5,853 research outputs found

    Coarse-to-Fine Lifted MAP Inference in Computer Vision

    Full text link
    There is a vast body of theoretical research on lifted inference in probabilistic graphical models (PGMs). However, few demonstrations exist where lifting is applied in conjunction with top of the line applied algorithms. We pursue the applicability of lifted inference for computer vision (CV), with the insight that a globally optimal (MAP) labeling will likely have the same label for two symmetric pixels. The success of our approach lies in efficiently handling a distinct unary potential on every node (pixel), typical of CV applications. This allows us to lift the large class of algorithms that model a CV problem via PGM inference. We propose a generic template for coarse-to-fine (C2F) inference in CV, which progressively refines an initial coarsely lifted PGM for varying quality-time trade-offs. We demonstrate the performance of C2F inference by developing lifted versions of two near state-of-the-art CV algorithms for stereo vision and interactive image segmentation. We find that, against flat algorithms, the lifted versions have a much superior anytime performance, without any loss in final solution quality.Comment: Published in IJCAI 201

    Gradual Liquid Type Inference

    Full text link
    Liquid typing provides a decidable refinement inference mechanism that is convenient but subject to two major issues: (1) inference is global and requires top-level annotations, making it unsuitable for inference of modular code components and prohibiting its applicability to library code, and (2) inference failure results in obscure error messages. These difficulties seriously hamper the migration of existing code to use refinements. This paper shows that gradual liquid type inference---a novel combination of liquid inference and gradual refinement types---addresses both issues. Gradual refinement types, which support imprecise predicates that are optimistically interpreted, can be used in argument positions to constrain liquid inference so that the global inference process e effectively infers modular specifications usable for library components. Dually, when gradual refinements appear as the result of inference, they signal an inconsistency in the use of static refinements. Because liquid refinements are drawn from a nite set of predicates, in gradual liquid type inference we can enumerate the safe concretizations of each imprecise refinement, i.e. the static refinements that justify why a program is gradually well-typed. This enumeration is useful for static liquid type error explanation, since the safe concretizations exhibit all the potential inconsistencies that lead to static type errors. We develop the theory of gradual liquid type inference and explore its pragmatics in the setting of Liquid Haskell.Comment: To appear at OOPSLA 201

    Tractability through Exchangeability: A New Perspective on Efficient Probabilistic Inference

    Full text link
    Exchangeability is a central notion in statistics and probability theory. The assumption that an infinite sequence of data points is exchangeable is at the core of Bayesian statistics. However, finite exchangeability as a statistical property that renders probabilistic inference tractable is less well-understood. We develop a theory of finite exchangeability and its relation to tractable probabilistic inference. The theory is complementary to that of independence and conditional independence. We show that tractable inference in probabilistic models with high treewidth and millions of variables can be understood using the notion of finite (partial) exchangeability. We also show that existing lifted inference algorithms implicitly utilize a combination of conditional independence and partial exchangeability.Comment: In Proceedings of the 28th AAAI Conference on Artificial Intelligenc

    Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code

    Get PDF
    Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide’s state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regenerate the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. We abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75% performance improvement, four kernels from IrfanView, leading to 4.97× performance, and one stencil from the miniGMG multigrid benchmark netting a 4.25× improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop’s filters with our lifted implementations, giving 1.12× speedup without affecting the user experience.United States. Dept. of Energy (Award DE-SC0005288)United States. Dept. of Energy (Award DE-SC0008923)United States. Defense Advanced Research Projects Agency (Agreement FA8759-14-2-0009)MIT Energy Initiative (Fellowship

    Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image

    Get PDF
    We propose a unified formulation for the problem of 3D human pose estimation from a single raw RGB image that reasons jointly about 2D joint estimation and 3D pose reconstruction to improve both tasks. We take an integrated approach that fuses probabilistic knowledge of 3D human pose with a multi-stage CNN architecture and uses the knowledge of plausible 3D landmark locations to refine the search for better 2D locations. The entire process is trained end-to-end, is extremely efficient and obtains state- of-the-art results on Human3.6M outperforming previous approaches both on 2D and 3D errors.Comment: Paper presented at CVPR 1
    • …
    corecore