6 research outputs found

    On-demand transmission model using image-based rendering for remote visualization

    Get PDF
    Interactive distributed visualization is an emerging technology with numerous applications. However, many of the present approaches to interactive distributed visualization have limited performance since they are based on the traditional polygonal processing graphics pipeline. In contrast, image-based rendering uses multiple images of the scene instead of a 3D geometrical representation, and so has the key advantage that the final output is independent of the scene complexity, and depends on the desired final image resolution. These multiple images are referred to as the light field dataset. In this thesis we propose an on-demand solution for efficiently transmitting visualization data to remote users/clients. This is achieved through sending selected parts of the dataset based on the current client viewpoint, and is done instead of downloading a complete replica of the light field dataset to each client, or remotely sending a single rendered view back from a central server to the user each time the user updates their viewing parameters. The on-demand approach shows stable performance as the number of clients increases because the load on the server and the network traffic are reduced. Furthermore, detailed performance studies show that the proposed on-demand scheme outperforms the current local and remote solutions in terms of interactivity measured in frames per second. In addition, a performance study based on a theoretical cost model is presen ted. The model was able to provide realistic estimations of the results for different ranges of dataset sizes. Also, these results indicate that the model can be used as a predictive tool for estimating timings for the visualization process, enabling the improvement of the process and product quality, as well as the further develop ment of models for larger systems and datasets. In further discussing the strengths and weaknesses of each of the models, we see that to be able to run the system for larger dataset resolution involves a trade-off between generality of hardware (the server and network) and dataset resolution. Larger dataset resolution cannot achieve interactive frame rates on current COTS infrastructure. Finally, we conclude that the design of our 3D visualization system, based on image-based rendering coupled with an on-demand transmission model, has made a contribution to the field, and is a good basis for the future development of collaborative, distributed visualization systems

    Virtual light fields for global illumination in computer graphics

    Get PDF
    This thesis presents novel techniques for the generation and real-time rendering of globally illuminated environments with surfaces described by arbitrary materials. Real-time rendering of globally illuminated virtual environments has for a long time been an elusive goal. Many techniques have been developed which can compute still images with full global illumination and this is still an area of active flourishing research. Other techniques have only dealt with certain aspects of global illumination in order to speed up computation and thus rendering. These include radiosity, ray-tracing and hybrid methods. Radiosity due to its view independent nature can easily be rendered in real-time after pre-computing and storing the energy equilibrium. Ray-tracing however is view-dependent and requires substantial computational resources in order to run in real-time. Attempts at providing full global illumination at interactive rates include caching methods, fast rendering from photon maps, light fields, brute force ray-tracing and GPU accelerated methods. Currently, these methods either only apply to special cases, are incomplete exhibiting poor image quality and/or scale badly such that only modest scenes can be rendered in real-time with current hardware. The techniques developed in this thesis extend upon earlier research and provide a novel, comprehensive framework for storing global illumination in a data structure - the Virtual Light Field - that is suitable for real-time rendering. The techniques trade off rapid rendering for memory usage and precompute time. The main weaknesses of the VLF method are targeted in this thesis. It is the expensive pre-compute stage with best-case O(N^2) performance, where N is the number of faces, which make the light propagation unpractical for all but simple scenes. This is analysed and greatly superior alternatives are presented and evaluated in terms of efficiency and error. Several orders of magnitude improvement in computational efficiency is achieved over the original VLF method. A novel propagation algorithm running entirely on the Graphics Processing Unit (GPU) is presented. It is incremental in that it can resolve visibility along a set of parallel rays in O(N) time and can produce a virtual light field for a moderately complex scene (tens of thousands of faces), with complex illumination stored in millions of elements, in minutes and for simple scenes in seconds. It is approximate but gracefully converges to a correct solution; a linear increase in resolution results in a linear increase in computation time. Finally a GPU rendering technique is presented which can render from Virtual Light Fields at real-time frame rates in high resolution VR presentation devices such as the CAVETM

    Low Latency Rendering with Dataflow Architectures

    Get PDF
    The research presented in this thesis concerns latency in VR and synthetic environments. Latency is the end-to-end delay experienced by the user of an interactive computer system, between their physical actions and the perceived response to these actions. Latency is a product of the various processing, transport and buffering delays present in any current computer system. For many computer mediated applications, latency can be distracting, but it is not critical to the utility of the application. Synthetic environments on the other hand attempt to facilitate direct interaction with a digitised world. Direct interaction here implies the formation of a sensorimotor loop between the user and the digitised world - that is, the user makes predictions about how their actions affect the world, and see these predictions realised. By facilitating the formation of the this loop, the synthetic environment allows users to directly sense the digitised world, rather than the interface, and induce perceptions, such as that of the digital world existing as a distinct physical place. This has many applications for knowledge transfer and efficient interaction through the use of enhanced communication cues. The complication is, the formation of the sensorimotor loop that underpins this is highly dependent on the fidelity of the virtual stimuli, including latency. The main research questions we ask are how can the characteristics of dataflow computing be leveraged to improve the temporal fidelity of the visual stimuli, and what implications does this have on other aspects of the fidelity. Secondarily, we ask what effects latency itself has on user interaction. We test the effects of latency on physical interaction at levels previously hypothesized but unexplored. We also test for a previously unconsidered effect of latency on higher level cognitive functions. To do this, we create prototype image generators for interactive systems and virtual reality, using dataflow computing platforms. We integrate these into real interactive systems to gain practical experience of how the real perceptible benefits of alternative rendering approaches, but also what implications are when they are subject to the constraints of real systems. We quantify the differences of our systems compared with traditional systems using latency and objective image fidelity measures. We use our novel systems to perform user studies into the effects of latency. Our high performance apparatuses allow experimentation at latencies lower than previously tested in comparable studies. The low latency apparatuses are designed to minimise what is currently the largest delay in traditional rendering pipelines and we find that the approach is successful in this respect. Our 3D low latency apparatus achieves lower latencies and higher fidelities than traditional systems. The conditions under which it can do this are highly constrained however. We do not foresee dataflow computing shouldering the bulk of the rendering workload in the future but rather facilitating the augmentation of the traditional pipeline with a very high speed local loop. This may be an image distortion stage or otherwise. Our latency experiments revealed that many predictions about the effects of low latency should be re-evaluated and experimenting in this range requires great care

    Light field propagation and rendering on the GPU

    No full text
    corecore