672 research outputs found

    Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data

    Full text link
    It is well known that recognizers personalized to each user are much more effective than user-independent recognizers. With the popularity of smartphones today, although it is not difficult to collect a large set of audio data for each user, it is difficult to transcribe it. However, it is now possible to automatically discover acoustic tokens from unlabeled personal data in an unsupervised way. We therefore propose a multi-task deep learning framework called a phoneme-token deep neural network (PTDNN), jointly trained from unsupervised acoustic tokens discovered from unlabeled data and very limited transcribed data for personalized acoustic modeling. We term this scenario "weakly supervised". The underlying intuition is that the high degree of similarity between the HMM states of acoustic token models and phoneme models may help them learn from each other in this multi-task learning framework. Initial experiments performed over a personalized audio data set recorded from Facebook posts demonstrated that very good improvements can be achieved in both frame accuracy and word accuracy over popularly-considered baselines such as fDLR, speaker code and lightly supervised adaptation. This approach complements existing speaker adaptation approaches and can be used jointly with such techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201

    Semi-supervised and Active-learning Scenarios: Efficient Acoustic Model Refinement for a Low Resource Indian Language

    Full text link
    We address the problem of efficient acoustic-model refinement (continuous retraining) using semi-supervised and active learning for a low resource Indian language, wherein the low resource constraints are having i) a small labeled corpus from which to train a baseline `seed' acoustic model and ii) a large training corpus without orthographic labeling or from which to perform a data selection for manual labeling at low costs. The proposed semi-supervised learning decodes the unlabeled large training corpus using the seed model and through various protocols, selects the decoded utterances with high reliability using confidence levels (that correlate to the WER of the decoded utterances) and iterative bootstrapping. The proposed active learning protocol uses confidence level based metric to select the decoded utterances from the large unlabeled corpus for further labeling. The semi-supervised learning protocols can offer a WER reduction, from a poorly trained seed model, by as much as 50% of the best WER-reduction realizable from the seed model's WER, if the large corpus were labeled and used for acoustic-model training. The active learning protocols allow that only 60% of the entire training corpus be manually labeled, to reach the same performance as the entire data

    Unsupervised Learning of Semantic Audio Representations

    Full text link
    Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabeled nonspeech audio: (i) noise and translations in time do not change the underlying sound category, (ii) a mixture of two sound events inherits the categories of the constituents, and (iii) the categories of events in close temporal proximity are likely to be the same or related. Without labels to ground them, these constraints are incompatible with classification loss functions. However, they may still be leveraged to identify geometric inequalities needed for triplet loss-based training of convolutional neural networks. The result is low-dimensional embeddings of the input spectrograms that recover 41% and 84% of the performance of their fully-supervised counterparts when applied to downstream query-by-example sound retrieval and sound event classification tasks, respectively. Moreover, in limited-supervision settings, our unsupervised embeddings double the state-of-the-art classification performance.Comment: Submitted to ICASSP 201

    Lessons from Building Acoustic Models with a Million Hours of Speech

    Full text link
    This is a report of our lessons learned building acoustic models from 1 Million hours of unlabeled speech, while labeled speech is restricted to 7,000 hours. We employ student/teacher training on unlabeled data, helping scale out target generation in comparison to confidence model based methods, which require a decoder and a confidence model. To optimize storage and to parallelize target generation, we store high valued logits from the teacher model. Introducing the notion of scheduled learning, we interleave learning on unlabeled and labeled data. To scale distributed training across a large number of GPUs, we use BMUF with 64 GPUs, while performing sequence training only on labeled data with gradient threshold compression SGD using 16 GPUs. Our experiments show that extremely large amounts of data are indeed useful; with little hyper-parameter tuning, we obtain relative WER improvements in the 10 to 20% range, with higher gains in noisier conditions.Comment: "Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    DNN adaptation by automatic quality estimation of ASR hypotheses

    Full text link
    In this paper we propose to exploit the automatic Quality Estimation (QE) of ASR hypotheses to perform the unsupervised adaptation of a deep neural network modeling acoustic probabilities. Our hypothesis is that significant improvements can be achieved by: i)automatically transcribing the evaluation data we are currently trying to recognise, and ii) selecting from it a subset of "good quality" instances based on the word error rate (WER) scores predicted by a QE component. To validate this hypothesis, we run several experiments on the evaluation data sets released for the CHiME-3 challenge. First, we operate in oracle conditions in which manual transcriptions of the evaluation data are available, thus allowing us to compute the "true" sentence WER. In this scenario, we perform the adaptation with variable amounts of data, which are characterised by different levels of quality. Then, we move to realistic conditions in which the manual transcriptions of the evaluation data are not available. In this case, the adaptation is performed on data selected according to the WER scores "predicted" by a QE component. Our results indicate that: i) QE predictions allow us to closely approximate the adaptation results obtained in oracle conditions, and ii) the overall ASR performance based on the proposed QE-driven adaptation method is significantly better than the strong, most recent, CHiME-3 baseline.Comment: Computer Speech & Language December 201
    corecore