465 research outputs found

    Automated License Plate Recognition using Existing University Infrastructure and Different Camera Angles

    Get PDF
    Number or license plate recognition has become an essential technology for traffic and security applications. Providing access control at any organization or academic institution improves the level of security. However, providing security personnel to manually control the access of vehicles at an academic institution is costly, time-consuming, and to a limited extent, error prone. This study investigated the use of an automated vehicle tracking system, incorporating experimental computer vision techniques for license plate recognition that runs in real-time to provide access control for vehicles and provide increased security for an academic institution. A vehicle monitoring framework was designed by using various technologies and experimenting with different camera angles. In addition, the effect of environmental changes on the accuracy of the optical character recognition application was assessed. The Design Science Research methodology was followed to develop the vehicle monitoring framework artifact. Image enhancement algorithms were tested, and the most viable options were evaluated and implemented. Optimal operating criteria that were established for the vehicle monitoring framework achieved a 96% success rate. The results indicate that a cost-effective solution could be provided by using an existing camera infrastructure at an academic institution and suitable license plate recognition software technologies, algorithms, and different camera angles

    A Support Vector Machine (SVM) and Speeded Up Robust Features (SURF) for Indonesian Car Licence Plate Identification System

    Full text link
    Volume 7 Issue 10 (October 201

    Retrieval of Anomaly Details Using Vehicle Number Plate Identification for Traffic Guards

    Full text link
    The ascent in number of vehicles makes different issues in regular daily existence. Arranging such substantial number of vehicles and transportation are intricate and tedious assignment. This paper centers over the above issue. This framework will consequently perceive the number plate of vehicles. The perceived number plate takes after the given strides: 1.To catch continuous picture of number plate. 2. To fragment and perceive characters at the server. 3. Perceived tag is shown on the graphical UI and furthermore put away in database alongside time and date for further utilize. 4. Book the complaint against the anomaly. The different methodologies for the issue are contemplated as takes after

    Deep Learning Based Automatic Vehicle License Plate Recognition System for Enhanced Vehicle Identification

    Get PDF
    An innovative Automatic Vehicle License Plate Recognition (AVLPR) system that effectively identifies vehicles using deep learning algorithms. Accurate and real-time license plate identification has grown in importance with the rise in demand for improved security and traffic management.The convolutional neural network (CNN) architecture used in the AVLPR system enables the model to automatically learn and extract discriminative characteristics from photos of license plates. To ensure the system's robustness and adaptability, the dataset utilized for training and validation includes a wide range of license plate designs, fonts, and lighting situations.We incorporate data augmentation approaches to accommodate differences in license plate orientation, scale, and perspective throughout the training process to improve recognition accuracy. Additionally, we use transfer learning to enhance the system's generalization abilities by refining the pre-trained model on a sizable dataset.A trustworthy and effective solution for vehicle identification duties is provided by the Deep Learning-Based Automatic Vehicle License Plate Recognition System. Deep learning approaches are used to guarantee precise and instantaneous recognition, making it suitable for many uses such as law enforcement, parking management, and intelligent transportation systems

    Recognition of License Plates and Optical Nerve Pattern Detection Using Hough Transform

    Get PDF
    The global technique of detection of the features is Hough transform used in image processing, computer vision and image analysis. The detection of prominent line of the object under consideration is the main purpose of the Hough transform which is carried out by the process of voting. The first part of this work is the use of Hough transform as feature vector, tested on Indian license plate system, having font of UK standard and UK standard 3D, which has ten slots for characters and numbers.So tensub images are obtained.These sub images are fed to Hough transform and Hough peaks to extract the Hough peaks information. First two Hough peaks are taken into account for the recognition purposes. The edge detection along with image rotation is also used prior to the implementation of Hough transform in order to get the edges of the gray scale image. Further, the image rotation angle is varied; the superior results are taken under consideration. The second part of this work makes the use of Hough transform and Hough peaks, for examining the optical nerve patterns of eye. An available database for RIM-one is used to serve the purpose. The optical nerve pattern is unique for every human being and remains almost unchanged throughout the life time. So the purpose is to detect the change in the pattern report the abnormality, to make automatic system so capable that they can replace the experts of that field. For this detection purpose Hough Transform and Hough Peaks are used and the fact that these nerve patterns are unique in every sense is confirmed

    Licence Plate Detection Using Machine Learning

    Get PDF
    License Plate Recognition (LPR) is one of the tough tasks in the field of computer vision. Although it has been around for quite a while, there still lies the challenges when we have to deal with; the harsh environmental conditions like snowy, rainfall, windy, low light conditions etc. as well as the condition of the plates which includes the bent, rotated, broken plates. The performance of the recognition and detection frameworks take a significant hit when it is concerned with these conditional effects on the license plate. In this paper, we introduced a model to improve our accuracy based on the Chinese Car Parking Dataset (CCPD) using 2 separate convolutional neural networks. The first CNN will be able to detect the bounding boxes for the license plate detection using Non-Maximus Suppression (NMS) to find the most probable bounding area whereas the second one will take these bounding boxes and use the spatial attenuation network and character recognition model to successfully recognize the license plate. First, we train the CNN to detect the license plates, then use the second CNN to recognize the characters. The overall recognition accuracy was found to be 89% in the CCPD dataset
    corecore