4,031 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Network Lifetime Maximization With Node Admission in Wireless Multimedia Sensor Networks

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are expected to support multimedia services such as delivery of video and audio streams. However, due to the relatively stringent quality-of-service (QoS) requirements of multimedia services (e.g., high transmission rates and timely delivery) and the limited wireless resources, it is possible that not all the potential sensor nodes can be admitted into the network. Thus, node admission is essential for WMSNs, which is the target of this paper. Specifically, we aim at the node admission and its interaction with power allocation and link scheduling. A cross-layer design is presented as a two-stage optimization problem, where at the first stage the number of admitted sensor nodes is maximized, and at the second stage the network lifetime is maximized. Interestingly, it is proved that the two-stage optimization problem can be converted to a one-stage optimization problem with a more compact and concise mathematical form. Numerical results demonstrate the effectiveness of the two-stage and one-stage optimization frameworks

    Cooperative Hyper-Scheduling based improving Energy Aware Life Time Maximization in Wireless Body Sensor Network Using Topology Driven Clustering Approach

    Get PDF
    The Wireless Body Sensor Network (WBSN) is an incredible developing data transmission network for modern day communication especially in Biosensor device networks. Due to energy consumption in biomedical data transfer have impacts of sink nodes get loss information on each duty cycle because of Traffic interruptions. The reason behind the popularity of WBSN characteristics contains number of sensor nodes to transmit data in various dense regions. Due to increasing more traffic, delay, bandwidth consumption, the energy losses be occurred to reduce the lifetime of the WBSN transmission. So, the sensor nodes are having limited energy or power, by listening to the incoming signals, it loses certain amount of energy to make data losses because of improper route selection. To improve the energy aware lifetime maximization through Traffic Aware Routing (TAR) based on scheduling. Because the performance of scheduling is greatly depending on the energy of nodes and lifetime of the network. To resolve this problem, we propose a Cooperative Hyper-scheduling (CHS) based improving energy aware life time maximization (EALTM) in Wireless Body sensor network using Topology Driven Clustering Approach (TDCA).Initially the method maintains the traces of transmission performed by different Bio-sensor nodes in different duty cycle. The method considers the energy of different nodes and history of earlier transmission from the Route Table (RT) whether the transmission behind the Sink node. Based on the RT information route discovery was performed using Traffic Aware Neighbors Discovery (TAND) to estimate Data Transmission Support Measure (DTSM) on each Bio-sensor node which its covers sink node. These nodes are grouped into topology driven clustering approach for route optimization. Then the priority is allocated based on The Max-Min DTSM, the Cooperative Hyper-scheduling was implemented to schedule the transmission with support of DTSM to reduce the energy losses in WBSN. This improves the energy level to maximization the life time of data transmission in WBSN than other methods to produce best performance in throughput energy level

    Data Transmission with Reduced Delay for Distributed Acoustic Sensors

    Full text link
    This paper proposes a channel access control scheme fit to dense acoustic sensor nodes in a sensor network. In the considered scenario, multiple acoustic sensor nodes within communication range of a cluster head are grouped into clusters. Acoustic sensor nodes in a cluster detect acoustic signals and convert them into electric signals (packets). Detection by acoustic sensors can be executed periodically or randomly and random detection by acoustic sensors is event driven. As a result, each acoustic sensor generates their packets (50bytes each) periodically or randomly over short time intervals (400ms~4seconds) and transmits directly to a cluster head (coordinator node). Our approach proposes to use a slotted carrier sense multiple access. All acoustic sensor nodes in a cluster are allocated to time slots and the number of allocated sensor nodes to each time slot is uniform. All sensor nodes allocated to a time slot listen for packet transmission from the beginning of the time slot for a duration proportional to their priority. The first node that detect the channel to be free for its whole window is allowed to transmit. The order of packet transmissions with the acoustic sensor nodes in the time slot is autonomously adjusted according to the history of packet transmissions in the time slot. In simulations, performances of the proposed scheme are demonstrated by the comparisons with other low rate wireless channel access schemes.Comment: Accepted to IJDSN, final preprinted versio

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Energy Efficient and Secure Wireless Sensor Networks Design

    Get PDF
    Wireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense, process, communicate, and transmit information to a destination, and they are expected to have significant impact on the efficiency of many applications in various fields. The resource constraint such as limited battery power, is the greatest challenge in WSNs design as it affects the lifetime and performance of the network. An energy efficient, secure, and trustworthy system is vital when a WSN involves highly sensitive information. Thus, it is critical to design mechanisms that are energy efficient and secure while at the same time maintaining the desired level of quality of service. Inspired by these challenges, this dissertation is dedicated to exploiting optimization and game theoretic approaches/solutions to handle several important issues in WSN communication, including energy efficiency, latency, congestion, dynamic traffic load, and security. We present several novel mechanisms to improve the security and energy efficiency of WSNs. Two new schemes are proposed for the network layer stack to achieve the following: (a) to enhance energy efficiency through optimized sleep intervals, that also considers the underlying dynamic traffic load and (b) to develop the routing protocol in order to handle wasted energy, congestion, and clustering. We also propose efficient routing and energy-efficient clustering algorithms based on optimization and game theory. Furthermore, we propose a dynamic game theoretic framework (i.e., hyper defense) to analyze the interactions between attacker and defender as a non-cooperative security game that considers the resource limitation. All the proposed schemes are validated by extensive experimental analyses, obtained by running simulations depicting various situations in WSNs in order to represent real-world scenarios as realistically as possible. The results show that the proposed schemes achieve high performance in different terms, such as network lifetime, compared with the state-of-the-art schemes
    corecore