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 Cloud computing is the environment in which several virtual machines (VM) 

run concurrently on physical machines. The cloud computing infrastructure 

hosts multiple cloud services that communicate with each other using  

the interfaces. During operation, the software systems accumulate errors or 

garbage that leads to system failure and other hazardous consequences. 

This status is called software aging. Software aging happens because of 

memory fragmentation, resource consumption in large scale and 

accumulation of numerical error. Software aging degrads the performance 

that may result in system failure. This happens because of premature 

resource exhaustion. The errors that cause software agings are of special 

types and target the response time and its environment. This issue is to be 

resolved only during run time as it occurs because of the dynamic nature of 

the problem. To alleviate the impact of software aging, software rejuvenation 

technique is being used. Rejuvenation process reboots the system or 

reinitiates the softwares. Software rejuvenation removes accumulated error 

conditions, frees up deadlocks and defragments operating system resources 

like memory. Software aging and rejuvenation has generated a lot of research 

interest recently. This work reviews some of the research works related to 

detection of software aging and identifies research gaps. 
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1. INTRODUCTION  

System is a group of inter operating components. The boundary of the system separates the system 

from its environment but its services are always towards surrounding environment. Software failure happens 

if the environment oriented outputs are incorrect. The services in their long-run operation accumulate 

numerous internal errors and garbage, thus resulting in software aging and probable failure or performance 

degradation [1]. Software aging phenomenon is defined as the increase of failure rate and/or decrease in 

performance of a long-running software system. Aging-related-bugs (ARBs) get activated and propagate in 

the long run causing software aging. These manifest as faults in the software which become visible only after 

continuous execution of the software for a long period. There will not be any impact because of these bugs 

immediately. But they make the system slowly shift from a healthy state to a failure prone state. Figure 1 

depics the state change of systems affected by software aging. 

Aging effects are a result of error accumulation. Error accumulation leads to resource exhaustion, 

unreleased file locks, un-terminated threads and memory leaks. Software aging effects can be detected by 

using aging indicators. Examples of aging indicators are free physical memory, swap space used, file and 

process tables size, application response time, traffic metrics like packet rate and bit rate.  
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Figure 1. Performance degradation [2] 

 

 

The propagation of aging-related errors that do not cause a failure hide in the system internal state as 

a time bomb [3]. This aging-related error accumulation leads to the failure of the system internal 

environment. Software aging effects are of two types, volatile and non-volatile. Volatile aging effects are 

created usually in operating system resources. These can be removed by re-initiating the system process that 

is affected. Examples of volatile aging effects are fragmentation of memoryor operating system resource 

leakage. But, non-volatile effects are created in storage parts like database and file system. Non-volatile 

aging effects exist even after re-initialization of system. Examples of non-volatile aging effects are 

fragmentation in file system or metadata of database. This issue can be detected only when the system is 

running, by monitoring system parameters which are aging indicators. Just like antigens indicate cancer 

disease, aging indicators signify software aging. 

Major causes for software aging are memory leaks/fragmentation, unreleased file handles,  

lock contention issues, data corruption, memory/swap space bloat, round off error accumulation and storage 

space fragmentation. While the system is running, aging effects can be detected by monitoring of aging 

indicators. Based on their granularity, aging indicators can be classified into two categories. They are  

system-wide aging indicators and application-specific aging indicators. Metrics related to several subsystems 

like OS, middleware, virtual machine that are shared by running applications can be obtained by system-wide 

aging indicators. Using these aging indicators, aging effects of the whole system can be studied. Examples of 

system-wide aging indicators are used swap space, free physical memory, system load and file table size. 

Information specific to individual application can be obtained by application-specific aging indicators  

like response time, Java VM heap size. These aging indicators give more specific information about  

the application under observation. Aging indicators have been studied in detail by several researchers [4, 5]. 

Software aging effects happen at various levels including operating system level or application level [6].   

Costs of software aging are owner’s loss, inability to keep up, reduced performance and decreasing 

reliability. The owners of the aging software suffer as it is increasingly difficult to keep up with the market. 

Software grows bigger as it degrades. This happens due to addition of new codes to manage the software. 

Because of increase in program size, there will be more demands for memory and there will be delays as 

code is to be swapped in from mass storage. The response of the program becomes slow and hence 

performance and reliability decreases. Software maintenance activities introduce errors sometimes. 

Correction of an error may lead to another error. Sometimes it may so happen that each time an attempt is 

made to decrease the error rate, it may get worse.  

Software aging is inevitable even if all the preventive measures are taken. The ability to design for  

a change depends on an ability to predict the future. If it is done imperfectly and approximately, over a period 

of time, the software becomes unusable. Preventive measures cannot eliminate aging. Because of aging,  

lot of money has been lost in various domains across the world. Table 1 shows the cost of software aging on 

some US based companies of different sectors. 
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Table 1. Cost of software aging [7] 
Domain Operation Type Industry cost range  

per hour 
Average cost per hour 

of downtime 

Financial Brokerage $ 5.6 M to $ 7.3 M $ 4.45 M 

Financial Credit card / Sales $ 2.2 M to $ 3.1 M $ 2.6 M 
Media View $ 233 K $ 150 K 

Retail Home Shopping Network $ 87 K to $ 140 K $ 113 K 

Transportation Airlines Reservation $ 67 K to $ 112 K $ 28 K 

 

 

Software rejuvenation is the proactive technique proposed to counter software aging that involves  

a series of steps such as periodically stopping the application and restarting it after cleaning the internal state. 

Software rejuvenation performs flushes buffer queues,garbage clearance, reinitializes the internal kernel 

tables, and cleans up file systems. Intrinsically, it cleans and restores the operating environment.  

From the literature review, it can be observed that, software rejuvenation approaches are of two types:  

Time-based and Inspection based [8]. In the first method, rejuvenation is applied at pre-determined intervals 

of time. This technique is used in environments such as web servers. In the second method, software aging 

forecasting is done and rejuvenation is triggered pre-emptively. 

 

 

2. SOFTWARE AGING DETECTION TECHNIQUES 

Alonso, Belanche and Avresky [9] used machine learning algorithms for prediction of resource 

exhaustion that are caused by software anomalies. Evaluation of performance was done through various 

algorithms like K-nearest neighbors, Naïve Bayes, Random Forest. The researchers created three different 

scenarios for execution. In each scenario, they used different software anomaly to crash a system using  

TPC-W benchmark. The numbers of instances used are 2815, 1688 and 3819. There were a total of 29 

attributes. The execution results indicate that the Random Forest performed comparativelybetter in all  

the three scenarios. Naïve Bayes produced the highest number of errors. Lasso regularization was used by  

the researchers to reduce (up to 60%) the number of parameters that are needed to build the model.  

This further reduced the errors in several cases. Later, the analysis of accuracyand number of monitored 

parameters was done. 

Toshiaki Hayashi et al. [10] worked to detect performance degradation by measuring traffic between 

virtual machines. The metric collection method was non-intrusive as the traffic was collected passively from 

a machine that is not part of virtual environment on which the measuring services are hosted. Using this 

technique, the metrics can be collected even under extreme performance degradation. The traffic metrics used 

in the study are bit-rate, packet rate, connection rate and TCP SYN loss rate. For measuring traffic,  

the researchers used program packets which were built using the C language and “pcap” (TCPDUMP/ 

LIBPCAP, 2012) library. The metric values were collected and deliveredfor every 60 seconds. Using these 

metrics, training and test data were constructed. The virtual environment consisted of Apache web server 

running on virtual machines housed on Xen hypervisor. To measure the request-response rate of files, httperf 

tool was used on the client machines. Training data which is of 600 instances and test data which is of 1000 

instances was constructed using traffic data and request-response rate data. Each of the data set has five 

attributes. Machine learning classifier C4.5 was used to build decision tree which detected the performance 

from traffic metrics. The proposed method was found reliable as the error ratio was small (2.2% for 1000 

instances of test data). 

Jing Liu et al. [11] proposed a comprhesive service rejuvenation based fault tolerant method that 

guarantees cloud system’sservice availability. The architecture proposedinclude services running on VMs, 

software rejuvenation manager (SRM) installed on each VM and an Interim Node housed in the separate 

physical machine. All these entities are in the same local network. When aging is detected on any of  

the service components, the check point of its running state is created and stored in the interim node. The VM 

that hosts aging prone service component is migrated to interim node to keep the service requests continuity. 

During the migration, the trace log file is updated by rejuvenation agent. When migration is done, the original 

virtual environment is rebooted that brings it to aging free state. Next, the check point image is transferred 

from interim node to original VM. The trace log file in interim node VMis copied to original VM. Once all 

the trace log files are copied, there will be a replica of service components in original VM and VM on interim 

node. The network traffic is redirected to original VM and VM in interim node is shut down. 

Yongquan Yan [12] proved that the selection of a proper data set is significant. The data set 

selection carries more weightage than the approach that is used for software agingprediction. Linear and  

non-linear methodswere used to detect resource consumption of aged web server. Metrics were collected 

from the system under true load and that is not given artificial load. In this studyIIS web server is used. A set 

of health care applications running on the IIS web server are considered for study. To handle the performance 
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degradation of IIS server, the only option was to restart as there was no hot standby system. Operating system 

parameters and database parameters in running phase are collected using built-in windows counter without 

disturbing the running system. Two metrics were collected at every one minute interval. The metrics were 

collected for available memory that represent operating system level and Java heap memory that represent 

application level. To forecast the consumption of resource, three models were used: support vector machine 

(SVM), auto regressive integrated moving average (ARIMA) and Aartificial neural network (ANN).  

The outcome of heap memory and available memory prediction indicate that non-linear methods do not 

perform better compared to linear methods in some situations. The researcher conclude that it is more 

important to choose proper data set than choosing non-linear or linear method.  

Ahamad et al., [7] conducted survey regarding software aging issues. Found reasons and effects of 

software aging. The researchers concluded that concluded that it is impossible to stop software aging but it is 

possible to reduce its speed and progress. 

Fang et al., [13] opined that, in some systems where the memory is shared between operating system 

and application software, as the memory consumption is closely related to system performance and changes 

constantly, using empirical thresholds may cause waste of resourcesor system outage. The researchers 

proposed an adaptive strategy adopted for optimization of the thresholds. Instead of fixed thresholds, 

the method regularly regulates the thresholds by taking feedback information in the running process into 

account. Critical equations are constructed to calculate the thresholds by maximizing the system availability 

and reliability. Simulation results demonstrated that the proposed method achieves higher availability and 

more stable performance than that based on empirical thresholds. If some parameters of the running 

environment are uncertain, the necessary parameters are estimated according to the software behavior during 

the constant running process. This method regulates the threshold by using feedback information in 

the running process. In the simulation results, it is observed that the proposed method achieves higher 

availability and stable performance.  

Some of the solutions proposed can be seen in [14-19]. Some of the researchers have worked on 

different platforms. D. Cotroneo et al [20] presented the design of an aging detection and rejuvenation tool 

for Android ADaRTA which performs selective monitoring of system processes and of trends in system 

performance indicators. E. Andrade et al [21] proposed a deterministic and stochastic petri net (DSPN) for  

quantitatively analyzing the impacts of software aging phenomenon on a cyber-physical system using edge 

computing. Liu et al., [22] proposed a novel hybrid aging prediction model named CSSAP which is an 

integration of autoregressive integrated moving average (ARIMA) model and long short term memory 

(LSTM) model for cloud services. Several other works in the area are also surveyed [23-30].  

Virtualized containers have been studied in [31-34]. Using containers, developers can design 

software in the local environment. Containers are smaller than virtual machines and hundreds of them run on 

a single physical machine. Software aging may affect such systems also. Mobile systems also get affected by 

software aging as studied in [35-37]. Machine learning has been used for software aging detection in mobile 

systems [38]. Markov stochastic processes have been used for analyzing software aging behavior [39].  

Some researchers have provided asymptotic or steady-state solutions which are insufficient for real-time 

systems [40]. Machine learning has been used to predict software aging in [41-42]. System softwares may 

also get affected by software fault and related study can be found in [43]. Reliability of cloud-based systems 

with multiple software spare components has been studied in [44]. Similar researches can be found  

in [45-50]. Table 2 (see appendix) presents the summary of previous works in the area of software detection. 

 

 

3. CONCLUSION  

It can be observed from the literature that some of the works are platform specific and can not be 

applied to different platforms. Some studies have used machine learning for detection of software aging.  

But the accuracy of the aging detection can be improved by combining more than one method. For aging 

indicator metric collection, methods used by some of the researchers are intrusive, i.e., the metric collector 

software also consumes resoures. It can be concluded that it is impossible to stop software aging but it can be 

addressed only in run time because of the dynamic nature of the problem. The analysis of the previous works 

indicate that there is a necessity of non-intrusive, platform independent software aging detection techniques 

that combine the predictive power of machine learning tool and statistical models to strengthen the accuracy. 

As cloud computing has become the norm, it is worth conducting research in the area of software aging in 

cloud systems and provide a solution. 

 

 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An analysis of software aging in cloud environment (Shruthi P.) 

5989 

APPENDIX 

 

 

Table 2. Summary of previous works 
Researcher Research work done Remark 

Alonso, et al., [9] a. Analyzed a set of ML algorithms for predicting system crashes due to 

the resource exhaustion caused by software anomalies. 
b. Evaluated classifiers like Decision trees, Support Vector Machines and 

K- Nearest Neighbour 

c. Random Forest obtained a much better result (error less than 1%) 

Used machine learning 

algorithms 

Toshiaki, et al., [10] a. Used a non-intrusive method of metrics collection using a machine that 

is separate from virtual machines and physical hosts. 

b. Httperf, a web benchmark was run on the client machines that is used to 
measure the request-response rate of files being transferred between the 

virtual machines and clients. 

c. The detection obtained using c4.5 machine learning classifier proved 
reliable 

d. A monitoring agent in every VM collects metrics; CPU usage and free 

memory available. The agent encapsulates this data into a packet and 
sends it to the aging detector module 

e. This process achieves two tasks; Expected Arrival Time (EAT) of next 

packet and the information it brings. If next metrics data packet arrives 
after EAT or does not arrive, it indicates some failure probability 

f. The CPU usage and free memory available is used to detect the aging 

severity. 

Used machine learning 

algorithms 

J. Liu, et al., [11] a. A monitoring agent in every VM collects metrics; CPU usage and free 

memory available. The agent encapsulates this data into a packet and 

sends it to the aging detector module 
b. This process achieves two tasks; Expected Arrival Time (EAT) of next 

packet and the information it brings. If next metrics data packet arrives 

after EAT or does not arrive, it indicates some failure probability 

c. The CPU usage and free memory available is used to detect the aging 

severity. 

Intrusive Method 

Y. Yan, et al., [12] a. Operating system parameters and database parameters in running phase 

are collected using built-in windows counter without disturbing the 
running system 

b. Only two metrics are considered; available memory that represent 

operating system level and .net common language runtime memory in all 
heaps (heap memory, for short) as well as Java heap memory in Apache 

web server that represent application level 

c. The forecasting of resources is done using three models, ARIMA, ANN, 
and SVM 

Platform Specific 

Used IIS Webserver 
Proved choosing proper 

dataset is more important 

than choosing linear or non 
linear methods 

S. Ahamad [7] Conducted survey regarding aging issues. Found reasons of aging, effects of 

software aging. 

Concluded that it is 

impossible to stop software 
aging but it is possible to 

reduce its speed and progress 

Y. Fang, et al., [13] a. Instead of fixed thresholds, the method used in this work regularly 
regulates the thresholds by taking feedback information in the running 

process into account.  

b. Critical equations are constructed to calculate the thresholds by 

maximizing the system availability. 

Recommended Adaptive 
Threshold for aging detection 

J. Liu, et al., [22] Developed CSSAP which is an integration of Autoregressive Integrated 

Moving Average (ARIMA) model and Long Short-Term Memory (LSTM) 

Hybrid aging prediction 

model 
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