1,270,315 research outputs found

    My2-Acetone-diacetone[my3-tris­(trifluoro­meth­yl)methano­lato]bis­[my2-tris­(trifluoro­meth­yl)methano­lato]trilithium

    Get PDF
    The title compound, [Li3(C4F9O)3(C3H6O)3], features an open Li/O cube with an Li ion missing at one corner. Three of the four bridging O atoms of the cube carry a fluorinated tert-butyl residue, whereas the fourth is part of an acetone mol­ecule. Two of the Li atoms are further bonded to a non-bridging acetone mol­ecule. Two of the lithium ion coordination geometries are very distorted LiO4 tetra­hedra; the third could be described as a very distorted LiO3 T-shape with two distant F-atom neighbours. The Li[cdots, three dots, centered]Li contact distances for the three-coordinate Li+ ion [2.608 (14) and 2.631 (12) Å] are much shorter that the contact distance [2.940 (13) Å] between the tetra­hedrally coordinated species

    Electron affinity of Li: A state-selective measurement

    Get PDF
    We have investigated the threshold of photodetachment of Li^- leading to the formation of the residual Li atom in the 2p2P2p ^2P state. The excited residual atom was selectively photoionized via an intermediate Rydberg state and the resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled both high resolution and sensitivity to be attained. We have demonstrated the potential of this state selective photodetachment spectroscopic method by improving the accuracy of Li electron affinity measurements an order of magnitude. From a fit to the Wigner law in the threshold region, we obtained a Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference

    Graphene/Li-Ion battery

    Get PDF
    Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin polarization, charge distribution, electronic gap, surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by one Li atom is spin polarized, so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable, because it could improve graphene Li-ion batteries; consequently, the most proper graphene anode structure has been proposed.Comment: 19 pages, 7 figures, 1 tabl
    • …
    corecore