37 research outputs found

    Lexicosyntactic Inference in Neural Models

    Full text link
    We investigate neural models' ability to capture lexicosyntactic inferences: inferences triggered by the interaction of lexical and syntactic information. We take the task of event factuality prediction as a case study and build a factuality judgment dataset for all English clause-embedding verbs in various syntactic contexts. We use this dataset, which we make publicly available, to probe the behavior of current state-of-the-art neural systems, showing that these systems make certain systematic errors that are clearly visible through the lens of factuality prediction

    Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation

    Get PDF
    We present a large-scale collection of diverse natural language inference (NLI) datasets that help provide insight into how well a sentence representation captures distinct types of reasoning. The collection results from recasting 13 existing datasets from 7 semantic phenomena into a common NLI structure, resulting in over half a million labeled context-hypothesis pairs in total. We refer to our collection as the DNC: Diverse Natural Language Inference Collection. The DNC is available online at https://www.decomp.net, and will grow over time as additional resources are recast and added from novel sources.Comment: To be presented at EMNLP 2018. 15 page

    Zero-shot Entailment of Leaderboards for Empirical AI Research

    Full text link
    We present a large-scale empirical investigation of the zero-shot learning phenomena in a specific recognizing textual entailment (RTE) task category, i.e. the automated mining of leaderboards for Empirical AI Research. The prior reported state-of-the-art models for leaderboards extraction formulated as an RTE task, in a non-zero-shot setting, are promising with above 90% reported performances. However, a central research question remains unexamined: did the models actually learn entailment? Thus, for the experiments in this paper, two prior reported state-of-the-art models are tested out-of-the-box for their ability to generalize or their capacity for entailment, given leaderboard labels that were unseen during training. We hypothesize that if the models learned entailment, their zero-shot performances can be expected to be moderately high as well--perhaps, concretely, better than chance. As a result of this work, a zero-shot labeled dataset is created via distant labeling formulating the leaderboard extraction RTE task.Comment: 5 pages, 1 figure. Accepted for publication at JCDL 2023 - Late Breaking Results and Datasets track (https://2023.jcdl.org/calls/papers/#paper_types), official citation forthcomin

    Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition

    Full text link
    Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by "some" as entailments. For some presupposition triggers like "only", BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.Comment: to appear in Proceedings of ACL 202

    Automatically Neutralizing Subjective Bias in Text

    Full text link
    Texts like news, encyclopedias, and some social media strive for objectivity. Yet bias in the form of inappropriate subjectivity - introducing attitudes via framing, presupposing truth, and casting doubt - remains ubiquitous. This kind of bias erodes our collective trust and fuels social conflict. To address this issue, we introduce a novel testbed for natural language generation: automatically bringing inappropriately subjective text into a neutral point of view ("neutralizing" biased text). We also offer the first parallel corpus of biased language. The corpus contains 180,000 sentence pairs and originates from Wikipedia edits that removed various framings, presuppositions, and attitudes from biased sentences. Last, we propose two strong encoder-decoder baselines for the task. A straightforward yet opaque CONCURRENT system uses a BERT encoder to identify subjective words as part of the generation process. An interpretable and controllable MODULAR algorithm separates these steps, using (1) a BERT-based classifier to identify problematic words and (2) a novel join embedding through which the classifier can edit the hidden states of the encoder. Large-scale human evaluation across four domains (encyclopedias, news headlines, books, and political speeches) suggests that these algorithms are a first step towards the automatic identification and reduction of bias.Comment: To appear at AAAI 202
    corecore