdata

Princess ES (2)
FreeBSD

9.2

192

GB

16 x 1T

(7200rpm;

SATA 3Gbps)

Intel

Xenon 6

core, 12

thread x 2

2 x raidz3 7

each

(~12.5T)+

mirror (~1T)

Goblin ES (2)
FreeBSD

9.2

192

GB

16 x 1T

(7200rpm;

SATA 3Gbps)

Intel

Xenon 6

core, 12

thread x 2

2 x raidz3 7

each

(~12.5T)+

mirror (~1T)

Curdie ES (1)
FreeBSD

9.2

64

GB

16 x 1T

(7200rpm;

SATA 3Gbps)

Intel

Xenon 6

core, 12

thread x 1

2 x raidz2 6

each (~11T) +

mirror (~1T)

Mithril Backup server
FreeBSD

9.2

64

GB
SAS 3TB x 12

Intel

Xenon 8

core, 16

thread x 2

raidz3 11

disks (~24T)

Bulika n/a
FreeBSD

10

384

GB
11TB

Intel

Xenon E5

core, 20

thread x 2

raidz3 11

disks 8TB

Lona n/a
FreeBSD

10

384

GB
11TB

Intel

Xenon E5

core, 20

thread x 2

raidz3 11

disks 8TB

Lilith n/a
FreeBSD

10

384

GB
11TB

Intel

Xenon E5

core, 20

thread x 2

raidz3 11

disks 8TB

64

Table 4.1. Continued.

Server

Name
Services OS RAM Disk Space CPU(s) ZFS

nprobe-ord Argus probe Cisco 8 GB n/a n/a n/a

nprobe-

sea
Argus probe Cisco

12

GB
n/a n/a n/a

argus-ord

Future argus

probe reading

from taps

FreeBS

D 9.1
n/a n/a n/a n/a

Shadowfa

x
n/a

FreeBS

D

65

GB
4 x 2T

Intel

Xenon 6

core, 12

thread x 2

n/a

Qnap-ord
NAS Remote

backup sever
n/a n/a n/a n/a n/a

4.4.5 Recommendations

GLORIAD had 15 servers at their disposal, but only 6 of the older servers were

setup to handle the InSight operation. Three new high performance servers that

were donated by Cisco, „Bulika‟, „Lilith‟ and „Lona‟ were not utilized to handle the

farm, which is the most resource-intensive software component of GLORIAD. At

the time development of InSight2 started „Bulika‟ and „Lona‟ both were running

the older 10.1 version of FreeBSD OS and „Lilith‟ was running CentOS which was

installed only for testing purposes. Using older hardware for the data enrichment

process, run the Elasticsearch database and to host the web interface of InSight

comes with a performance penalty due to their limited processing, memory, and

disk storage capacity. Elasticsearch was not installed in these servers to enable

shard allocation. It is recommended that the servers are used instead of the old

servers to increase the throughput of the system. During the development of

InSight2 the servers were set up with the latest version of Ubuntu OS, version

16.04 and latest Elasticsearch 5.3 database was setup for distributed database

functionality.

65

InSight2 web interface is a direct modification of Kibana. Since Kibana directly

communicates with the Elasticsearch database to retrieve the records it opens up

a possible vulnerability since Kibana is exposed to the outside world. Even

though the web interface is proxied through „Nginx‟ web server, techniques such

as SQL and JavaScript injection maybe be used to gain access to the database

by unauthorized parties. Due to the lack of protection to the dashboards anyone

is allowed to create, modify and delete dashboards. General users should not be

able to change the visualizations and dashboards which can result in unintended

users deleting dashboards and legitimate users accidentally modifying them

permanently. It is recommended that dashboards are made read-only so that

they are not prone to vandalism easily. InSight2 dashboards are read only and

when the browser refreshed they will revert to the original state.

GLORIAD InSight does not offer any user authentication. Users should be

authenticated in order to limit visibility of the sensitive information about the

network nodes to authorized users. Since most clients that use the GLORIAD

network are directly related to research and education fields their IP addresses

should not be exposed to the public internet. GLORIAD have taken measures to

anonymize the IP addresses. This complete anonymization removes the ability to

know the IP addresses even by network administrators who might need that

information for debugging purposes. Instead of taking the all-or-nothing approach

it is recommended that an authentication system put in place to offer different

levels of visibility into the InSight platform to ensure all users‟ diverse needs are

met, for example keeping a database of users with different privileges and only

show IP addresses to the users who have higher privileges. InSight2 achieves

this feat by incorporating PHP enabled user authentication system that is

separate from OS user database which will load different dashboards depending

on the user logged in.

It is recommended to use separate custom web interface which will extract the

dashboards from Kibana and display them in a separate HTML or PHP enabled

web page which enable the use of SSL certificates to encrypt the connection

between the web server and the client browser to prevent eavesdropping and

man-in-the-middle attacks. GLORIAD InSight uses a modified version of the

Kibana to host the web interface by adding JavaScript enabled buttons to switch

between dashboards. This was only supported in the early version of Kibana,

specifically version 3.0 and later. Changes introduced to the Elastic suite of tools

broke the support for this HTML based web page as it moved to dynamic web

pages generated on-the-fly by the Kibana application. This rendered the web

66

interface of InSight to be obsolete. Using a custom web interface that will pull the

dashboards from the Kibana application not only enables resiliency against

changes to Kibana but also allows ways to incorporate logos and descriptions for

each visualization to provide user guidance built into the dashboards.

„Elephant‟ animal filters out ICMP, UDP and NTP traffic as well as flows under

1500 Bytes. This amounts to approximately 86% of the total traffic being filtered

out. This shows that majority of the data consist of small flows. Since the scope

of the GLORIAD InSight was to visualize the raw data, selecting only the large

network flows seemed to be a feasible solution. However these flows play a vital

role in network diagnostics and security analytics and omitting those leads to an

incomplete and inaccurate representation of the network.

The final version of the Kibana visualization software used by GLORIAD InSight

was version 3 which lagged behind the latest release, namely, version 5.3.

Updates to the application including new dashboards, intuitive visualizations and

modern dashboards were not incorporated into GLORIAD InSight such as

dynamic filtering that applies filters across all the dashboard components and

heat map visualization which allows to show flows belonging to IP address in an

exact location instead of region based or state based for the map of the U.S. It is

recommended to keep up with the updates of the software used in order to obtain

bug fixes, new features and security updates.

QNAP was used to hold backups of the important Argus archives and GSR

database. QNAP was an expensive all-in-one solution that was intended for

large-scale multimedia applications such as storage of movies in a central

location which can be streamed over the network to be played by multiple clients.

Since the server is used for the data backup purposes only, it would have been

cost-efficient to use an off-the-shelf ARM computer with large capacity to hold

multiple 3.5 inch hard disk drives. ARM computers offer low power computation.

Since this server is used just for holding the backups it makes more sense to use

an energy efficient architecture such as ARM. Since both systems use Linux

variants to achieve the same functionality, using generic Linux variant on off-the-

shelf hardware makes it easy to maintain and is cost-effective. It is also advised

that backup devices are physically located in a substantially geographically-

separated location to ensure maximum data protection from to natural disasters.

After the Argus archives and other databases have been recovered they were

stored in this QNAP. QNAP is now stored offline as an additional contingency

backup.

67

The farm architecture does not impose regulations for the development of new

animals by third parties. By allowing end users to create arbitrarily functioning

animals the system can get further complicated and diminish in maintainability.

This can be fixed by defining guidelines and best practices governing the

development of new animals that will ensure that different developers do not

change the core animals in a way that one version is too customized to the

needs of the particular user such that it becomes no longer compatible with other

versions developed by other developers. By defining and restricting the changes

to the core animals of the system it is possible to ensure core functionality stays

the same across many versions of the platform and different animals, which is

the nature of the enrichment module found in the InSight2 architecture which

supersedes the farm architecture. Taking a step further an application

programming interface (API) can be defined instead of relying on the farm

architecture to extend the functionality. An API will allow developers a better

structured method to write new code to the platform.

The Argus features extracted by GLORIAD InSight contain a number of

redundant features. Some of these fields can be simply calculated dynamically

using Elasticsearch‟s scripted fields using „painless‟ programming language

without requiring space to store them such as „pkts‟: sum of source and

destination number of packets, „byes‟: sum of source and destination bytes,

„appbytes‟: sum of source and destination application related bytes, „ploss‟: sum

of source and destination packet loss, „load‟: sum of source and destination load

in bits per second. They can be dynamically calculated using by summing of the

source and destination components for e.g. pkts = spkts + dpkts. Some features

are redundant and does not offer any value or reason to be stored. There are 2

such features, the first one being „ltime‟ which is the record ending time that has

no meaning in the context of visualization of flow records and not used to display

any information in any dashboard. The other feature is „srcid‟ which is the source

ID of the Argus which is an internal parameter used by Argus for own

management purposes and does not reflect any real world parameter.

One of the core goals of making software publicly available in an open-source

manner is to allow the end users to make changes and improvements so that

they can be incorporated into the main development branch using software

collaboration tools such as GitHub. It is advised that some sort of application

programming interface (API) is defined in order to allow third-party developers

extend the functionality of InSight. This will ensure that extensions are modular

68

and can be installed as plugins instead of changing the core system which can

lead to platform fragmentation.

While using system scheduling tools such as „crontab‟ to invoke animals during

specific times of the day such as every 5 minutes or at midnight everyday can

ease the development of the system in the short-term, it comes with high

maintenance penalty in the long-term. It is suggested that use of built-in system

functions such as using SysVinit found in Debian Linux systems and convert the

farm into a system level service for tighter integration into OS.

69

5. DEVELOPMENT OF INSIGHT2

5.1 Software Architecture

InSight 2 is developed with simplicity, robustness and efficiency in mind. Servers

are formatted and set up in standard RAID 6 configuration that is easy to

maintain and replicate. Mainstream Ubuntu Linux OS was adopted in favor of

FreeBSD OS to offer better support in terms of updates, stability and software

repositories. New system architecture has been developed to eliminate many of

the moving parts to make it compact and streamlined using the synchronous

processing model which pipelines the entire enrichment process using

parallelized multi-threaded architecture.

New web interface has been developed that displays dashboards using iFrames

adding an extra layer of protection by making the communication with Kibana

and Elasticsearch database one way and the dashboard visualizations read only.

HTTPS for the web interface is enabled using signed SSL certificates

Incorporating TLS 1.4 to offer the highest standard of encryption during transit.

Server-side authentication is used to authorize users to ensure the maximum

security.

Finally, a streamlined deployment package is developed that condenses the 152

commands required to install and configure GLORIAD InSight into a single step.

Development of InSight2 has focused on improving on GLORIAD InSight while

adding features on top of the existing functionality. Attention has been paid to

make the system more modular, efficient, faster, lean and user-friendly. New

InSight2 Fully utilizes the system resources in a multi-core environment of the

new hardware provided by Cisco, at the same time keeping the number of cores

and thread allocation to each core, automatic to suit for wide variety of systems.

Asynchronous event modeling has been replaced with synchronous processing

which enables more efficient use of disk, processing and memory resources of

the system producing more responsive user experience. Related software has

been updated to the latest versions to account for the bug fixes as well as

security patches. Issues arisen due to backward incompatibilities with the older

versions of the software have been taken care of, by the new code

implementation. The information sources have been updated where outdated

Threats Databases are removed and new actively maintained databases are

70

added. The overall architecture requires fewer dependencies which would

increase system stability in the long term. Standard software development

principles are followed to ensure high degree of maintainability for future

development and the extension of features.

With the development of InSight2 GSR was moved from MySQL to Elasticsearch

and stored in a condensed manner. First GSR tables, „Domains‟, „Classes‟,

„IPsDNS‟, „Disciplines‟, „IPLablels‟, „GovAgencies‟, and „IPsText‟ were read into a

„dictionary‟ which is a data type similar to hashmap found in other languages.

Then duplicates were removed. This information was sent directly into the

Elasticsearch database using the Python client under a new index named GSR.

This was only performed once and GSR index would be reused during the

course of operation of the InSight2. Using the Elasticsearch backup function this

index is backed up to disk so that deployment of InSight2 to other servers only

requires the restoration of this database rather than reconstructing it from the

beginning.

The new InSight2 is inspired by GLORIAD InSight but builds upon a completely

new unified architecture developed from scratch. A simplified architecture has

been implemented to offer greater functionality offered compared to GLORIAD

InSight. Moving from the Perl programming language to Python made it possible

to achieve the object oriented programming (OOP) without having to import third

party libraries such as Perl::POE and implement native multi-threading. InSight2

implements a new synchronous data processing model compared to the

asynchronous event model used in the GLORIAD InSight. This allows it to read,

enrich and store data in one continuous flow. In the GLORIAD architecture

animals are invoked and killed for each event. The purpose of an animal is to eat

(Read input data and process), clean (perform periodic events such as clearing

cache and trimming databases), answer (send data to the ZMQ queue), and

ultimately terminate. InSight2 implements a standard Unix style system level

service. This demon is invoked at the OS start and continues to function until

shut down either processing raw Argus flow records or waiting for new Argus

data to arrive. Comparison of the components between the architectures of

GLORIAD InSight and InSight2 is outlined in the Figure 5.1.

Argus archives are enriched using 40 parallel threads utilizing the total number of

cores available in „Bulika‟ server. First „racluster‟ Argus client is used in order to

extract Argus archives loading 5 minutes of Argus data iteratively until all the files

belonging to the particular day is processed, at which point it will move to the

71

next folder. Argus archives are separated into individual files by 5 minutes when

they are created by the Argus server but EM is capable of processing Argus

archives of arbitrary length in time. Feature, stime, trans, flgs, dur, proto, pkts,

bytes, appbytes, pcr, load, loss, ploss, retrans, pretrans, rate, tcprtt, synack,

ackdat, tcpopt, stos, dtos, shops, dhops, sintpkt, dintpkt, sjit, djit, svid, dvid,

smeansz, dmeansz, smaxsz, dmaxsz, sminsz, dminsz, saddr, daddr, sport,

dport, sbytes, dbytes, sload, dload, srate, and drate are extracted from each flow

record. These are an optimized list of features and are different from the feature

list extracted GLORIAD InSight. Detailed explanations of these fields are

presented in Appendix A.

Figure 5.1 GLORIAD InSight vs. InSight2 Architecture

72

In comparison fields, proto, state, srcid, stime, ltime, dur, saddr, daddr, sport,

dport, pkts, spkts, dpkts, bytes, sbytes, dbytes, appbytes, sappbytes, dappbytes,

ploss, sploss, dploss, smac, dmac, svid, dvid, sjit, djit, flags, trans, tcpopt, sas,

das, pcr, tcprtt, swin, dwin, load, sload, dload, inode, sco, dco are extracted by

„Elephant‟ for the enrichment by GLORIAD InSight farm. These features are

explained in the Appendix A. There are some redundant features in this list of

features which are identified in the recommendations section of chapter 4.

Each individual archive is compressed to using „GZIP‟ compression technique

saving disk space but requiring more steps to extract the archives. However, this

step needs to be processed only one time since the processing is performed in a

pipeline. The data processing pipeline of EM consists of pre-processing, data

enrichment which involves tagging network flows seen in the incoming Argus

records with the information taken from GSR, geographical locations of each IP

address from Maxmind GeoIP database and Threats Database, and upload to

the Elasticsearch database. The high-level data flow using the software used in

the InSight2 is shown in the Figure 5.2.

Figure 5.2 High-level Data Flow Architecture of InSight2

From obtaining flow information from Argus archives, organizational information

from the GSR, geographical location information from the Maxmind GeoIP

database, security information from various websites that maintain up-to-date

threat related information, processing all this information to uploading to the

Elasticsearch database is performed synchronously. Each flow record is sent

through a pipeline of processes to ultimately be inserted into a database. This

allows InSight2 to have a streamlined architecture with less moving parts. While

this eliminates ZeroMQ, Monit and the farm architecture it is still capable of

enriching data using user-provided databases by adding them to Elasticsearch.

These custom databases can be stored and maintained in a separate index

within Elasticsearch database like the GSR. The overview of the system

architecture of the InSight2 platform is outlined in the Figure 5.3.

73

Figure 5.3 InSight2 System Architecture

74

5.2 Data Pre-Processing

Data pre-processing involves extracting the bi-directional flow information from

the Argus archives and aggregating them by session. GLORIAD InSight‟s

„Elephant‟ animal would drop network flows that are less than 1500 Bytes which

accounts for 86% of the total number of flows. This is a significant number of

flows unaccounted for. Even though this will reduce the number of transactions

needed to process by the farm of animals and eventually reduce the number of

records entered into the elastic search database, it fails to deliver a complete

picture of the network. This small flows accounts for the majority of the network

flows however larger natural flows that are bigger than 1500 Bytes accounts for

the largest traffic sent through the network. Malicious events such as denial of

service (DoS) attacks involves sending large amounts of small packets to the

target server in order to overwhelm the server to diminish its function. When

these Network flows are dropped network monitoring software cannot see the

entire details of the network behavior, and can cause misdiagnosis and incorrect

prediction.

InSight2 accounts for all the traffic. This is achieved by the efficient and high

performance implementation of the EM which utilizes all the cores in the host

system. During this pre-processing step EM aggregates all the network flows that

belong to the same session. A session belongs to a collection of packets that

define a single transaction. This transaction can vary from loading an image from

a website to a sending of an email. By aggregating the flows that belong to a

session duplicate flows that are counted separately for the session are combined

into one session.

GLORIAD InSight utilizes the flows according to the „RMON‟ specification which

breaks the network flow into per direction flows. This negates the advantage of

using network flow provided by Argus, since they are defined as bi-directional.

InSight2 utilizes network flows by accepting the bi-directional of flow and

combining it with the PCR value which defines the ratio of the sender and

receiver. This PCR value is defined for the entire selection of the time frame as

well as at the advanced metrics section of the visualizations. This allows the

network administrator to investigate the general direction of the data transmission

for a given time frame. This allows the identification of the network exfiltration

activity. Network exfiltration is the process of stealthily gathering data from an

organization, by using internal employees or Trojan software. This can be

identified by the extreme skewness of the PCR graph.

75

5.3 Data Enrichment

The central enrichment code of InSight2 is named the „Enrichment Module‟ (EM)

and it handles all the functions from reading from the Argus archives and

gathering information from GSR other Threats Databases (TD) to the insertion

into Elasticsearch database. This solves the major drawback of the farm

architecture duplication of the read actions from the Argus archives. Archives are

read, only once throughout the entire procedure of enrichment. This streamlines

the data flow and eliminates the additional overhead of decompressing to

archives multiple times and the additional CPU and memory usage caused by

different animals trying to access them simultaneously.

The EM is capable of utilizing all the cores found in the system. This multi-

threaded environment is achieved using native implementation of „multi-

processing‟ library of the Python programming language. It does not require any

additional software to be installed, since it is part of the core language

implementation. „Bulika‟ hosts the EM and its CPU is capable of handling 40

simultaneous threads. This decreases the time needed to enrich network flow

records by almost 40 times, a process which is already streamlined by the

synchronous model. Argus archives are read over the network from the main

data storage server „Mithril‟. this does not incur any bottlenecks since „Bulika‟

and „Mithril‟ are connected via high-speed gigabit Ethernet links that spans over a

short distance, since they are located in the same server room. This further

reduces the overhead incurred by „Bulika‟ since the archives are read through the

network instead of from the local disk delegating the read overhead to „Mithril‟s

CPU and network controller. 384GB of RAM is efficiently used and read and write

to the actual disk is avoided whenever possible. 100GB Of swap space was

allocated for extreme cases in the unlikely event that the memory runs out.

Argus client „racluster‟ was used to extract the data. Feature list to be extracted

from the records is updated after rigorous experiments to see which fields are

useful and provides meaningful information. Final list of features are described in

the Appendix A. During this extraction no filter has been used to filter out flows as

in the case of „elephant‟. Retaining the full amount of information portrays a

complete and accurate representation of the network flows. It is also noted that

Argus metadata is not sampled and represents all the flows transmitted per

second throughout the existence of GLORIAD since 2012 to 2015. This has been

achieved due to the multi-processing architecture of InSight2. When the Argus

archives are received by the EM they are distributed across the threads and 40

76

threads are spawned in order to perform the enrichment. Each flow record is

enriched with different kinds of information gleaned from different sources such

as the GSR, geographical location information from GEOIP database and

Threats Databases which requires looking up the IP address of the source and

destination within these three locations. Out of these three locations GSR

accounts for the largest database and it is kept in a separate index inside

Elasticsearch database. Elasticsearch offers efficient and scalable full text search

engine in addition to serving as a database. It is feasible to store the GSR in

Elasticsearch since most of the entries in GSR are text based. All indices of

Elasticsearch database are spread across the 3 servers „Bulika‟, „Lona‟ and

„Lilith‟. Elasticsearch is capable of offloading its workload to multiple threads

found in system and this distributed nature allows it to search faster by utilizing

120 threads simultaneously.

Each thread will enrich one flow record at a time and partially completed network

flow records are kept in memory until the enrichment is completed by each

thread in a „dictionary‟ data type. When all the threads have completed their

enrichment result is added into JSON document that is kept in memory. Finally

an instance of Elasticsearch client for python is instantiated and this JSON

document is passed to it using JSON serializer. Elasticsearch database client

support directly reading from JSON documents and this passage is performed

internally as an object. The EM Does not require any additional modules to be

installed in the Target system except for Elasticsearch database client producing

minimal footprint in the target system.

Finally, the completely enriched JSON record is sent to the Elasticsearch

database along with the index name as the date of the Argus record. A separate

index is maintained within the Elasticsearch database that holds the predicted

results in a timeline about the network utilization. This prediction is performed the

using Markov Chains. Probability matrix is generated using data observed within

the past week. Using this matrix a Markov Chain is generated that contains 10

levels of network utilization in 10% increments. More information is detailed in the

performance dashboard where this information is visualized.

5.3.1 Information Sources

Argus data is read from Radium server or directly reading from archives. Argus

fields used in InSight2 is described in the Table 5.1.

77

Table 5.1 Argus Fields Used in InSight2

Field

Name

Field

property
Description

stime Per flow Start time of the flow record

saddr,

daddr

Per

direction
Source or destination IP address

sport,

dport

Per

direction
Source or destination port

flgs Per flow Flags of the Flow State

proto Per flow Protocol

stos, dtos
Per

direction
Type of service byte value of the source or destination

sttl, dttl
Per

direction

Source time to live: source to destination or destination

time to live: destination to source value

spkts,

dpkts

Per

direction

Packet account from source to destination or destination

to source

sbytes,

dbytes

Per

direction

Transaction bytes from source to destination or

destination to source

sappbytes,

dappbytes

Per

direction

Application bytes from source to destination or

destination to source

sload,

dload

Per

direction
Load from Source or destination in bits per second

78

Table 5.1. Continued.

Field

Name

Field

property
Description

sloss,

dloss

Per

direction

Packets retransmitted or dropped from Source or

destination

sintpkt,

dintpkt

Per

direction
Inter packet arrival time from Source or destination

sjit, djit
Per

direction
Jitter observed at source or destination

tcprtt Per flow Round trip time of the connection

synack Per flow Time to set up connection between SYN and SYN_ACK

ackdat Per flow Time to set up connection between SYN_ACK and ACK

tcpopt Per flow
Connection options observed or the lack of it during

connection initiation

spktsz,

dpktsz

Per

direction

Histogram of the distribution of package sizes from

Source or destination

dur Per flow Flow duration

rate, srate,

drate

Per

direction
Package rate in packets per second

trans Per flow Total record count of the incoming Argus stream

79

Table 5.1. Continued.

Field

Name

Field

property
Description

pkts Per flow Number of packets seen in the transaction

bytes Per flow Number of bytes seen in the transaction

appbytes Per flow Number of application bytes seen in the transaction

load Per flow
Network load observed in the incoming Argus flow in

bits per second

loss Per flow Number of packets retransmissions or dropped

Scripted fields allow the generation of fields on-the-fly by calculating the value of

these fields during runtime. They reduce the disk usage by not storing them in

the disk. Table 5.2 shows the scripted fields are used in the InSight2.

80

Table 5.2 Elasticsearch Scripted Fields Used in InSight2

Scripted

Field Name

Argus

Field

Used

Description

srcGB src bytes
Convert Bytes transmitted from the source into

Terabytes.

sstGB dst bytes
Convert Bytes transmitted from the destination into

Terabytes.

GB bytes
Convert total Bytes transmitted from the source and

destination into Terabytes.

pretransGB pretrans
Convert total Bytes re-transmitted from the source and

destination into Gigabytes.

loadG load
Convert the network load from bytes per second to

Gigabytes per second

rateB rate
Convert the network load from packets per second to

billions of packets per second

retransM retrans
Convert Total packet retransmissions from packets per

second to millions of packets per second

lossM loss
Convert Total packets lost from packets per second to

millions of packets per second

synackAvg synack
Calculate average of TCP connection setup round-trip

time, sum of SYNACK and ACKDAT

intpktAvg intpkt
Average of the total of source and destination

interpacket arrival time in milliseconds

jitterAvg jitter
Average of the source or destination active jitter in

milliseconds

81

Script fields enable Elasticsearch to have virtual fields that are programed using

„Painless‟ scripting language. Painless is based on the syntax of Java to provide

Groovy-style scripting language features. This enables Elasticsearch to extend

its functionality. Painless language is several times faster than other alternate

alternative languages [28]. And offer safe execution while offering object-oriented

programming by offering fine-grained white list with method call and field

granularity. The variables are optionally typed where necessary by using the „def‟

keyword. It is designed specifically for Elasticsearch scripting. We have defined

dynamically generated fields such as Gigabytes derived from Bytes field from the

original data source, and load in megabytes per second in addition to bytes per

second for the use of certain visualizations etc. A complete list of scripted fields

can be found in the Appendix A.

InSight2 enriches its data using three sources of information; GSR, GeoIP and

„Threats Database‟ (TD). GSR was re-constructed using relevant tables in the

„Main database‟ stored within the MySQL database and uploaded to

Elasticsearch. The relevant tables and their contents that were found in the

original „Main database‟ is described below:

 iplabels - IP names of the individual nodes

 ips - IP address to domain ID matching

 ipsdns - Domain name server information

 ipstext - Location information such as

coordinates, country etc.

 asnums - autonomous system numbers

 disciplines - discipline; nuclear engineering, ocean

science etc.

 domains - Domain ID the IP address belongs to

 govagencies - name of the government agency

 orgclass - classification of the organization

GSR is stored in the form of a JSON records within the Elasticsearch database

index named „gsr‟ with the following fields, and Appendix A shows index mapping

for the „gsr‟ index:

 ip - IP address

 ipname - IP name

 organization - Organization name

82

 domainid - Domain ID

 dns - DNS name

 isp - ISP name

 labels - Additional labels

 asnum - AS number

 discipline - Discipline

 agency - Agency

 application - Application

MaxMind GeoIP database was in the format of .dat files which contained different

location related information described below:

 GeoIPASNum.dat - Autonomous number systems for ipv4

 GeoIPASNumv6.dat - Autonomous number systems for ipv6

 GeoIPCity.dat - city name for ipv4

 GeoLiteCityv6.dat - city name for IPv6

 GeoIPOrg.dat - organization name

 GeoIPDomain.dat - domain name

 GeoIPISP.dat - internet service provider name

 GeoIP.dat - ipv4 related information

 GeoIPv6.dat - ipv6 related information

These are extracted from „Bluemac‟ for future use for the time being. InSight2

uses up-to-date current MaxMind GeoIP .mmdb format which consists of just one

file database containing geographical coordinates, country, city, region, zip code.

This new mmdb format is faster, compact, easy to update and more portable

than the previous .dat files. The following file is used for this purpose:

 GeoLite2-City.mmdb

The following databases are extracted from „Bluemac‟ which were used as the

„Bad Actors‟ database by GLORIAD InSight:

 Emerging threats: https://rules.emergingthreatspro.com

 Bogon: http://www.team-cymru.org,

 Zues botnet: https://zeustracker.abuse.ch,

 Feodo: https://palevotracker.abuse.ch,

 Palevo: https://feodotracker.abuse.ch.

https://zeustracker.abuse.ch/
https://palevotracker.abuse.ch/
https://feodotracker.abuse.ch/

83

This is taken from the TD previously known as „Bad Actors‟. The updated TD

contains not just traditional malicious IP addresses but also IP addresses

belonging to compromised nodes and ransomware servers. This database helps

identify ransomware servers as seen in the cases of „WannaCry‟, „Petya‟ and

„NotPetya‟ ransomware in rapid succession June and July of 2017

Once EM categorizes a network flow as belonging to one of these lists it will tag

them by its unique single letter tag which Elasticsearch will use for indexing for

fast search and retrieval. The following updated databases are the TD.:

 Bogon: http://www.team-cymru.org/Services/Bogons/fullbogons-ipv4.txt

 Zues botnet: https://zeustracker.abuse.ch/blocklist.php?download=badip

 Compromised:

https://rules.emergingthreatspro.com/blockrules/compromised-ips.txt

 Ransomware:

https://ransomwaretracker.abuse.ch/downloads/RW_IPBL.txt

 Feodo: https://feodotracker.abuse.ch/blocklist/?download=ipblocklist

 Palevo: https://palevotracker.abuse.ch/blocklists.php?download=ipblocklist

5.3.2 Distributed Database Structure

InSight2 uses Elasticsearch to store different databases and as a search engine

to search for records within that database. It is ideal since both functions are

seamlessly integrated into one solution and the data stored within the database

consists mainly of text information. Elasticsearch is based on Apache Lucene

which is a low level high performance text search engine written in Java. It is

capable of processing up to 150GB records per hour. Elasticsearch allows the

database to be distributed across more than one server. This increases resiliency

against failure and increases overall performance since indexing and retrieval of

the data is performed in parallel across multiple servers using multiple processor

cores in each server. A „shard‟ is a Lucene [29] instance that is managed by

Elasticsearch that acts as a low-level worker unit. Each of the „Bulika‟, „Lona‟,

and „Lilith‟ servers carry five shards each. Shard contains a portion of the

database that can be located within same system or across different physical or

virtual systems. This gives Elasticsearch the edge for faster access times that

84

does not increase with the amount of data contained within the database, hence

it is a highly scalable solution for big data systems. Indexing allows records to be

searched in minimal delay. Unlike traditional databases such as MySQL and

SQLite which requires sequential advancing through the table to find the relevant

document, indexed databases use an index to find the relevant document In a

fixed time. The time complexity of searches is in the scale of O(n). Figure 5.4

show the shard allocation of the 3 servers used by InSight2.

Figure 5.4 Elasticsearch Database Shard Allocation

85

InSight2 keeps daily indexes which enables the system to implement efficient

rolling mechanism to store a fixed number of days within the database depending

on the limitations on the storage capacity. By using a separate index to keep the

data of a single day it makes it fast and efficient to purge outdated indexes since

deleting an index is performed in an optimized manner compared to deleting

record by record in Elasticsearch, and is performed using a single command.

The GSR is kept within the Elasticsearch in a separate index. This fully utilizes

the capabilities of the full text search engine of Elasticsearch. When EM

enriches incoming data it will look up the information in the GSR to tag the

network flows. Since all the indexes stored within the database are optimized for

searching and every read and write action is performed using all the available

CPU cores within the host system it is the most feasible location to store GSR

database.

Elasticsearch is no-SQL database, in other words it allows having scheme-less

data structures which allows faster data access compared to SQL databases

[30]. This allows the end user to define new data structures on the way without

changing the initial data type mapping. InSight2 uses a semi-strict architecture

when it comes to the definition of data types. The definitions imposed by the

original mapping can be overridden by adding new data with new field definitions,

at the same time it will discard any malformed data that belongs to an existing

data type. This covers a middle ground compared to completely relaxed type

definitions and completely strict type definitions. Relaxed definitions allow any

new data type to be added to the index template and in case of an error for

example if an existing data type is misspelled it will create a new data type.

Completely strict definitions offer no flexibility to introduce new data types and

this is not feasible as the user requirements grow it will require new data types.

5.3.3 High Maintainability

Server setup uses RAID 6 for redundancy of the disks in case of disk failure

which is transparent from the underlying OS. OS upgrades are not affected by

the RAID configuration unlike the ZFS configuration which needs to be set up

every time the OS is reinstalled or system is replicated in a remote server.

86

Compared to the previous architecture where message passing software such as

ZeroMQ (ZMQ) was required due to the limitation of the multiple component

architecture new InSight2 architecture implements data retrieval, filtering,

aggregation, enrichment and storage are performed using a single software

module eliminating the need for multiple scripts and communication

infrastructure.

One of the reasons that made GLORIAD InSight difficult to maintain was the fact

that components of the system were tied down to specific versions of Java

Elasticsearch and Kibana. GLORIAD InSight used libraries from Perl repository

CPAN which added another layer of complexity since these components had to

be maintained separately unlike Python libraries which can be installed and

upgraded alongside a system upgrade.

Repositories of Linux system has been used to install tools needed instead of

downloading and compiling specific versions of software, which may become

unavailable at some point of time. When new versions of these software gets

released a simple upgrade of the OS updates all of them. Since these modules

are updated with backwards compatibility in mind by the maintainers of the

software repository distribution updates will not cause system instability

increasing the maintainability of the system as a whole.

GSR Stored within the Elasticsearch database has been backed up in order to be

used in new servers without the need to extract and de-duplicate the records

from the MySQL databases for every installation.

Well commented and structured code of InSight2 contributes to the high

maintainability of the platform. InSight2 also offers detailed documentation about

the design and implementation of the system. A video tutorial has been created

to guide new users about the design philosophy of the web interface as well as

its usage. An installation guide is provided with the one-step installation package

which describes the minimum system requirements and the installation

procedure.

87

5.3.4 Lean System Design

InSight2 Is built with lean system design in mind. The many software

components that GLORIAD InSight used have been disposed of. Message

passing is completely performed internally using object-oriented programming

(OOP) which makes message passing ZeroMQ bus redundant. Synchronous

processing is adopted in favor of asynchronous event model which also helps

eliminate the need for publisher subscriber style message passing bus since a

unified EM handles all the data enrichment duties.

A unified database Structure was introduced which contains both final enriched

data as well as GSR database using Elasticsearch. It is feasible to use this

scalable and fast full text search engine enabled database to store data in an

arbitrary manner which is indexed to increases the searching efficiency.

Traditional sequential databases are not capable of adapting to the growing

needs of a scalable database as well as being able to accommodate schemeless

data structures. This allows InSight2 to utilize and reuse already installed

software which is part of the core package.

A programming language for large-scale project development with ease of

maintainability and efficiency was selected in order to improve execution speed

and reduce number of moving parts needed. The language of choice Python

programming language has built-in OOP which negates the necessary to install

third party package repositories and libraries.

InSight2 uses the package management software, „apt‟, that is included in the

OS by default to download and install other necessary software. It only requires

one command to download and install a list of dependencies which are inherently

minimalistic and limits to the essentials. If the software is compiled and installed

Within the host device it requires additional programs for the compilation and this

additional software will be left in the system with no function after the install.

EM Is implemented as a low-level system service. In GLORIAD InSight individual

script is managed by centralized program, Monit, which keeps track of all the

running programs and is responsible for responding any terminated scripts. By

integrating EM as a system service management of the software is greatly

simplified and uses less system resources since it uses existing Service layer.

88

5.4 Data Analytics

Prediction of the network utilization has been performed using Markov Chains.

Markov Chains is a stochastic model describing a sequence of possible events. It

describes states and their transition probabilities. Each state is defined as the

state of network utilization in Bytes. The transition probability defines the

likelihood of transitioning from one state to the next. States can be transitioned

from one state to another or stay in their current state depending on their

transition probability. This will decide in each time segment whether the system

will stay in the same state or move to the next. Probability of the next state only

depends on the current state the system is at and not the path taken to arrive at

the current state and this is known as the Markov property [31]. Markov Chain

can be visualized to using a graph as seen in the Figure 5.5. This is particularly

useful to see the probability and also to plot the transition matrix.

Prediction is achieved by first observing the network activity for the time period of

5 days, generating the state transition Matrix of the Markov Chain, deriving the

steady-state matrix, and calculating the predicted usage for the next 24 hours.

Figure 5.5 Markov Chains State Diagram

Figure 5.6 shows the state transition matrix in 3D bar chart. It is observed that

states prefer to stay in their current state. This is reflected by the high probability

for low to low transition, medium to medium transition, and high to high transition,

compared to the other transition probabilities. This is explained by the network

89

staying within certain utilization for certain amount of time. This is true especially

for research and education networks where a large amount of data is being

transmitted in bulk. When data transmissions are started they will occupy a large

amount of network bandwidth and will last until the entire transmission is

complete, such as sending large amount of research data from one institution to

another. Transition to the adjacent states shows the next highest probability

causing a smooth transition.

Figure 5.6 Markov Chains Transition Matrix

Steady-state matrix is derived from this transition matrix. Steady-state matrix

shows the long-term probabilities of the Markov Chain. Figure 5 .7 shows the

90

steady-state matrix of the Markov Chain. Using the generated Markov Chain a

predicted proposition is generated into the next 24 hours for the network capacity

utilization. This information is plotted in visualization in the interface of InSight2.

Figure 5.8 illustrates the predicted network utilization in the near future generated

by the Markov Chain. Mean, variance and their log versions are plotted in the

Appendix C.

Figure 5.7 Markov Chains Steady State Matrix

91

 Figure 5.8 Markov Chains Prediction for Next 24 Hours

5.5 Data Visualization

InSight has a completely redesigned interface that is inspired by GLORIAD

InSight. InSight2 focuses on improving the usability for all end-users of different

technical backgrounds. It groups information into different categories enabling

the user to find necessary information quickly and easily. Steps have been taken

to ease the learning curve of InSight2 by strategically placing annotations to

describe functionality and usage and video tutorials to show how to perform

complex filtering to obtain the information that the end user is looking for.

InSight2 merges many different dashboards that were separately implemented in

the GLORIAD InSight. This allows the user to consume the whole breath of

information that is relevant for one topic under one tab. They are optimized to

render in different screen sizes and browsers. This enables the user to observe

the network no matter where he/she is located and which device he/she is using.

Any browser that supports JavaScript is capable of handling InSight2. From

Kibana 5 visualizations are rendered using graphical processing unit (GPU) of

the host system decreasing the render-time compared to the previous versions,

improving the overall responsiveness of InSight2 web-interface.

When InSight2 is loaded for the first time Kibana will send a HTML page with

embedded JavaScript. InSight2 uses iFrames to extract the dashboards from

Kibana. This method enables segregation of end users from the developers.

Developers are allowed to modify the dashboards while the end-users are given

access to only view the dashboards and to apply filters. Not only this improves

the security of the system but also prevents unintentional changes to the

dashboards.

92

The InSight2 interface incorporates uniform material design to preserve the

integrity and cohesiveness. It incorporates modern visualizations and delivers a

consistent user experience throughout. Color scheme is carefully selected to

emphasize visualizations by adopting a dark background. All visualizations that

show source traffic are color coded by blue and destination in green.

Visualizations that show intensity of the traffic use different shades of these

colors. In cases where neither originator nor destination node is not represented

different colors came is use such as red orange or purple etc.

5.5.1 Performance Dashboard

The performance dashboard provides information relevant to traffic, packets

transmitted, packet loss and retransmissions, flow duration as well as cumulative

metrics regarding unique IP addresses and organizations. Figure 5.9 shows the

performance dashboard.

The first row of visualization indicates the system health. The five gauges,

namely, load, package rate, PCR, packet loss and retransmissions, provide the

system capacity at a glance. Load gauge indicates Bytes transmitted per second

as a percentage of the total capacity of the links. This is particularly useful to

understand how bandwidth is used to last and the head room left. Packet rate

gauge indicates packets transmitted per second. Higher packet rate combined

with low system load indicates anomaly that may correspond to very specific file

transfer, a misconfigured server or denial-of-service attack. Packet loss and

retransmissions gauges show how the system handles dropped packets. During

normal operation all four load, packet rate, loss and retransmissions gauges

should be as minimal as possible. The indicator will be green if the metric is

within the acceptable range amber when It starts to go beyond this range, orange

when attention is needed and ultimately red when system failure is imminent.

Since all the network data is collected as flow information Producer Consumer

Ratio (PCR) can be used to understand the direction of the packet transmissions.

Higher the PCR more packets transmitted from the flow initiator to the flow

receiver. This gauge reflects the unified material design of the dashboards using

blue for source and green for destination. in most circumstances direction of the

flow is from the flow originator to the flow receiver. However either blue or green

gauge does not indicate a problem.

93

The second row of visualizations provides information aggregated by source

country. First visualization visually represents the countries that transmit data as

flow originator in a tag cloud format, the size of the label is proportional to the

amount of data transmitted. To filter by a country simply click the country name.

the segmented pie chart to the right of that incorporates compact representation

of the geographical information of the countries shown in the tag cloud. By

hovering your mouse over each segment location information from country,

province, city zip code to can be found. Each ring in the pie chart gives higher

granularity at each step. By clicking on each of the rings you can apply one or

more filters depending on the depth of the ring. For example, by clicking on a

segment in the zip code in the outermost ring 3 filters from country, province and

city will be selected. By scrolling up to the top of the dashboard please filters can

be verified. By clicking “Apply Now” button multiple filters can be applied in a

single click.

94

Figure 5.9 Performance Dashboard

95

Geographical information is represented in the heat map indicated to the right.

The color changes from green to red indicating the regions of any color graded

format. Controls on the map to the left allows to zoom the map to data bounds

and apply filters by drawing rectangle on the geographical region of interest. The

next visualizations provide the top organizations that sent data through the

network, both by visual representation and by text. More information can be

gathered by hovering mouse over each segment and filters can be applied by

clicking segments in the pie chart or clicking the plus icon in the table to the right,

which shows traffic counts in gigabytes per organization. Following dashboards

visualize the information aggregated by destination country. The visualizations

are the same except for they represent two floor receiving end. The geographical

map also supports double click to zoom in. The counters on the left hand side

show the unique number of destination countries, cities, organizations and IP

addresses. Note that this information is related to the time frame selected either

by default or by user by clicking and dragging the time series graph on the top.

On the right hand side the scrollable list of organizations are sorted by the

amount of the year they have transmitted and at the end of the list are two links

to download the raw data or the formatting data format.

This section of visualizations provides information related to Traffic and internet

service providers (ISP). Two sets of counters are shown on the left that all

related to ISP domain and domain name servers (DNS servers). Unique counts

seen in the time interval selected is displayed for both flow originator and flow

destination. As seen throughout the dashboard blue or shades of blue

corresponds to flow originator and green for flow destination. Below the counters

a network of the organizations that sent and received the most traffic is shown

with the edges representing traffic transmission between them.

The matrix visualization provides an intuitive insight into network usage by the

number of bytes transmitted per each country. The horizontal axis represents the

time well the intensity of the data transmitted is color graded from dark to the

lighter versions of blue or green, for source and destination respectively, white

represents the peak transmission intensity. The segmented pie chart next to the

matrix visualization devices a compact technique to represent top ISP, domain ID

and DNS by the amount of data transmitted. Finally, as seen above the rightmost

visualization provides additional information of the top ISPs by traffic

transmission and the amount of traffic transmitted in gigabytes.

96

The following visualizations provide advanced measurements about the network

such as, Round Trip Time (RTT), Inter-packet delay, Jitter, Hops and Distribution

of packet size by Maximum, Minimum and Average size of packets. These

advanced visualizations are intended to be used by network administrators to

gain advanced insight for debugging and finding potential network failures

proactively. The producer consumer ratio (PCR) graph shows how the PCR

changes over time. A PCR of greater than or equal to 0.5 indicates that most of

the network traffic was sent by the flow originator and vice versa. A value closer

to 0 can indicate data exfiltration, and if observed for extended period of time

should be investigated for malicious activity. The jitter graph indicates the quality

of the network for the purpose of streaming services where it is preferred the

package arrived at the destination at the same order they were transmitted at the

source such as teleconferencing end voice over IP calls [32]. During normal

operation jitter should be kept at a minimum. High levels of jitter indicate volatile

routing tables that change rapidly due to misconfiguration since packets take

different routes during the duration of the flow. The average number of hops is

represented in the last visualization in a time series bar chart. On the right hand

side round trip time (RTT) graph is plotted against the time. Higher RTT can

indicate network congestion or simply the fact that most nodes communicating

are joined by slower links or excessive number of hops. The inter packet arrival

time graph provides insight into the quality of the network. Lower inter-packet

arrival times are preferable for faster response for applications that rely on

reliable transportation protocols such as transmission control protocol (TCP). The

final graph represents packet size information sub divided by maximum,

minimum average size observed. Large amounts of small packets in conjunction

with large amounts of package transmitted shown in the top row of gauges can

indicate denial-of-service attacks.

5.5.2 Security Dashboard

Security dashboard provides visualizations related to security aspects of the

network. It shows the traffic patterns and network utilization of the malicious

users and nodes. The information taken from the Security database is collected

from different websites that keeping up-to-date lists of malicious IP addresses is

integrated into the flow records. This dashboard pulls this information from the

Elasticsearch database and displays it in relevant visualization components.

97

Layout of these individual components adheres to The Standard design

philosophy incorporated in the performance dashboards.

Denial-of-service attacks (DoS) utilize half open connections to degrade or stop

the functionality of a web service [33]. A half open connection is a connection

that is not fully established. TCP requires 4 way handshake in order to set up a

connection between two nodes. First the source will send a connection request to

the destination using a SYN packet. When the destination receives this packet it

will examine if it is a valid request. If it is then it will send a reply with SYN and

ACK flags set. If the port the sender is trying to access is closed, the connection

request packet is invalid or there is a firewall blocking connections the center will

receive a RST packet.

In the case of DoS attacks SYN packets are sent by the sender, in the scale of

millions of packets usually using spoofed IP addresses, and when the receiver

sends back SYN and ACK (also known as SYNACK) the attacker will not

respond causing the server to hang waiting for the completion of the handshake.

Each connection consumes resources at the server-side. When such numerous

connections are kept half-open the server will eventually run out of resources

causing a DoS. Since metrics are collected about the round trip time which

consists of SYN → ACK (the first half of the TCP connection) duration and ACK

→ DAT (the second half of the TCP connection) we can identify the unique

patterns visually from the round trip time visualization. Figure 5.10 shows the

security dashboard.

98

Figure 5.10 Security Dashboard

99

5.5.3 Dashboard Components

The following screenshots display the various components of the user interface
of InSight2. The visualizations show source traffic in blue and destination traffic
on green. First visualization shown in the Figure 5.11 shows the inbound traffic
by green and outbound traffic by blue.

Figure 5.11 Network Usage by Data Transmitted

Figure 5.12 shows the gauges that represent the network status at a given time.
These are useful to identify quickly at a glance useful and critical metrics about
the network such as network load in bits per second, packet rate in packets per
second, packet loss in packets lost per second, retransmissions of packets in
packets retransmitted per second, and producer consumer ratio (PCR) which
shows the percentage of data transmitted by the producer of the network flow to
the receiver. PCR is particularly useful to understand how the average network
flows behaves in the network by showing their bias of the amount of data
transmitted from either the flow initiator or the flow receiver.

Figure 5.12 At-a-glance Gauges

The set of visualizations shown in the figure 5.13, provide aggregated counts of

various metrics associated with the end nodes or the transmission of the packets.

These metrics show Matrix using appropriate scales. For example instead of

showing the raw number of bytes transmitted in the network it is configured to

show petabytes, billions of packets and trillions of transmissions of flows. Unique

accounts of different aspects of the end nodes such as unique number of internet

100

service providers (ISP), domains, domain name servers (DNS), countries, city,

organizations, and the IP addresses seen in the network.

Figure 5.13 Aggregated Unique Counts

Geographical information is represented in an interactive global map as shown in

the Figures 5.14 to 5.16. Two maps are provided for source IP addresses and

destination IP addresses that shows the intensity of the number of flows

originated or ended using the geographical information provided by the MaxMind

GeoIP. This information is accurate to the 50 kilometer radius. Compared to

GLORIAD InSight, InSight2 is capable of showing the exact location of the IP

address instead of assigning intensity colors to each of the regions of the US

map or country-wise for global map. Controls are provided to zoom into or out of

the map, fit the map to the data bounds, geographical region selectors to defined

filters to isolate flows originating from or ending to specific geographical area.

101

Figure 5.14 Geographical Information Globe

Figure 5.15 Geographical Information – Country

Figure 5.16 Geographical Information – City

102

Intuitive tag clouds shown in the represent the top countries that use the network

shown in the Figure 5.17 to 5.18. Size of the font of these tag clouds represent

the number of bites transmitted or received. Filters can be applied by clicking on

one of the filters to filter the flow source or destination for a specific country. For

example, by clicking United States as the source country and Germany as the

destination country will define flows that originated from the United States and

ended in Germany.

Figure 5.17 Tag Cloud of Top Users

Figure 5.18 Tag Cloud After Selection

103

Geographical information such as country, province, city, and zip codes are
provided in a segmented pie chart. Hovering the mouse over these charts
reveals more information as seen in the Figure 5.19.

Figure 5.19 Geographical Information of Top Users

Organizational information is provided in the segmented pie chart shown in the

Figure 5.20. Using the same technique as before hovering the mouse over each

segment reveals institution or organization name number of bytes transmitted or

received depending on the section the pie chart is located and the percentage of

the total traffic that the specific institution or organization utilized in the network.

104

Figure 5.20 Organizational Information

Domain information is provided in a similar manner to the geographical

information. Figure 5.21 shows this domain information which consists of the ISP,

domainID, and the domain name server that was used.

Figure 5.21 Domain Information

Figure 5.22 and 5.23 show the usage of the network divided by each country at a

given time interval. This time interval can be defined by the filters applied in the

first visualization or by making a selection initiating from an empty area in these

matrix. Interesting information can be revealed by the gradients of the color

change observed within the row of the country. In the example shown source and

destination matrix graphs are stacked together to show the corresponding traffic

patterns. As to design philosophy utilized throughout the dashboard blue

105

represents the source while green represents destination. The sum of all the

traffic observed in the source matrix is equal to that of the destination matrix.

When a country is selected this visualization changes its format to accommodate

a single country as seen in the Figure 5.24.

Figure 5.22 Usage by Source Country by Time

Figure 5.23 Usage by Destination Country by Time

106

Figure 5.24 Usage by Country by Time After Selection

Network graph shown in the Figure 5.25 displays the connections between the

organizations and follows the same common design principle with blue as source

and green as the destination. Nodes are spread apart to prevent overlapping.

Entities in the graph can be moved by dragging and dropping. Zooming with

mouse wheel is allowed which helps to better see the connections and names of

the organizations.

Figure 5.25 Network Connection Graph of Organizations

107

Total inter packet delay is associated with a host of network quality issues. The

average time between two adjacent packets increase with network congestion.

Figure 5.26 shows the inter-packet delay by a line graph as well as total network

bandwidth utilization by the size of each dot. This is particularly useful to identify

the network speed as compared to the bandwidth. Network speed or the network

latency is a measure of how fast a packet can be sent from one end of the

network to another. Inter-packet delay and bandwidth utilization has some

relation since at the upper balance of the bandwidth available congestion starts

and inter-packet delay increases.

Figure 5.26 Total Packet Delay

Figure 5.27 shows connection set up time. TCP connection time is defined as a

4-way handshake. First half of the connection is center initiating connection with

the receiver and the second half of the connection is the vice versa. Using the

standard color scheme blue dots represents the sender setting up the connection

which is derived by the time between the SYN and ACK packets. Second half of

the connections depicted by the blue dots are calculated by time gap between

ACK and SYNACK packets.

Figure 5.27 Connection Setup Time Gap

108

For real-time tasks such as video streaming and teleconferencing jitter plays a

vital role. Jitter is the amount of package arriving out of order. TCP sequence

numbers are used to ensure the TCP flows are create constructed at the receiver

in the same order they were sent add the source. UDP does not have sequence

numbers built-in however application-specific protocols may define their internal

sequence numbers native to the application. Figure 5.28 visualizes jitter within

the network. This is taken into account the number of packets arriving out of

order in the TCP sequence.

Figure 5.28 InSight2 Jitter

Producer consumer ratio (PCR) is also graphed over time as seen in the Figure

5.29 showing the variation of bias of the amount of data sent from source to

destination and vice versa. This is especially useful for systems that use network

flow information since Argus flows are bidirectional and PCR is needed to

understand the percentage of data flow at each direction.

Figure 5.29 Producer Consumer Ratio

109

The average number of hops is a metric of the distance between two end nodes.

High amount of hops can lead to network latency. The visualization provided in

the figure 5.30 shows the average number of hops observed within each flow

within that specific time window.

Figure 5.30 Average Number of Hops

Predicted network usage for the next 24 hours is calculated using Markov Chains
discussed in the section 5.4 and shown in the Figure 5.31

 Figure 5.31 Network Load Prediction

5.6 InSight2 Security Features

Hardware servers used to store the databases, run the EM, and host the InSight2

user interface website are located in the Cisco facility which allows physical

security from unauthorized access. Remote access is granted through encrypted

SSH connections. Authentication is performed using public key authentication

and username and password authentication has been disabled to prevent Brute

Force attacks, which involves trying multiple username and password

combinations until the correct one is found. Since these servers are assigned

public IP addresses it is paramount to mitigate outside attacks as much as

possible. While there is no perfect security, limiting the login to secure protocols

and requiring the remote clients to be set up per client basis raises the bar of the

ease for attack. Any new clients that require administrative access require its

public key stored in the respective server. The public key authentication uses

110

strict 2048 bit keys using RSA public-key cryptosystem to generate public and

private key pair.

The new user authentication system that is built into InSight2 incorporates PHP

back-end that performs username and password acquisition, transmission, and

the granting of access on the server side. It offers the highest level of security

compared to client side code such as JavScript [34]. The InSight2 user-password

credentials are kept separate and isolated from OS user credentials providing an

extra layer of protection for the data in case of a security breach. Regular

InSight2 users are prevented from accessing low-level system functions that can

impact the performance and security if misused. For these functions special user,

„root‟, is used by elevating privileges from the standard user. This allows having

separate user accounts with different scopes of visibility and clearance.

Administrative functions are carried out by „sudo‟ command which gives standard

user temporarily elevated privileges.

Configuration of Elasticsearch and Kibana is optimized to make sure that bare

minimum access is granted for the proper function of the platform. Kibana

accesses the Elasticsearch database using an internal network socket. Kibana

and Elasticsearch are hosted within the same server to reduce activity across the

network. Elasticsearch database is distributed across all 3 servers „Bulika‟,

„Lona‟, and „Lilith‟ and are connected using a secure LAN connection.

Access to the dashboards is granted using built-in authentication system that

uses PHP to perform the authentication server side. This mitigates a wide variety

of attacks that can be launched in the client-side such as injection attacks into

the JavaScript authentication mechanism that was previously experimented. PHP

keeps separate database of users and passwords that are completely decoupled

from the OS user database.

Tailor-made dashboards are loaded depending on the username and different

time periods in the timeline are visualized. User authentication system is also

used to define relevant dashboards and visualizations depending on the user and

their privileges. For example when users with low privileges are logged into the

system they are presented with dashboards which do not display specific IP

addresses for privacy purposes. This segregates access privilege through a

single authentication system. This allows the separation of system administrator

and end-user. InSight2 is not only intended for System administrators and

network operators but also users of the network. Thus it is important to have

111

different privileges of access and data that is displayed. Usage of the platform by

network users is further simplified by the descriptions provided and video tutorials

embedded in the tutorials tab.

InSight2 web-interface extracts the dashboards from Kibana and displays it using

iFrames which enables one-way communication with Kibana and the web

interface. Users are not allowed to modify dashboards which prevent tampering

unless they are logged into main Kibana application which allows administrative

functions from modifying and/or creating dashboards, changing the mapping

template, creating new scripted fields, starting or shutting down of Elasticsearch

or Kibana. Tabs are used to display the names of dashboards and perform as

links to them allowing in the user to switch between different dashboards with a

single click. Dashboards are loaded in a read-only manner so the end-user can

neither modify nor create new dashboards. Another advantage of using this

technique is that every time user reloads the web browser or clicks on one of the

navigation tabs, the dashboards are reset to their original state acting as a simple

mechanism to clear all the filters. Figure 5.32 show the InSight2 Security

features.

InSight2 is encrypted during transmission using transport layer security (TLS 1.2)

preventing man-in-the-middle (MITM) attacks [35]. This greatly elevates the

security of the platform compared to the lack of security features of GLORIAD

InSight. The encryption combined with logging of IP address and time provides a

comprehensive security package. The TLS security certificates are provided by

the „Let's Encrypt‟ free security certificate provider and are updated automatically

using it client. „Let's Encrypt‟ is an open certificate Authority (CA) that runs on

behalf of the public. This service is provided by Internet Security Research Group

(ISRG) [36]. Its client seamlessly integrates into the Apache2 web server

providing encryption for each incoming connection. Figure 5.33 shows the login

page of the InSight2 web-interface.

112

Figure 5.32 InSight2 Security Features

113

Figure 5.33 InSight2 Login Page

5.7 One-Step Installation Package

Ease of use of InSight2 starts from the installation itself. Unlike GLORIAD

InSight, InSight2 comes with an installation package that includes all the software

that is needed, a set of configuration files, a script that installs all the software

and copies relevant configuration files to the right locations while setting the

correct permissions and a sample of enriched data to get to use user up to speed

with the platform and to test the installation. Essentially the InSight2 installation

handles the complete installation of itself in a single step. GLORIAD InSight

required 13 steps to install, with 152 user executed commands described in a 22

page installation guide. The new architecture also eliminates the need for ZFS

file system on FreeBSD OS that required 27 steps to be set up. The installation

script will probe the system for the following system requirements,

1. First the installation script checks for root privileges. This requirement is

needed to install system-level modules copy the configuration files to

system directories and set up permissions.

114

2. Internet connectivity for downloading and installing necessary software

from the Linux repositories. This is an essential step and installation

cannot proceed without this requirement.

3. Check the system for the following installed software. If any of them are

not installed the installation script will install them automatically.

4. Install bundled versions of Elasticsearch and Kibana. This minimizes

potential issues as the versions shipped with the installation package are

tested rigorously for compatibility and optimal performance.

5. Set up the automatic start of the Linux demons at system level using

“systemctl” command.

6. Copy the configuration files to necessarily locations and set up and verify

correct permissions.

Parameters for the installation script are shown in the Table 5.3.

115

Table 5.3 Parameters for the InSight2 Installation Script

Name TYPE Default
Description

http.max_content_length INTEGER 2000M
Maximum length of the

bulk data transfer over http

path.data STRING
/var/lib/

Elasticsearch

Path to the data storage

by Elasticsearch

path.logs STRING
/var/log/

Elasticsearch

Path to the logs storage by

Elasticsearch

path.repo STRING ["/tmp/gsr"]
Temporary extraction

location of the GSR index

network.bind_host IP 0.0.0.0

Binding host for the

connection from

Elasticsearch to Kibana

server.host IP 0.0.0.0

Binding host for the

connection from Kibana to

Elasticsearch

jvm.options (max RAM) INTEGER -Xmx4g

Maximum memory

allocation for Java virtual

machine

jvm.options (min RAM) INTEGER -Xmx4g

Minimum memory

allocation for Java virtual

machine

116

6. RESULTS AND CONCLUSION

InSight2 is a powerful platform aimed at network performance measurements,

security analytics and usage predictions. It presents user with in a modern and

secure web-based user interface. It is capable of handling large volumes of

Argus archives in near real-time enabling the network administrators of large-

scale networks utilizing multi gigabit fiber optic links to be able to generate,

collect, analyze, and visualize network related data in one convenient package.

The multi-threaded feature enables InSight2 to be deployed in wide variety of

platforms ranging from small scale off-the-shelf computers with limited

processing and memory capacity to large-scale server farms where CPU cores

and memory are abundant. It is fully capable of harnessing and utilizing all the

CPU cores at its disposal to provide seamless user experience that is only

rivaled by large scale paid software costing thousands of dollars.

Development of InSight2 was motivated by the lack of a platform geared towards

an all-in-one network monitoring and analytics, built upon free and open source

software. It resolves many of the drawbacks found in the network performance

and security monitoring tools available today. It focuses on both network

performance and security, provides time-critical predictions and

recommendations into the future about network status with regard to bandwidth

utilization, provides intuitive controls that give the end-user power of control to

find the information quickly and intuitively in a couple of clicks rather than

entering a series of commands, wait for them to be processed and displayed.

InSight2 achieves these feats through prudent selection of the network flow

features from the Argus flow data, development of robust software architecture

and the design and implementation of an intuitive and modern user interface. It

provides rich information about the network that enables network administrators

proactively determine network problems and security issues. Installation on a

target system is automatic and a single step process.

InSight2 maximizes information per unit area in the user interface to include all

the information found in the GLORIAD InSight and more by incorporating them

into a fewer dashboards which negates the necessity for the user to switch into

different dashboards to see different aspects of the network, eliminating the lag

between page loads and the bandwidth usage to load the dashboards

117

themselves. This makes InSight2 equally responsive under speedy WiFi as well

as slower mobile data networks.

InSight2 user interface manages client resources efficiently. It reuses the already

loaded dashboards to dynamically update according to the new filters reducing

the strain on the client system, improving performance and lowering the general

system requirements recommended to run the InSight2 user interface. InSight2

user interface does not need to be installed separately as it is completely web-

based and can be accessed using any modern browser that has JavaScript

enabled. Performance and security are divided into two dashboards giving

relevant visualizations depending on the dashboard selected, since not all

visualizations apply for both performance and security equally. This makes

InSight2 run on desktops as well as mobile browsers.

The new architecture disposes of complex message passing between multitude

of independently functioning scripts, to a more robust and lean architecture.

InSight2 is a complete Python rewrite of the Perl implementation of GLORIAD

InSight. Synchronous data processing as well as multi-threading is achieved

regardless of the underlying platform since the Python interpreter is able to

handle assignment of threads two different cores achieving true portability, as

opposed to coding in low level programming languages such as C++.

Advanced network predictions provide the user to make informed decisions

about status of the network in the near future. This allows the network

administrator or the user to schedule large-scale data transfer to a time period

where are the network utilization is predicted to be sustainably lower to achieve

higher transmission speeds without congesting the network.

InSight2 is developed with modern design philosophy in mind adhering to one

standard color scheme and layout to ease the steep learning curve of using this

tool. The following software engineering best practices have been kept in mind:

Modularity: Argus server and its suite of clients are used for flow data

generation, collection and filtering of the features. Data retrieval, enrichment and

storage are performed using a single software module, EM. The Elastic Suite of

tools is used to host the database, search for records using full text search

engine and visualize enriched data using dashboards. Due to the modular nature

of the architecture it is possible to swap any of these components with minimal

change to achieve different functionality without breaking the entire system.

118

Fewer moving parts: InSight2 achieves more functionality than GLORIAD

InSight with fewer dependencies. GLORIAD InSight components such as Perl

POE, Monit and ZeroMQ are no longer necessary. The functionality of „Farm of

Animals‟ is now achieved using the EM, a multi-threaded, synchronous

processing module that incorporates pipelined architecture written in Python.

Software and dependency management: Built-in software repository

management system of the Linux OS has been used to install software tools and

libraries instead of using programming language specific repositories such as

Perl CPAN or compiling from source. When new versions of these software gets

released a simple upgrade of the OS updates all the components these system

level modules as well. Since these modules are updated with backwards

compatibility in mind updates will not cause system instability. InSight2 servers

use mainstream Debian derived latest Ubuntu Linux OS for greater compatibility.

Extendibility: For the scope of this research the InSight2 system is optimized for

network flow data. The base architecture has been designed with generic inputs

in mind so that not only network flow data but also other data can also be

represented by the InSight2 system with minimal change.

Scalability: InSight2 can utilize the full potential of multicore processing and

Elasticsearch provides search results that scale well with big data. InSight2

offloads the functionality to Elasticsearch instead of keeping all data in sequential

databases.

Security: SSL encryption is used for encryption of the web interface during

transit from the web server to client browser. Username and password

authentication is implemented on the server-side to authorize users. Linux OS

users and InSight2 users are segregated by keeping separate user/password

database for InSight2 authentication system. Dashboards are extracted using

iFrames preventing unauthorized users from modifying dashboards.

Elasticsearch and Kibana configuration is optimized for best security practices.

„iptables‟ firewall was setup to harden the InSight2 server.

Ease of deployment: Convenient installation package for ease of deployment

that includes all the prerequisites which will install InSight2 in just one step in

systems that meet at least the minimum requirements.

119

Robustness: New server setup provides robust environment for InSight2,

RESTful API enables standard communication. The new RESTful API introduced

with Elastic suite of tools version 5.3 uses industry standard API allowing it to

function well with other software. Robust installation script that checks system

requirements before installation makes sure that target system meets the

prerequisites, installs necessary packages automatically and ships versions of

software that is tested to work well.

Stability: By utilizing Ubuntu Linux InSight2 inherits the stability compared to

FreeBSD. In Ubuntu Linux software components are not always updated to the

latest version and instead they are held back until they are considered to be

stable. This greatly minimizes the possibility that a system upgrade will update

system software to versions that are not compatible with each other.

Speed: GSR is kept in the Elasticsearch itself for faster search and InSight2 is

optimized for multithreaded environments.

Documentation: An installation guide, a user guide, and a video tutorial are
provided.

120

7. FUTURE WORK

Planned road map for the future development includes adapting the system to

process live Argus data. This is proposed to be performed by either collecting

data from Argus Radium server, reading directly from network span port using

Argus server or Cisco NetFlow source as input to the Argus server to generate

the flow data. With feedback from network operators at Stanford University and

Korea Institute of Science and Technology Information (KISTI) new dashboards

will be added to the system which will extend the functionality of the platform.

The current Markov Chains prediction system will be expanded to other

technologies such as machine learning and deep learning in order to perform

advanced prediction on a variety of metrics. The Enrichment Module is planned

to be extended to the other two servers in order to utilize their processing power

as well, which will result in distributed multi-server, multi-core processing.

InSight2 can be incorporated into a Docker container further streamlining the

installation procedure. Docker containers allows software to use the system

resources without having to install software. This is greatly beneficial to move the

platform from one server to another as well as for new deployments since the

Docker container is a self-contained package.

121

REFERENCES

122

[1] Cole, Greg, and Natasha Bulashova. "GLORIAD: a ring around the

Northern Hemisphere for science and education connecting North

America, Russia, China, Korea and Netherlands with advanced

network services", 2005.

[2] “Global Optical Ring Network for Advanced Applications Development

– logo”. http://gloriad.org. Retrieved 1 July 2017

[3] Valerii A.Vasenin, Moscow State University. “High Performance

Research and Education Networks in Russia.”

http://www.meti.go.jp/report/downloadfiles/gokin13j.pdf. Retrieved 1

July 2017

[4] Greg Cole, Jun Li, Jerome Sobieski, Dongkyun Kim, Donald Riley.

NSF Award: “IRNC: ProNet: GLORIAD”.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=0963058.

Retrieved 1 July 2017

[5] “Little GLORIAD”

https://www.nsf.gov/od/lpa/news/03/images/littlegloriadstill.jpg.

Retrieved 1 July 2017

[6] “KISTI Super Computing Center Information”.

http://www.nisn.re.kr/eng/action.do?menuId=50031. Retrieved 1 July

2017

[7] “QoSient Argus”. https://qosient.com/argus/. Retrieved 1 July 2017

[8] Greg Cole. “GLORIAD‟s New Measurement and Monitoring System for

Addressing Individual Customer-based Performance across a Global

Network Fabric”.

https://www.internet2.edu/presentations/tip2013/20130116-Cole-

GLORIAD.pdf. Retrieved 1 July 2017

[9] “Elastic Software Suite”. https://www.elastic.co. Retrieved 1 July 2017

[10] “GLORIAD InSight”. http://insight.gloriad.org/. Retrieved 1 July 2017

[11] Hintjens, Pieter. ZeroMQ: messaging for many applications. "O'Reilly

Media, Inc.", 2013.

[12] “Monit”. https://mmonit.com/monit/documentation/monit.html. Retrieved

1 July 2017

[13] Greenspan, Jay, and Brad Bulger. MySQL/PHP database applications.

John Wiley & Sons, Inc., 2001.

[14] Junyan, Lv, Xu Shiguo, and Li Yijie. "Application research of

embedded database SQLite." Information Technology and

Applications, 2009. IFITA'09. International Forum on. Vol. 2. IEEE,

2009.

http://gloriad.org/
http://www.meti.go.jp/report/downloadfiles/gokin13j.pdf
https://www.nsf.gov/awardsearch/showAward?AWD_ID=0963058
https://www.nsf.gov/od/lpa/news/03/images/littlegloriadstill.jpg
http://www.nisn.re.kr/eng/action.do?menuId=50031
https://qosient.com/argus/
https://www.internet2.edu/presentations/tip2013/20130116-Cole-GLORIAD.pdf
https://www.internet2.edu/presentations/tip2013/20130116-Cole-GLORIAD.pdf
https://www.elastic.co/
http://insight.gloriad.org/

123

[15] Jacobson, Van, Craig Leres, and S. McCanne. "The tcpdump manual

page." Lawrence Berkeley Laboratory, Berkeley, CA 143 (1989).

[16] Obraczka, Katia, and Fabio Silva. "Network latency metrics for server

proximity." Global Telecommunications Conference, 2000.

GLOBECOM'00. IEEE. Vol. 1. IEEE, 2000.

[17] Faezipour, Miad, and Mehrdad Nourani. "Wire-speed TCAM-based

architectures for multimatch packet classification." IEEE Transactions

on Computers 58.1 (2009): 5-17.

[18] Claise, Benoit. "Cisco systems netflow services export version 9."

(2004).

[19] Scarlato, Michele. "Network Monitoring in Software Defined

Networking."

[20] Sullivan, Francis. "System and method for hardware and software

monitoring with integrated troubleshooting." U.S. Patent Application

No. 12/358,424.

[21] “Logic Monitor”. https://3rxsdqm2iblvg8du1xff1z16-wpengine.netdna-

ssl.com/wp-content/uploads/2017/05/LogicMonitor-Security-

Whitepaper-v1.3.pdf

[22] “Pressler: PRTG”. https://download-

cdn.paessler.com/download/prtgmanual.pdf. Retrieved 1 July 2017

[23] Lorenzo, JUAN MANUEL. "AlienVault Users Manual." Version 1

(2011): 2010-2011.

[24] Sandke, Steven Robert, and Bryan Burns. "Targeted attack protection

using predictive sandboxing." U.S. Patent No. 9,596,264. 14 Mar.

2017.

[25] Dietrich, D. "Bogons and bogon filtering." 33rd meeting of the North

American Network Operator‟s Group (NANOG 33). 2005.

[26] Caputo, Rocco. "POE: The Perl object environment." published at

http://www. perl. org/poedown/poe-whitepaper-a4. pdf (2003).

[27] “State of Spam and Phishing”.

https://www.symantec.com/content/dam/symantec/docs/security-

center/archives/spam-report-oct-10-en.pdf. Retrieved 1 July 2017

[28] “Elasticsearch Benchmark of Scripting Languages”.

https://benchmarks.elastic.co/index.html#search_qps_scripts.

Retrieved 1 July 2017

[29] Białecki, Andrzej, et al. "Apache lucene 4." SIGIR 2012 workshop on

open source information retrieval. 2012.

https://3rxsdqm2iblvg8du1xff1z16-wpengine.netdna-ssl.com/wp-content/uploads/2017/05/LogicMonitor-Security-Whitepaper-v1.3.pdf
https://3rxsdqm2iblvg8du1xff1z16-wpengine.netdna-ssl.com/wp-content/uploads/2017/05/LogicMonitor-Security-Whitepaper-v1.3.pdf
https://3rxsdqm2iblvg8du1xff1z16-wpengine.netdna-ssl.com/wp-content/uploads/2017/05/LogicMonitor-Security-Whitepaper-v1.3.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/archives/spam-report-oct-10-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/archives/spam-report-oct-10-en.pdf
https://benchmarks.elastic.co/index.html#search_qps_scripts

124

[30] Abubakar, Yusuf, Thankgod Sani Adeyi, and Ibrahim Gambo Auta.

"Performance evaluation of NoSQL systems using YCSB in a resource

austere environment." Performance Evaluation 7.8 (2014).

[31] Kemeny, John G., and James Laurie Snell. Finite markov chains. Vol.

356. Princeton, NJ: van Nostrand, 1960.

[32] Zheng, Li, Liren Zhang, and Dong Xu. "Characteristics of network

delay and delay jitter and its effect on voice over IP (VoIP)."

Communications, 2001. ICC 2001. IEEE International Conference on.

Vol. 1. IEEE, 2001.

[33] Moore, David, et al. "Inferring internet denial-of-service activity." ACM

Transactions on Computer Systems (TOCS) 24.2 (2006): 115-139.

[34] Kirda, Engin, et al. "Noxes: a client-side solution for mitigating cross-

site scripting attacks." Proceedings of the 2006 ACM symposium on

applied computing. ACM, 2006.

[35] McGrew, David, and D. Bailey. AES-CCM Cipher Suites for Transport

Layer Security (TLS). No. RFC 6655. 2012.

[36] Aertsen, Maarten, et al. "No domain left behind: is Let's Encrypt

democratizing encryption?." arXiv preprint arXiv:1612.03005 (2016).

125

APPENDICES

126

Appendix A

Table A.1 Core Argus Clients

Client

Process

-ing

Type

Description

ra
live

stream

This client Argus data stream from a file to network socket

or piped from another clients output and outputs the

processed result into a file, standard output or as a binary

record in ASCII format.

rabins buffered

Processes Argus records by time based bins. Argus

Stream is Read from input and held for a Time period And

the content is output as an Argus stream.

racluster idle data Clusters the input according to given parameters

racount idle data
Outputs different counts in a given Argus file or stream that

shows statistics about the input.

radium
live

stream

This client is capable of Distributing Argus records and

accepts inputs equivalent to ra* commands and functions

in a similar manner.

aranon-

ymize
idle data Anonymous the Argus records

rasort idle data Based on the given perimeter list sorts the input

rasplit
buffered

stream

Is capable of splitting Source records based on size, count,

time, or flow event and outputs results in a similar manner

to other ra* clients.

127

Table A.2 All Other Argus Clients

Client

Process

-ing

Type

Description

raconvert idle data Convert the ASCII format data into binary format

radark idle data

Identifies IP addresses that belong to the dark

address space, Which is the IP addresses that does

not belong to active device.

radecode
live

stream
Decodes user data using tshark program

radump
live

stream

Prints the user data such as „suser‟: Source user,

„duser‟: destination user.

raevent
live

stream

Allows the use of creation and use of events for

other ra* clients

rafilteraddr
live

stream

this program filters record according to a given

address list

ragraph
buffered

stream

This client allows Argus data to be graphed using

rabins and rrdtool programs

ragrep
live

stream

Allows Argus data to be search using given search

pattern

rahisto idle data Next day input data degenerate histogram

rahosts
live

stream

Outputs the hosts seen in the input Argus data

stream

ralabel
live

stream

has the ability to label flow records in the incoming

Argus stream based on IP address

128

Table A.2. Continued.

Client

Process

-ing

Type

Description

rapolicy idle data
Uses Cisco Access Control list (ACL) and matches

Argus records to these rules

raports idle data
ra* based client that that uses host port for

processing

rarpwatch
live

stream

what ARP events are observed (supports IPv4 and

IPv6)

raservices
live

stream

Checks the bite pattern and identifies network

Services seen in the input Argus stream provided by

rauserdata

rasql idle data
Can be used to read binary data stored Within SQL

databases insert add using rasqlinsert

rasqlinsert
live

stream
Used to insert Argus flow records into SQL database

rasqltimeindex
live

stream

This client can be used to build time index that can

be used to insert records into SQL database

rapath idle data
Generate the path each communication took place

by taking icmpmap Data into account

rastream
buffered

stream

splits the incoming data stream into adjacent

sections based on size, count, time or flow event

rastrip
live

stream

This client can be used to remove specific fields from

Argus records

ratemplate
live

stream

Can be modified to support application specific

requirements using a template

129

Table A.2. Continued.

Client

Process

-ing

Type

Description

ratimerange
live

stream
output the time range of the input data stream

rauserdata idle data
Produces an output from the input Argus data that

can be used as a byte-pattern file for raservices.

ratop
live

stream

Similar to Linux „top‟ command this client shows top

flows by the number of bytes transmitted

130

Table A.3 Regular Argus Fields

Field Name Description

srcid source identifier for Argus

stime starting time of the record

ltime ending time of the record

flgs flags of the Flow State

seq sequence number of Argus flow record

smac, dmac MAC address Source or destination node

soui, doui OUI part of the source or destination MAC address

saddr, daddr IP address of the source or destination

proto Protocol

sport, dport Source or destination port number

stos, dtos type of service byte value of the source or destination

sdsb, ddsb diff serve light value of source or destination

sco, dco country code of source or destination

sttl, dttl
Source time to live: source to destination or destination time to

live: destination to source value

sipid, dipid IP identifier of source or destination

smpls, dmpls MPLS identifier of source or destination

spkts, dpkts
Packet account from source to destination or destination to

source

131

Table A.3. Continued.

sbytes,

dbytes

transaction bytes from source to destination or destination to

source

sappbytes,

dappbytes

application bytes from source to destination or destination to

source

sload, dload load from Source or destination in bits per second

sloss, dloss packets retransmitted or dropped from Source or destination

sgap, dgap bytes missing in the flow Stream from Source or destination

dir transaction Direction

sintpkt,

dintpkt
inter packet arrival time from Source or destination

sintdist,

dintdist

Time-based distribution of arrival time between two packets by

Source or destination

sintpktact,

dintpktact

active arrival time between two packets from Source or

destination

sintdistact,

dintdistact
Time between two packets arriving from Source or destination

sintpktidl,

dintpktidl
idle time between two packets from Source or destination

sintdistidl,

dintdistidl

Distribution of the idle time of 2 packets from Source or

destination

sjit, djit Jitter observed at source or destination

sjitact, djitact active jitter observed at source or destination

sjitidle, djitidle Idle jitter observed at source or destination

state state of the transaction

suser, duser user data seen at the source or destination

swin, dwin TCP window length advertised by Source or destination

132

Table A.3. Continued.

svlan, dvlan
virtual local area network (VLAN identification number at source

or destination

svid, dvid VLAN Identification number observed at source or destination

svpri, dvpri
Private VLAN Identification number observed at source or

destination

srng, erng Center time range by start or ending time

stcpb, dtcpb base sequence number of TCP Source or destination

tcprtt round trip time of the connection

synack time to set up connection between SYN and SYN_ACK

ackdat time to set up connection between SYN_ACK and ACK

tcpopt
Connection options observed or the lack of it during connection

initiation

inode intermediate node IP address of ICMP event

offset offset reported in the TCP header

spktsz, dpktsz
histogram of the distribution of package sizes from Source or

destination

smaxsz,

dmaxsz

maximum package size of the packets Santa by Source or

destination

sminsz,

dminsz

minimum package size of the packets Santa by Source or

destination

133

Table A.4 Calculated Argus Fields

Field Name Description

dur Flow duration

rate, srate,

drate
package rate in packets per second

trans total record count of the incoming Argus stream

runtime total sum of duration of the records observed in the input

mean mean of duration of the records observed in the input

stddev
standard deviationof duration of the records observed in the

input

sum sum of duration of the records observed in the input

min minimum of duration of the records observed in the input

max maximum of duration of the records observed in the input

pkts number of packets seen in the transaction

bytes number of bytes seen in the transaction

appbytes number of application bytes seen in the transaction

load
network load observed in the incoming Argus flow in bits per

second

loss number of packet retransmissions or dropped packets

ploss
percentage of number of packet retransmissions or dropped

packets

sploss, dploss
number of packet retransmissions or dropped packets by

Source or destination

abr
ratio between source application bytes and destination

application bytes

134

Table A.5 Fields Stored in Elasticsearch

Field Name Type FORMAT

doc.ackdat Argus Data FLOAT

doc.appbytes Argus Data LONG

doc.bytes Argus Data LONG

doc.count Argus Data INTEGER

doc.dst.application GSR Data KEYWORD

doc.dst.asnum GSR Data SHORT

doc.dst.bytes Argus Data DOUBLE

doc.dst.discipline GSR Data KEYWORD

doc.dst.dns GSR Data KEYWORD

doc.dst.domainid GSR Data INTEGER

doc.dst.geoip.city GeoIP Data KEYWORD

doc.dst.geoip.country GeoIP Data KEYWORD

doc.dst.geoip.location GeoIP Data GEO_POINT

doc.dst.geoip.province GeoIP Data KEYWORD

doc.dst.geoip.zip GeoIP Data KEYWORD

doc.dst.ip Argus Data IP

doc.dst.iplabels GSR Data KEYWORD

doc.dst.ipname GSR Data KEYWORD

doc.dst.isp GSR Data KEYWORD

doc.dst.legacy.location Legacy Data GEO_POINT

doc.dst.legacy.security Legacy Data KEYWORD

doc.dst.load Argus Data FLOAT

doc.dst.organization GSR Data KEYWORD

doc.dst.orgclass GSR Data KEYWORD

doc.dst.port Argus Data INTEGER

doc.dst.predicted.security Predicted Data KEYWORD

doc.dst.rate Argus Data FLOAT

doc.dst.region GeoIP Data KEYWORD

doc.dst.security Security Data KEYWORD

doc.duration Argus Data FLOAT

doc.flags Argus Data KEYWORD

doc.hops Argus Data SHORT

doc.intpkt Argus Data FLOAT

doc.jitter Argus Data FLOAT

135

Table A.5. Continued.

Field Name Type FORMAT

doc.load Argus Data FLOAT

doc.loss Argus Data INTEGER

doc.maxsize Argus Data INTEGER

doc.meansize Argus Data INTEGER

doc.minsize Argus Data INTEGER

doc.packets Argus Data INTEGER

doc.pcr Argus Data FLOAT

doc.ploss Argus Data FLOAT

doc.pretrans Argus Data FLOAT

doc.protocol Argus Data SHORT

doc.rate Argus Data FLOAT

doc.retrans Argus Data INTEGER

doc.rtt Argus Data FLOAT

doc.src.application GSR Data KEYWORD

doc.src.asnum GSR Data SHORT

doc.src.bytes Argus Data DOUBLE

doc.src.discipline GSR Data KEYWORD

doc.src.dns GSR Data KEYWORD

doc.src.domainid GSR Data INTEGER

doc.src.geoip.city GeoIP Data KEYWORD

doc.src.geoip.country GeoIP Data KEYWORD

doc.src.geoip.location GeoIP Data GEO_POINT

doc.src.geoip.province GeoIP Data KEYWORD

doc.src.geoip.zip GeoIP Data KEYWORD

doc.src.ip Argus Data IP

doc.src.iplabels GSR Data KEYWORD

doc.src.ipname GSR Data KEYWORD

doc.src.isp GSR Data KEYWORD

doc.src.legacy.location Legacy Data GEO_POINT

doc.src.legacy.security Legacy Data KEYWORD

doc.src.load Argus Data FLOAT

doc.src.organization GSR Data KEYWORD

doc.src.orgclass GSR Data KEYWORD

doc.src.port Argus Data INTEGER

136

Table A.5. Continued.

Field Name Type FORMAT

doc.src.predicted.security Predicted Data KEYWORD

doc.src.rate Argus Data FLOAT

doc.src.region GSR Data KEYWORD

doc.src.security Security Data KEYWORD

doc.synack Argus Data FLOAT

doc.tcpopt Argus Data KEYWORD

doc.time Argus Data DATE

doc.tos Argus Data KEYWORD

doc.vlanid GSR Data INTEGER

Table A.6 GSR Information Stored in Elasticsearch

Field Name Type FORMAT

ip IP Address KEYWORD

organization GSR Data KEYWORD

domainid GSR Data INTEGER

dns GSR Data KEYWORD

ipname GSR Data KEYWORD

isp GSR Data KEYWORD

labels GSR Data KEYWORD

asnum GSR Data INTEGER

discipline GSR Data KEYWORD

agency GSR Data KEYWORD

application GSR Data KEYWORD

137

Appendix B

Figure B.1. Mithril‟s File System Failure

138

Figure B.2. Checking Mithril‟s Drive Configuration

Figure B.3. Checking Mithril‟s Physical Disk Drives

139

Figure B.4. Degraded State of RAID Configuration

Figure B.5. Mithril‟s Unconfigured Drive in CIMC

140

Figure B.6. Unconfigured Drive in WebBIOS

Figure B.7. Checking Drive Health

141

Figure B.8. ZFS Reassembly and Verification

Figure B.9. Setting up RAID 6

142

Figure B.10. Booting Single User Mode

Figure B.11. QNAP Disk Failure

143

Appendix C

Figure C.1 Mean Value Distribution of the Markov Chain

144

Figure C.2 Log of Mean Value Distribution of the Markov Chain

145

Figure C.3 Variance Distribution of the Markov Chain

146

Figure C.4 Log of Variance Distribution of the Markov Chain

147

VITA

Hansaka Angel Dias Edirisinghe Kodituwakku was born in Colombo, Sri Lanka in

1990. During his bachelor‟s degree in Electronic and Telecommunication

Engineering at the University of Moratuwa, Sri Lanka, he did his internship at

GLORIAD USA and contributed to the GLORIAD InSight platform by developing

„Spider‟ and „Scorpion‟ modules. He graduated in 2014 and started Masters of

Science in Computer Engineering at University of Tennessee in 2016. He

developed InSight2 platform for his Master‟s Thesis. He would graduate in

August 2017.

	InSight2: An Interactive Web Based Platform for Modeling and Analysis of Large Scale Argus Network Flow Data
	Recommended Citation

	Guide to the Preparation of

