2,088 research outputs found

    Language-based sensing descriptors for robot object grounding

    Get PDF
    In this work, we consider an autonomous robot that is required to understand commands given by a human through natural language. Specifically, we assume that this robot is provided with an internal representation of the environment. However, such a representation is unknown to the user. In this context, we address the problem of allowing a human to understand the robot internal representation through dialog. To this end, we introduce the concept of sensing descriptors. Such representations are used by the robot to recognize unknown object properties in the given commands and warn the user about them. Additionally, we show how these properties can be learned over time by leveraging past interactions in order to enhance the grounding capabilities of the robot

    An Intelligent Knowledge Management System from a Semantic Perspective

    Get PDF
    Knowledge Management Systems (KMS) are important tools by which organizations can better use information and, more importantly, manage knowledge. Unlike other strategies, knowledge management (KM) is difficult to define because it encompasses a range of concepts, management tasks, technologies, and organizational practices, all of which come under the umbrella of the information management. Semantic approaches allow easier and more efficient training, maintenance, and support knowledge. Current ICT markets are dominated by relational databases and document-centric information technologies, procedural algorithmic programming paradigms, and stack architecture. A key driver of global economic expansion in the coming decade is the build-out of broadband telecommunications and the deployment of intelligent services bundling. This paper introduces the main characteristics of an Intelligent Knowledge Management System as a multiagent system used in a Learning Control Problem (IKMSLCP), from a semantic perspective. We describe an intelligent KM framework, allowing the observer (a human agent) to learn from experience. This framework makes the system dynamic (flexible and adaptable) so it evolves, guaranteeing high levels of stability when performing his domain problem P. To capture by the agent who learn the control knowledge for solving a task-allocation problem, the control expert system uses at any time, an internal fuzzy knowledge model of the (business) process based on the last knowledge model.knowledge management, fuzzy control, semantic technologies, computational intelligence

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    Low-Code/No-Code Artificial Intelligence Platforms for the Health Informatics Domain

    Get PDF
    In the contemporary health informatics space, Artificial Intelligence (AI) has become a necessity for the extraction of actionable knowledge in a timely manner. Low-code/No-Code (LCNC) AI Platforms enable domain experts to leverage the value that AI has to offer by lowering the technical skills overhead. We develop domain-specific, service-orientated platforms in the context of two subdomains of health informatics. We address in this work the core principles and the architectures of these platforms whose functionality we are constantly extending. Our work conforms to best practices with respect to the integration and interoperability of external services and provides process orchestration in a LCNC modeldriven fashion. We chose the CINCO product DIME and a bespoke tool developed in CINCO Cloud to serve as the underlying infrastructure for our LCNC platforms which address the requirements from our two application domains; public health and biomedical research. In the context of public health, an environment for building AI driven web applications for the automated evaluation of Web-based Health Information (WBHI). With respect to biomedical research, an AI driven workflow environment for the computational analysis of highly-plexed tissue images. We extended both underlying application stacks to support the various AI service functionality needed to address the requirements of the two application domains. The two case studies presented outline the methodology of developing these platforms through co-design with experts in the respective domains. Moving forward we anticipate we will increasingly re-use components which will reduce the development overhead for extending our existing platforms or developing new applications in similar domains

    Large Language Models for Robotics: A Survey

    Full text link
    The human ability to learn, generalize, and control complex manipulation tasks through multi-modality feedback suggests a unique capability, which we refer to as dexterity intelligence. Understanding and assessing this intelligence is a complex task. Amidst the swift progress and extensive proliferation of large language models (LLMs), their applications in the field of robotics have garnered increasing attention. LLMs possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots. Researchers and engineers in the field of robotics have recognized the immense potential of LLMs in enhancing robot intelligence, human-robot interaction, and autonomy. Therefore, this comprehensive review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning. We first provide an overview of the background and development of LLMs for robotics, followed by a description of the benefits of LLMs for robotics and recent advancements in robotics models based on LLMs. We then delve into the various techniques used in the model, including those employed in perception, decision-making, control, and interaction. Finally, we explore the applications of LLMs in robotics and some potential challenges they may face in the near future. Embodied intelligence is the future of intelligent science, and LLMs-based robotics is one of the promising but challenging paths to achieve this.Comment: Preprint. 4 figures, 3 table
    • …
    corecore