Exchangeability is a central notion in statistics and probability theory. The
assumption that an infinite sequence of data points is exchangeable is at the
core of Bayesian statistics. However, finite exchangeability as a statistical
property that renders probabilistic inference tractable is less
well-understood. We develop a theory of finite exchangeability and its relation
to tractable probabilistic inference. The theory is complementary to that of
independence and conditional independence. We show that tractable inference in
probabilistic models with high treewidth and millions of variables can be
understood using the notion of finite (partial) exchangeability. We also show
that existing lifted inference algorithms implicitly utilize a combination of
conditional independence and partial exchangeability.Comment: In Proceedings of the 28th AAAI Conference on Artificial Intelligenc