71 research outputs found

    Beyond Triangles: A Distributed Framework for Estimating 3-profiles of Large Graphs

    Full text link
    We study the problem of approximating the 33-profile of a large graph. 33-profiles are generalizations of triangle counts that specify the number of times a small graph appears as an induced subgraph of a large graph. Our algorithm uses the novel concept of 33-profile sparsifiers: sparse graphs that can be used to approximate the full 33-profile counts for a given large graph. Further, we study the problem of estimating local and ego 33-profiles, two graph quantities that characterize the local neighborhood of each vertex of a graph. Our algorithm is distributed and operates as a vertex program over the GraphLab PowerGraph framework. We introduce the concept of edge pivoting which allows us to collect 22-hop information without maintaining an explicit 22-hop neighborhood list at each vertex. This enables the computation of all the local 33-profiles in parallel with minimal communication. We test out implementation in several experiments scaling up to 640640 cores on Amazon EC2. We find that our algorithm can estimate the 33-profile of a graph in approximately the same time as triangle counting. For the harder problem of ego 33-profiles, we introduce an algorithm that can estimate profiles of hundreds of thousands of vertices in parallel, in the timescale of minutes.Comment: To appear in part at KDD'1

    GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics

    Full text link
    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.Comment: Under review by a conference, 201

    Composable architecture for rack scale big data computing

    No full text
    The rapid growth of cloud computing, both in terms of the spectrum and volume of cloud workloads, necessitate re-visiting the traditional rack-mountable servers based datacenter design. Next generation datacenters need to offer enhanced support for: (i) fast changing system configuration requirements due to workload constraints, (ii) timely adoption of emerging hardware technologies, and (iii) maximal sharing of systems and subsystems in order to lower costs. Disaggregated datacenters, constructed as a collection of individual resources such as CPU, memory, disks etc., and composed into workload execution units on demand, are an interesting new trend that can address the above challenges. In this paper, we demonstrated the feasibility of composable systems through building a rack scale composable system prototype using PCIe switch. Through empirical approaches, we develop assessment of the opportunities and challenges for leveraging the composable architecture for rack scale cloud datacenters with a focus on big data and NoSQL workloads. In particular, we compare and contrast the programming models that can be used to access the composable resources, and developed the implications for the network and resource provisioning and management for rack scale architecture

    Computing at massive scale: Scalability and dependability challenges

    Get PDF
    Large-scale Cloud systems and big data analytics frameworks are now widely used for practical services and applications. However, with the increase of data volume, together with the heterogeneity of workloads and resources, and the dynamic nature of massive user requests, the uncertainties and complexity of resource management and service provisioning increase dramatically, often resulting in poor resource utilization, vulnerable system dependability, and user-perceived performance degradations. In this paper we report our latest understanding of the current and future challenges in this particular area, and discuss both existing and potential solutions to the problems, especially those concerned with system efficiency, scalability and dependability. We first introduce a data-driven analysis methodology for characterizing the resource and workload patterns and tracing performance bottlenecks in a massive-scale distributed computing environment. We then examine and analyze several fundamental challenges and the solutions we are developing to tackle them, including for example incremental but decentralized resource scheduling, incremental messaging communication, rapid system failover, and request handling parallelism. We integrate these solutions with our data analysis methodology in order to establish an engineering approach that facilitates the optimization, tuning and verification of massive-scale distributed systems. We aim to develop and offer innovative methods and mechanisms for future computing platforms that will provide strong support for new big data and IoE (Internet of Everything) applications

    Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks

    Get PDF
    Tachyon is a distributed file system enabling reliable data sharing at memory speed across cluster computing frameworks. While caching today improves read workloads, writes are either network or disk bound, as replication is used for fault-tolerance. Tachyon eliminates this bottleneck by pushing lineage, a well-known technique, into the storage layer. The key challenge in making a long-running lineage-based storage system is timely data recovery in case of failures. Tachyon addresses this issue by introducing a checkpointing algorithm that guarantees bounded recovery cost and resource allocation strategies for recomputation under commonly used resource schedulers. Our evaluation shows that Tachyon outperforms in-memory HDFS by 110x for writes. It also improves the end-to-end latency of a realistic workflow by 4x. Tachyon is open source and is deployed at multiple companies.National Science Foundation (U.S.) (CISE Expeditions Award CCF-1139158)Lawrence Berkeley National Laboratory (Award 7076018)United States. Defense Advanced Research Projects Agency (XData Award FA8750-12-2-0331
    • …
    corecore