2 research outputs found

    An analysis of software aging in cloud environment

    Get PDF
    Cloud Computing is the environment in which several virtual machines (VM) run concurrently on physical machines. The cloud computing infrastructure hosts multiple cloud service segments that communicate with each other using the interfaces. This creates distributed computing environment. During operation, the software systems accumulate errors or garbage that leads to system failure and other hazardous consequences. This status is called software aging. Software aging happens because of memory fragmentation, resource consumption in large scale and accumulation of numerical error. Software aging degrads the performance that may result in system failure. This happens because of premature resource exhaustion. This issue cannot be determined during software testing phase because of the dynamic nature of operation. The errors that cause software aging are of special types. These errors do not disturb the software functionality but target the response time and its environment. This issue is to be resolved only during run time as it occurs because of the dynamic nature of the problem. To alleviate the impact of software aging, software rejuvenation technique is being used. Rejuvenation process reboots the system or re-initiates the softwares. This avoids faults or failure. Software rejuvenation removes accumulated error conditions, frees up deadlocks and defragments operating system resources like memory. Hence, it avoids future failures of system that may happen due to software aging. As service availability is crucial, software rejuvenation is to be carried out at defined schedules without disrupting the service. The presence of Software rejuvenation techniques can make software systems more trustworthy. Software designers are using this concept to improve the quality and reliability of the software. Software aging and rejuvenation has generated a lot of research interest in recent years. This work reviews some of the research works related to detection of software aging and identifies research gaps

    Towards UAV-based MEC service chain resilience evaluation: a quantitative modeling approach

    Get PDF
    Unmanned aerial vehicle (UAV) and network function virtualization (NFV) facilitate the deployment of multi-access edge computing (MEC). In the UAV-based MEC (UMEC) network, virtualized network function (VNF) can be implemented as a lightweight container running on UMEC host operating system (OS). However, UMEC network is vulnerable to attack, which can result in resource degradation and even UMEC service disruption. Rejuvenation techniques, such as failover technique and live container migration technique, can mitigate the impact of resource degradation but their effectiveness to improve the resilience of UMEC services should be evaluated. This paper presents a quantitative modeling approach based on semi-Markov process to investigate the resilience of a UMEC service chain consisting of any number of VNFs executed in any number of UMEC hosts in terms of availability and reliability. Unlike existing studies, the semi-Markov model constructed in this paper can capture the time-dependent behaviors between VNFs, between host OSes, and between VNFs and host OSes on the condition that the holding times of the recovery and failure events follow any kind of distribution. We perform the sensitivity analysis to identify potential resilience bottlenecks. The results highlight that migration time is the parameter significantly affecting the resilience, which shed the insight on designing the UMEC service chain with high-grade resilience requirements. In addition, we carry out the numerical experiments to reveal that: (i) the type of failure time distribution has a significant effect on the resilience; and (ii) the resilience increases with decreasing number of VNFs, while the availability increases with increasing number of UMEC hosts and the reliability decreases with increasing number of UMEC hosts, which can provide meaningful guidance for the UAV placement optimization in the UMEC network
    corecore