1,230 research outputs found

    Lower Complexity Bounds for Lifted Inference

    Full text link
    One of the big challenges in the development of probabilistic relational (or probabilistic logical) modeling and learning frameworks is the design of inference techniques that operate on the level of the abstract model representation language, rather than on the level of ground, propositional instances of the model. Numerous approaches for such "lifted inference" techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established early on in (Jaeger 2000). However, it is not immediate that these results also apply to the type of modeling languages that currently receive the most attention, i.e., weighted, quantifier-free formulas. In this paper we extend these earlier results, and show that under the assumption that NETIME =/= ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier- and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference, and for knowledge bases not containing the equality predicate.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Lifted Variable Elimination for Probabilistic Logic Programming

    Full text link
    Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relational languages outside of logic programming. In this paper we adapt Generalized Counting First Order Variable Elimination (GC-FOVE) to the problem of computing the probability of queries to probabilistic logic programs under the distribution semantics. In particular, we extend the Prolog Factor Language (PFL) to include two new types of factors that are needed for representing ProbLog programs. These factors take into account the existing causal independence relationships among random variables and are managed by the extension to variable elimination proposed by Zhang and Poole for dealing with convergent variables and heterogeneous factors. Two new operators are added to GC-FOVE for treating heterogeneous factors. The resulting algorithm, called LP2^2 for Lifted Probabilistic Logic Programming, has been implemented by modifying the PFL implementation of GC-FOVE and tested on three benchmarks for lifted inference. A comparison with PITA and ProbLog2 shows the potential of the approach.Comment: To appear in Theory and Practice of Logic Programming (TPLP). arXiv admin note: text overlap with arXiv:1402.0565 by other author

    Lifted Relax, Compensate and then Recover: From Approximate to Exact Lifted Probabilistic Inference

    Full text link
    We propose an approach to lifted approximate inference for first-order probabilistic models, such as Markov logic networks. It is based on performing exact lifted inference in a simplified first-order model, which is found by relaxing first-order constraints, and then compensating for the relaxation. These simplified models can be incrementally improved by carefully recovering constraints that have been relaxed, also at the first-order level. This leads to a spectrum of approximations, with lifted belief propagation on one end, and exact lifted inference on the other. We discuss how relaxation, compensation, and recovery can be performed, all at the firstorder level, and show empirically that our approach substantially improves on the approximations of both propositional solvers and lifted belief propagation.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Probabilistic Inference Modulo Theories

    Get PDF
    We present SGDPLL(T), an algorithm that solves (among many other problems) probabilistic inference modulo theories, that is, inference problems over probabilistic models defined via a logic theory provided as a parameter (currently, propositional, equalities on discrete sorts, and inequalities, more specifically difference arithmetic, on bounded integers). While many solutions to probabilistic inference over logic representations have been proposed, SGDPLL(T) is simultaneously (1) lifted, (2) exact and (3) modulo theories, that is, parameterized by a background logic theory. This offers a foundation for extending it to rich logic languages such as data structures and relational data. By lifted, we mean algorithms with constant complexity in the domain size (the number of values that variables can take). We also detail a solver for summations with difference arithmetic and show experimental results from a scenario in which SGDPLL(T) is much faster than a state-of-the-art probabilistic solver.Comment: Submitted to StarAI-16 workshop as closely revised version of IJCAI-16 pape

    Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting

    Full text link
    In this paper we study lifted inference for the Weighted First-Order Model Counting problem (WFOMC), which counts the assignments that satisfy a given sentence in first-order logic (FOL); it has applications in Statistical Relational Learning (SRL) and Probabilistic Databases (PDB). We present several results. First, we describe a lifted inference algorithm that generalizes prior approaches in SRL and PDB. Second, we provide a novel dichotomy result for a non-trivial fragment of FO CNF sentences, showing that for each sentence the WFOMC problem is either in PTIME or #P-hard in the size of the input domain; we prove that, in the first case our algorithm solves the WFOMC problem in PTIME, and in the second case it fails. Third, we present several properties of the algorithm. Finally, we discuss limitations of lifted inference for symmetric probabilistic databases (where the weights of ground literals depend only on the relation name, and not on the constants of the domain), and prove the impossibility of a dichotomy result for the complexity of probabilistic inference for the entire language FOL
    • …
    corecore