
Tachyon: Reliable, Memory Speed Storage
for Cluster Computing Frameworks

Haoyuan Li Ali Ghodsi
University of California, Berkeley
{haoyuan,alig}@cs.berkeley.edu

Matei Zaharia
MIT, Databricks
matei@mit.edu

Scott Shenker Ion Stoica
University of California, Berkeley
{shenker,istoica}@cs.berkeley.edu

Abstract
Tachyon is a distributed file system enabling reliable data
sharing at memory speed across cluster computing frame-
works. While caching today improves read workloads,
writes are either network or disk bound, as replication is
used for fault-tolerance. Tachyon eliminates this bottleneck
by pushing lineage, a well-known technique, into the storage
layer. The key challenge in making a long-running lineage-
based storage system is timely data recovery in case of fail-
ures. Tachyon addresses this issue by introducing a check-
pointing algorithm that guarantees bounded recovery cost
and resource allocation strategies for recomputation under
commonly used resource schedulers. Our evaluation shows
that Tachyon outperforms in-memory HDFS by 110x for
writes. It also improves the end-to-end latency of a realistic
workflow by 4x. Tachyon is open source and is deployed at
multiple companies.

1. Introduction
Over the past few years, there have been tremendous efforts
to improve the speed and sophistication of large-scale data-
parallel processing systems. Practitioners and researchers
have built a wide array of programming frameworks [34–
36, 42, 53, 54] and storage systems [14, 15, 25, 26, 39]
tailored to a variety of workloads.

As the performance of many of these systems is I/O
bound, traditional means of improving their speed is to
cache data into memory [12]. While caching can dramati-
cally improve read performance, unfortunately, it does not
help much with write performance. This is because highly
parallel systems need to provide fault-tolerance, and the way
they achieve it is by replicating the data written across nodes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.
ACM 978-1-4503-3252-1.
http://dx.doi.org/10.1145/2670979.2670985

Even replicating the data in memory can lead to a signifi-
cant drop in the write performance, as both the latency and
throughput of the network are typically much worse than
that of local memory.

Slow writes can significantly hurt the performance of job
pipelines, where one job consumes the output of another.
These pipelines are regularly produced by workflow man-
agers such as Oozie [4] and Luigi [7], e.g., to perform data
extraction with MapReduce, then execute a SQL query, then
run a machine learning algorithm on the query’s result. Fur-
thermore, many high-level programming interfaces [5, 8,
46], such as Pig [38] and FlumeJava [19], compile programs
into multiple MapReduce jobs that run sequentially. In all
these cases, data is replicated across the network in-between
each of the steps.

To improve write performance, we present Tachyon, an
in-memory storage system that achieves high throughput
writes and reads, without compromising fault-tolerance.
Tachyon circumvents the throughput limitations of replica-
tion by leveraging the concept of lineage, where lost output
is recovered by re-executing the operations (tasks) that cre-
ated the output. As a result, lineage provides fault-tolerance
without the need for replicating the data.

While the concept of lineage has been used before in
the context of frameworks such as Spark, Nectar and BAD-
FS [16, 27, 53], there are several important challenges that
arise when pushing it into a continuously running distributed
storage system. Previous systems do not address these chal-
lenges.

The first challenge is bounding the recomputation cost
for a long-running storage system. This challenge does not
exist for a single computing job, such as a MapReduce
or Spark job, as in this case, the recomputation time is
trivially bounded by the job’s execution time. In contrast,
Tachyon runs indefinitely, which means that the recomputa-
tion time can be unbounded. Previous frameworks that sup-
port long running workloads, such as Spark Streaming [54]
and BAD-FS [16], circumvent this challenge by using pe-
riodic checkpointing. Unfortunately, using the same tech-
niques in Tachyon is difficult, as the storage layer is agnostic
to the semantics of the jobs running on the data (e.g., when

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78067794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


outputs will be reused), and job execution characteristics can
vary widely. In particular, any fixed checkpoint interval can
lead to unbounded recovery times if data is written faster
than the available disk bandwidth. Instead, we prefer to se-
lect which data to checkpoint based on the structure of the
lineage graph in a manner that still bounds recovery time.

The second challenge is how to allocate resources for re-
computations. For example, if jobs have priorities, Tachyon
must, on the one hand, make sure that recomputation tasks
get adequate resources (even if the cluster is fully utilized),
and on the other hand, Tachyon must ensure that recompu-
tation tasks do not severely impact the performance of cur-
rently running jobs with possibly higher priorities.

Tachyon bounds the data recomputation cost, thus ad-
dressing the first challenge, by continuously checkpointing
files asynchronously in the background. To select which
files to checkpoint and when, we propose a novel algorithm,
called the Edge algorithm, that provides an upper bound on
the recomputation cost regardless of the workload’s access
pattern.

To address the second challenge, Tachyon provides re-
source allocation schemes that respect job priorities under
two common cluster allocation models: strict priority and
weighted fair sharing [31, 52]. For example, in a cluster us-
ing a strict priority scheduler, if a missing input is requested
by a low priority job, the recomputation minimizes its im-
pact on high priority jobs. However, if the same input is later
requested by a higher priority job, Tachyon automatically in-
creases the amount of resources allocated for recomputation
to avoid priority inversion [33].

We have implemented Tachyon with a general lineage-
specification API that can capture computations in many
of today’s popular data-parallel computing models, e.g.,
MapReduce and SQL. We also ported the Hadoop and Spark
frameworks to run on top of it1. The project is open source,
has more than 40 contributors from over 15 institutions, and
is deployed at multiple companies.

Our evaluation shows that on average, Tachyon2 achieves
110x higher write throughput than in-memory HDFS [2].
In a realistic industry workflow, Tachyon improves end-to-
end latency by 4x compared to in-memory HDFS. In addi-
tion, because many files in computing clusters are temporary
files that get deleted before they are checkpointed, Tachyon
can reduce replication-caused network traffic by up to 50%.
Finally, based on traces from Facebook and Bing, Tachyon
would consume no more than 1.6% of cluster resources for
recomputation.

More importantly, due to the inherent bandwidth limita-
tions of replication, a lineage-based recovery model might

1 Applications can choose to use the lineage feature or not by a configura-
tion parameter.
2 This paper focus on in-memory Tachyon deployment. However, Tachyon
can also speed up SSD- and disk-based systems if the aggregate local I/O
bandwidth is higher than the network bandwidth.

Media Capacity Bandwith
HDD (x12) 12-36 TB 0.2-2 GB/sec
SDD (x4) 1-4 TB 1-4 GB/sec
Network N/A 1.25 GB/sec
Memory 128-512 GB 10-100 GB/sec

Table 1: Typical datacenter node setting [6].

be the only way to make cluster storage systems match the
speed of in-memory computations in the future. This work
aims to address some of the leading challenges in making
such a system possible.

2. Background
This section describes our target workloads and provides
background on existing solutions. Section 8 describes re-
lated work in greater detail.

2.1 Target Workload Properties

We have designed Tachyon targeting today’s big data work-
loads, which have the following properties:
• Immutable data: Data is immutable once written, since

dominant underlying storage systems, such as HDFS [2],
only support the append operation.

• Deterministic jobs: Many frameworks, such as MapRe-
duce [23] and Spark [53], use recomputation for fault
tolerance within a job and require user code to be deter-
ministic. We provide lineage-based recovery under the
same assumption. Nondeterministic frameworks can still
store data in Tachyon using replication.

• Locality based scheduling: Many computing frame-
works [23, 53] schedule jobs based on locality to mini-
mize network transfers, so reads can be data-local.

• All data vs. working set: Even though the whole data set
is large and has to be stored on disks, the working set of
many applications fits in memory [12, 53].

• Program size vs. data size: In big data processing, the
same operation is repeatedly applied on massive data.
Therefore, replicating programs is much less expensive
than replicating data in many cases.

2.2 The Case Against Replication

In-memory computation frameworks – such as Spark and
Piccolo [42], as well as caching in storage systems – have
greatly sped up the performance of individual jobs. However,
sharing (writing) data reliably among different jobs often
becomes a bottleneck.

The write throughput is limited by disk (or SSD) and
network bandwidths in existing big data storage solutions,
such as HDFS [2], FDS [14], Cassandra [1], HBase [3], and
RAMCloud [39]. All these systems use media with much
lower bandwidth than memory (Table 1).

The fundamental issue is that in order to be fault-tolerant,
these systems replicate data across the network and write



Standby Master

Tachyon Master

Standby Master

Workflow 
Manager

Standby

Standby

Tachyon Worker
Worker Daemon

Ramdisk

ZooKeeper
Quorum

Tachyon Worker
Worker Daemon

Ramdisk

Tachyon Worker
Worker Daemon

Ramdisk

Figure 1: Tachyon Architecture.

at least one copy onto non-volatile media to allow writes
to survive datacenter-wide failures, such as power outages.
Because of these limitations and the advancement of in-
memory computation frameworks [34, 35, 42, 53], inter-job
data sharing cost often dominates pipeline’s end-to-end la-
tencies for big data workloads. While some jobs’ outputs are
much smaller than their inputs, a recent trace from Cloudera
showed that, on average, 34% of jobs (weighted by compute
time) across five customers had outputs that were at least as
large as their inputs [20]. In an in-memory computing clus-
ter, these jobs would be write throughput bound.

Hardware advancement is unlikely to solve the issue.
Memory bandwidth is one to three orders of magnitude
higher than the aggregate disk bandwidth on a node. The
bandwidth gap between memory and disk is becoming
larger. The emergence of SSDs has little impact on this
since its major advantage over disk is random access la-
tency, but not sequential I/O bandwidth, which is what most
data-intensive workloads need. Furthermore, throughput in-
creases in network indicate that over-the-network memory
replication might be feasible. However, sustaining datacen-
ter power outages requires at least one disk copy for the
system to be fault-tolerant. Hence, in order to provide high
throughput, storage systems have to achieve fault-tolerance
without replication.

3. Design Overview
This section overviews the design of Tachyon, while the
following two sections (§4 & §5) focus on the two main
challenges that a storage system incorporating lineage faces:
bounding recovery cost and allocating resources for recom-
putation.

3.1 System Architecture

Tachyon consists of two layers: lineage and persistence. The
lineage layer provides high throughput I/O and tracks the se-
quence of jobs that have created a particular data output. The
persistence layer persists data onto storage without the lin-
eage concept. This is mainly used to do asynchronous check-
points. The persistence layer can be any existing replication
based storage systems, such as HDFS, S3, Glusterfs.

Spark Job

MapReduce Job
Spark Job

File
Set A

File
Set B

File
Set C

File
Set D

File
Set E

Figure 2: A lineage graph example of multiple frameworks

Tachyon employs a standard master-slave architecture
similar to HDFS and GFS (see Figure 1). In the remainder
of this section we discuss the unique aspects of Tachyon.

In addition to managing metadata, the master also con-
tains a workflow manager. The role of this manager is to
track lineage information, compute checkpoint order (§4),
and interact with a cluster resource manager to allocate re-
sources for recomputation (§5).

Each worker runs a daemon that manages local resources,
and periodically reports the status to the master. In addition,
each worker uses a RAMdisk for storing memory-mapped
files. A user application can bypass the daemon and interact
directly with RAMdisk. This way, an application with data
locality §2.1 can interact with data at memory speeds, while
avoiding any extra data copying.

3.2 An Example

To illustrate how Tachyon works, consider the following ex-
ample. Assume job P reads file set A and writes file set B.
Before P produces the output, it submits its lineage infor-
mation L to Tachyon. This information describes how to run
P (e.g., command line arguments, configuration parameters)
to generate B from A. Tachyon records L reliably using the
persistence layer. L guarantees that if B is lost, Tachyon can
recompute it by (partially3 re-executing P. As a result, lever-
aging the lineage, P can write a single copy of B to mem-
ory without compromising fault-tolerance. Figure 2 shows a
more complex lineage example.

Recomputation based recovery assumes that input files
are immutable (or versioned, c.f., §9) and that the executions
of the jobs are deterministic. While these assumptions are
not true of all applications, they apply to a large fraction
of datacenter workloads (c.f., §2.1), which are deterministic
applications (often in a high-level language such as SQL
where lineage is simple to capture).

Tachyon improves write performance by avoiding repli-
cation. However, replication has the advantage of improving
read performance as more jobs read the same data. While
Tachyon leverages lineage to avoid data replication, it uses a
client-side caching technique to mitigate read hotspots trans-
parently. That is, if a file is not available on the local ma-
chine, it is read from a remote machine and cached locally
in Tachyon, temporarily increasing its replication factor.

3 The recomputation granularity depends on the framework integration. For
example, it can be job level or task level.



Return Signature

Global Unique
Lineage Id

createDependency(inputFiles, output-
Files, binaryPrograms, executionCon-
figuration, dependencyType)

Dependency Info getDependency(lineageId)

Table 2: Submit and Retrieve Lineage API

3.3 API Summary

Tachyon is an append-only file system, similar to HDFS, that
supports standard file operations, such as create, open, read,
write, close, and delete. In addition, Tachyon provides an
API to capture the lineage across different jobs and frame-
works. Table 2 lists the lineage API, and Section 6.1 de-
scribes this API in detail.

The lineage API adds complexity to Tachyon over repli-
cation based file systems such as HDFS, S3. However, only
framework programmers need to understand Tachyon’s lin-
eage API. Tachyon does not place extra burden on appli-
cation programmers. As long as a framework, e.g. Spark,
integrates with Tachyon, applications on top of the frame-
work take advantage of lineage based fault-tolerance trans-
parently4. Furthermore, a user can choose to use Tachyon as
a traditional file system if he/she does not use the lineage
API. In this case, the application would not have the benefit
of memory throughput writes, but will still perform no worse
than on a traditional replicated file system.

3.4 Lineage Overhead

In terms of storage, job binaries represent by far the largest
component of the lineage information. However, according
to Microsoft data [27], a typical data center runs 1,000
jobs daily on average, and it takes up to 1 TB to store the
uncompressed binaries of all jobs executed over a one year
interval. This overhead is negligible even for a small sized
data center.

Furthermore, Tachyon can garbage collect the lineage in-
formation. In particular, Tachyon can delete a lineage record
after checkpointing (c.f., §4) its output files. This will dra-
matically reduce the overall size of the lineage information.
In addition, in production environments, the same binary
program is often executed many times, e.g., periodic jobs,
with different parameters. In this case, only one copy of the
program needs to be stored.

3.5 Data Eviction

Tachyon works best when the workload’s working set fits
in memory. In this context, one natural question is what is
the eviction policy when the memory fills up. Our answer
to this question is influenced by the following characteris-
tics identified by previous works [20, 44] for data intensive
applications:

4 We made this configurable in our Spark and MapReduce integration,
which means applications on top of them can choose not to use this feature.

• Access Frequency: File access often follows a Zipf-like
distribution (see [20, Figure 2]).

• Access Temporal Locality: 75% of the re-accesses take
place within 6 hours (see [20, Figure 5]).

Based on these characteristics, we use LRU as a default
policy. However, since LRU may not work well in all scenar-
ios, Tachyon also allows plugging in other eviction policies.
Finally, as we describe in Section 4, Tachyon stores all but
the largest files in memory. The rest are stored directly to the
persistence layer.

3.6 Master Fault-Tolerance

As shown in Figure 1, Tachyon uses a “passive standby” ap-
proach to ensure master fault-tolerance. The master logs ev-
ery operation synchronously to the persistence layer. When
the master fails, a new master is selected from the standby
nodes. The new master recovers the state by simply read-
ing the log. Note that since the metadata size is orders of
magnitude smaller than the output data size, the overhead of
storing and replicating it is negligible.

3.7 Handling Environment Changes

One category of problems Tachyon must deal with is changes
in the cluster’s runtime environment. How can we rely on
re-executing binaries to recompute files if, for example, the
version of the framework that an application depends on
changes, or the OS version changes?

One observation we make here is that although files’ de-
pendencies may go back in time forever, checkpointing al-
lows us to place a bound on how far back we ever have to
go to recompute data. Thus, before an environment change,
we can ensure recomputability by switching the system into
a “synchronous mode”, where (a) all currently unreplicated
files are checkpointed and (b) all new data is saved syn-
chronously. Once the current data is all replicated, the update
can proceed and this mode can be disabled 5.

For more efficient handling of this case, it might also be
interesting to capture a computation’s environment using a
VM image [28]. We have, however, not yet explored this
option.

3.8 Why Storage Layer

To achieve memory throughput I/O, we need to avoid repli-
cation and thus use lineage information. We believe that it is
necessary to push lineage into the storage layer because of
the followings:

First, a data processing pipeline usually contains more
than one job. It is necessary to capture the lineage across
jobs. Furthermore, in a production environment, the data
producer and its consumers could be written in different
frameworks. Therefore, only understanding the lineage at

5 Data deletion can be handled as a similar approach. For example, when
a user tries to delete a file A, if there are other files depending on A,
Tachyon will delete A asynchronously after the depending data has been
checkpointed.



the job level or a single framework level can not solve the
issue.

Second, only the storage layer knows when files are re-
named or deleted, which is necessary to track lineage cor-
rectly and checkpoint data correctly in long-term operations.
Since other layers do not have full control on the storage
layer, it is possible that a user may manually delete a file.
All files depending on the deleted file will lose fault toler-
ance guarantee.

4. Checkpointing
This section outlines the checkpoint algorithm used by
Tachyon to bound the amount of time it takes to retrieve
a file that is lost due to failures6. By a file we refer to a
distributed file, e.g., all output of a MapReduce/Spark job.
Unlike other frameworks, such as MapReduce and Spark,
whose jobs are relatively short-lived, Tachyon runs continu-
ously. Thus, the lineage that accumulates can be substantial,
requiring long recomputation time in the absence of check-
points. Therefore, checkpointing is crucial for the perfor-
mance of Tachyon. Note that long-lived streaming systems,
such as Spark Streaming [54], leverage their knowledge
of job semantics to decide what and when to checkpoint.
Tachyon has to checkpoint in absence of such detailed se-
mantic knowledge.

The key insight behind our checkpointing approach in
Tachyon is that lineage enables us to asynchronously check-
point in the background, without stalling writes, which can
proceed at memory-speed. This is unlike other storage sys-
tems that do not have lineage information, e.g., key-value
stores, which synchronously checkpoint, returning to the ap-
plication that invoked the write only once data has been per-
sisted to stable storage. Tachyon’ background checkpointing
is done in a low priority process to avoid interference with
existing jobs.

An ideal checkpointing algorithm would provide the fol-
lowing:
1. Bounded Recomputation Time. Lineage chains can grow

very long in a long-running system like Tachyon, there-
fore the checkpointing algorithm should provide a bound
on how long it takes to recompute data in the case of
failures. Note that bounding the recomputation time also
bounds the computational resources used for recomputa-
tions.

2. Checkpointing Hot files. Some files are much more pop-
ular than others. For example, the same file, which rep-
resents a small dimension table in a data-warehouse, is
repeatedly read by all mappers to do a map-side join with
a fact table [12].

3. Avoid Checkpointing Temporary Files. Big data work-
loads generate a lot of temporary data. From our contacts

6 In this section, we assume recomputation has the same resource as the
first time computation. In Section 5, we address the recomputation resource
allocation issue.

at Facebook, nowadays, more than 70% data is deleted
within a day, without even counting shuffle data. Fig-
ure 3a illustrates how long temporary data exists in a
cluster at Facebook7. An ideal algorithm would avoid
checkpointing much of this data.

We consider the following straw man to motivate our
algorithm: asynchronously checkpoint every file in the order
that it is created. Consider a lineage chain, where file A1 is
used to generate A2, which is used to generate A3, A4, and
so on. By the time A6 is being generated, perhaps only A1
and A2 have been checkpointed to stable storage. If a failure
occurs, then A3 through A6 have to be recomputed. The
longer the chain, the longer the recomputation time. Thus,
spreading out checkpoints throughout the chain would make
recomputations faster.

4.1 Edge Algorithm

Based on the above characteristics, we have designed a sim-
ple algorithm, called Edge, which builds on three ideas.
First, Edge checkpoints the edge (leaves) of the lineage
graph (hence the name). Second, it incorporates priorities,
favoring checkpointing high-priority files over low-priority
ones. Finally, the algorithm only caches datasets that can
fit in memory to avoid synchronous checkpointing, which
would slow down writes to disk speed. We discuss each of
these ideas in detail:

Checkpointing Leaves. The Edge algorithm models the
relationship of files with a DAG, where the vertices are files,
and there is an edge from a file A to a file B if B was
generated by a job that read A. The algorithm checkpoints
the latest data by checkpointing the leaves of the DAG. This
lets us satisfy the requirement of bounded recovery time
(explained in Section 4.2).

Figure 4 illustrates how the Edge algorithm works. At the
beginning, there are only two jobs running in the cluster,
generating files A1 and B1. The algorithm checkpoints both
of them. After they have been checkpointed, files A3, B4, B5,
and B6 become leaves. After checkpointing these, files A6,
B9 become leaves.

To see the advantage of Edge checkpointing, consider the
pipeline only containing A1 to A6 in the above example. If a
failure occurs when A6 is being checkpointed, Tachyon only
needs to recompute from A4 through A6 to get the final result.
As previously mentioned, checkpointing the earliest files,
instead of the edge, would require a longer recomputation
chain.

This type of pipeline is common in industry. For exam-
ple, continuously monitoring applications generate hourly
reports based on minutely reports, daily reports based on
hourly reports, and so on.

7 The workload was collected from a 3,000 machine MapReduce cluster at
Facebook, during a week in October 2010.



Access Count 1 3 5 10
Percentage 62% 86% 93% 95%

Table 3: File Access Frequency at Yahoo

100 101 102 103 104 105

Data Existence Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Estimated temporary data
span including shuffle data

Fri Sat Sun Mon Tue Wed
Time

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

O
u
tp

u
t 

D
at

a 
S
iz

e 
(G

B
)

(b) Data generation rates at five
minutes granularity

Figure 3: A 3,000 node MapReduce cluster at Facebook

Checkpointing Hot Files. The above idea of checkpoint-
ing the latest data is augmented to first checkpoint high pri-
ority files. Tachyon assigns priorities based on the number
of times a file has been read. Similar to the LFU policy for
eviction in caches, this ensures that frequently accessed files
are checkpointed first. This covers the case when the DAG
has a vertex that is repeatedly read leading to new vertices
being created, i.e., a high degree vertex. These vertices will
be assigned a proportionally high priority and will thus be
checkpointed, making recovery fast.

Edge checkpointing has to balance between checkpoint-
ing leaves, which guarantee recomputation bounds, and
checkpointing hot files, which are important for certain it-
erative workloads. Here, we leverage the fact that most big
data workloads have a Zipf-distributed popularity (this has
been observed by many others [12, 20]). Table 3 shows what
percentage of the files are accessed less than (or equal) than
some number of times in a 3,000-node MapReduce cluster
at Yahoo in January 2014. Based on this, we consider a file
high-priority if it has an access count higher than 2. For this
workload, 86% of the checkpointed files are leaves, whereas
the rest are non-leaf files. Hence, in most cases bounds can
be provided. The number can naturally be reconfigured for
other workloads. Thus, files that are accessed more than
twice get precedence in checkpointing compared to leaves.

A replication-based filesystem has to replicate every file,
even temporary data used between jobs. This is because fail-
ures could render such data as unavailable. Tachyon avoids
checkpointing much of the temporary files created by frame-
works. This is because checkpointing later data first (leaves)
or hot files, allows frameworks or users to delete temporary
data before it gets checkpointed8.

Dealing with Large Data Sets. As observed previously,
working sets are Zipf-distributed [20, Figure 2]. We can

8 In our implementation, Tachyon also allows frameworks to indicate tem-
porary data explicitly by path name.

A1

A2

A3

A4

A5

A6

B1

B2 B3

B4 B5 B6

B7

B8

B9

A1

A2

A3

B1

B2 B3

B4 B5 B6

A1 B1

Figure 4: Edge Checkpoint Example. Each node represents
a file. Solid nodes denote checkpointed files, while dotted
nodes denote uncheckpointed files.

therefore store in memory all but the very largest datasets,
which we avoid storing in memory altogether. For example,
the distribution of input sizes of MapReduce jobs at Face-
book is heavy-tailed [11, Figure 3a]. Furthermore, 96% of
active jobs can have their entire data simultaneously fit in
the corresponding clusters’ memory [11]. The Tachyon mas-
ter is thus configured to synchronously write datasets above
the defined threshold to disk. In addition, Figure 3b shows
that file requests in the aforementioned Facebook cluster
is highly bursty. During bursts, Edge checkpointing might
checkpoint leafs that are far apart in the DAG. As soon as
the bursts finish, Edge checkpointing starts checkpointing
the rest of the non-leaf files. Thus, most of the time most
of the files in memory have been checkpointed and can be
evicted from memory if room is needed (see Section 3). If
the memory fills with files that have not been checkpointed,
Tachyon checkpoints them synchronously to avoid having
to recompute long lineage chains. In summary, all but the
largest working sets are stored in memory and most data has
time to be checkpointed due to the bursty behavior of frame-
works. Thus, evictions of uncheckpointed files are rare.

4.2 Bounded Recovery Time

Checkpointing the edge of the DAG lets us derive a bound
on the recomputation time. The key takeaway of the bound
is that recovery of any file takes on the order of time that it
takes to read or generate an edge. Informally, it is indepen-
dent of the depth of the lineage DAG.

Recall that the algorithm repeatedly checkpoints the edge
of the graph. We refer to the time it takes to checkpoint a
particular edge i of the DAG as Wi. Similarly, we refer to the
time it takes to generate an edge i from its ancestors as Gi.
We now have the following bound.

THEOREM 1. Edge checkpointing ensures that any file can
be recovered in 3×M, for M = maxi{Ti}, Ti = max(Wi,Gi)

9.

This shows that recomputations are independent of the
“depth” of the DAG. This assumes that the caching behavior
is the same during the recomputation, which is true when
working sets fit in memory (c.f., Section 4.1).

9 We refer the reader to [32] for the proof.



The above bound does not apply to priority checkpoint-
ing. However, we can easily incorporate priorities by alter-
nating between checkpointing the edge c fraction of the time
and checkpointing high-priority data 1− c of the time.

COROLLARY 2. Edge checkpointing, where c fraction of the
time is spent checkpointing the edge, ensures that any file can
be recovered in 3×M

c , for M = maxi{Ti}, Ti = max(Wi,Gi).

Thus, configuring c = 0.5 checkpoints the edge half of
the time, doubling the bound of Theorem 1. These bounds
can be used to provide SLOs to applications.

In practice, priorities can improve the recomputation cost.
In the evaluation(§7), we illustrate actual recomputation
times when using edge caching.

5. Resource Allocation
Although the Edge algorithm provides a bound on recom-
putation cost, Tachyon needs a resource allocation strategy
to schedule jobs to recompute data in a timely manner. In
addition, Tachyon must respect existing resource allocation
policies in the cluster, such as fair sharing or priority.

In many cases, there will be free resources for recompu-
tation, because most datacenters are only 30–50% utilized.
However, care must be taken when a cluster is full. Con-
sider a cluster fully occupied by three jobs, J1, J2, and J3,
with increasing importance (e.g., from research, testing, and
production). There are two lost files, F1 and F2, requiring re-
computation jobs R1 and R2. J2 requests F2 only. How should
Tachyon schedule recomputations?

One possible solution is to statically assign part of the
cluster to Tachyon, e.g., allocate 25% of the resources on the
cluster for recomputation. However, this approach limits the
cluster’s utilization when there are no recomputation jobs. In
addition, the problem is complicated because many factors
can impact the design. For example, in the above case, how
should Tachyon adjust R2’s priority if F2 is later requested
by the higher priority job J3?

To guide our design, we identify three goals:
1. Priority compatibility: If jobs have priorities, recompu-

tation jobs should follow them. For example, if a file is
requested by a low priority job, the recomputation should
have minimal impact on higher priority jobs. But if the
file is later requested by a high priority job, the recovery
job’s importance should increase.

2. Resource sharing: If there are no recomputation jobs, the
whole cluster should be used for normal work.

3. Avoid cascading recomputation: When a failure occurs,
more than one file may be lost at the same time. Recom-
puting them without considering data dependencies may
cause recursive job launching.

We start by presenting resource allocation strategies that
meet the first two goals for common cluster scheduling poli-
cies. Then, we discuss how to achieve the last goal, which is
orthogonal to the scheduling policy.

J1(P1)

R2(P2)

J2(P2) J3(P3) J1(P1)

R2(P3)

J2(P2) J3(P3)

(a) (b)

Figure 5: Resource Allocation Strategy for Priority Based
Scheduler.

5.1 Resource Allocation Strategy

The resource allocation strategy depends on the scheduling
policy of the cluster Tachyon runs on. We present solutions
for priority and weighted fair sharing, the most common
policies in systems like Hadoop and Dryad [31, 52].

Priority Based Scheduler In a priority scheduler, using
the same example above, jobs J1, J2, and J3 have priorities
P1, P2, and P3 respectively, where P1 < P2 < P3.

Our solution gives all recomputation jobs the lowest pri-
ority by default, so they have minimal impact on other jobs.
However, this may cause priority inversion. For example, be-
cause file F2’s recomputation job R2 has a lower priority than
J2, it is possible that J2 is occupying the whole cluster when
it requests F2. In this case, R2 cannot get resources, and J2
blocks on it.

We solve this by priority inheritance. When J2 requests
F2, Tachyon increases R2’s priority to be P2. If F2 is later
read by J3, Tachyon further increases its priority. Figure 5a
and 5b show jobs’ priorities before and after J3 requests F2.

Fair Sharing Based Scheduler In a hierarchical fair shar-
ing scheduler, jobs J1, J2, and J3 have shares W1, W2, and W3
respectively. The minimal share unit is 1.

In our solution, Tachyon has a default weight, WR (as
the minimal share unit 1), shared by all recomputation jobs.
When a failure occurs, all lost files are recomputed by jobs
with a equal share under WR. In our example, both R1 and R2
are launched immediately with share 1 in WR.

When a job requires lost data, part of the requesting job’s
share10, is moved to the recomputation job. In our example,
when J2 requests F2, J2 has share (1− a) under W2, and R2
share a under W2. When J3 requests F2 later, J3 has share
1− a under W3 and R2 has share a under W3. When R2
finishes, J2 and J3 resumes all of their previous shares, W2
and W3 respectively. Figure 6 illustrates.

This solution fulfills our goals, in particular, priority com-
patibility and resource sharing. When no jobs are requesting
a lost file, the maximum share for all recomputation jobs is
bounded. In our example, it is WR/(W1 +W2 +W3 +WR).
When a job requests a missing file, the share of the corre-
sponding recomputation job is increased. Since the increased
share comes from the requesting job, there is no performance
impact on other normal jobs.

10 a could be a fixed portion of the job’s share, e.g., 20%



W1 W2 W3
J1 J2 J3

WR(1)W1 W2 W3
J1 J2 J3

WR(1)

R2 R3

1 1

W1 W2 W3
J1 J3

WR(1)W1 W2 W3
J1

J2

J3

WR(1)

R2
R3

1 11-a a

W1 W2 W3

J3

WR(1)W1 W2 W3
J1

J2

WR(1)

R2 R31
1

1-a a a
1-a

W1 W2 W3
J3

WR(1)W1 W2 W3
J1 J2

WR(1)

R3
1

Figure 6: Resource Allocation Strategy for Fair Sharing Based Scheduler.

5.2 Recomputation Order

Recomputing a file might require recomputing other files
first, such as when a node fails and loses multiple files at the
same time. While the programs could recursively make call-
backs to the workflow manager to recompute missing files,
this would have poor performance. For instance, if the jobs
are non-preemptable, computation slots are occupied, wait-
ing for other recursively invoked files to be reconstructed.
If the jobs are preemptable, computation before loading lost
data is wasted. For these reasons, the workflow manager de-
termines in advance the order of the files that need to be
recomputed and schedules them.

To determine the files that need to be recomputed, the
workflow manager uses a logical directed acyclic graph
(DAG) for each file that needs to be reconstructed. Each
node in the DAG represents a file. The parents of a child
node in the DAG denote the files that the child depends on.
That is, for a wide dependency a node has an edge to all files
it was derived from, whereas for a narrow dependency it has
a single edge to the file that it was derived from. This DAG
is a subgraph of the DAG in Section 4.1.

To build the graph, the workflow manager does a depth-
first search (DFS) of nodes representing targeted files. The
DFS stops whenever it encounters a node that is already
available in storage. The nodes visited by the DFS must be
recomputed. The nodes that have no lost parents in the DAG
can be recomputed first in parallel. The rest of nodes can be
recomputed when all of their children become available. The
workflow manager calls the resource manager and executes
these tasks to ensure the recomputation of all missing data.

6. Implementation
We have implemented Tachyon in about 36,000 lines of
Java. Tachyon uses an existing storage system as its persis-
tence layer, with a pluggable interface (we currently support
HDFS, S3, GlusterFS, and NFS). Tachyon also uses Apache
ZooKeeper to do leader election for master fault tolerance.

We have also implemented patches for existing frame-
works to work with Tachyon: 300 Lines-of-Code (LoC) for
Spark [53] and 200 LoC for MapReduce [2]. Applications
on top of integrated frameworks can take advantage of the
linage transparently, and application programmers do not
need to know the lineage concept.

The project is open source, has over 40 contributors from
more than 15 companies and universities.

6.1 Lineage Metadata

This section describes the detailed information needed to
construct a lineage.
Ordered input files list: Because files’ names could be
changed, each file is identified by a unique immutable file
ID in the ordered list to ensure that the application’s potential
future recomputations read the same files in the same order
as its first time execution.
Ordered output files list: This list shares the same insights
as the input files list.
Binary program for recomputation: Tachyon launches
this program to regenerate files when necessary. There are
various approaches to implement a file recomputation pro-
gram. One naı̈ve way is to write a specific program for each
application. However, this significantly burdens application
programmers. Another solution is to write a single wrapper
program which understands both Tachyon’s lineage infor-
mation and the application’s logic. Though this may not be
feasible for all programs, it works for applications written
in a particular framework. Each framework can implement
a wrapper to allow applications written in the framework
to use Tachyon transparently. Therefore, no burden will be
placed on application programmers.
Program configuration: Program configurations can be
dramatically different in various jobs and frameworks. We
address this by having Tachyon forego any attempt to un-
derstand these configurations. Tachyon simply views them
as byte arrays, and leaves the work to program wrappers to
understand. Based on our experience, it is fairly straightfor-
ward for each framework’s wrapper program to understand
its own configuration. For example, in Hadoop, configura-
tions are kept in HadoopConf, while Spark stores these in
SparkEnv. Therefore, their wrapper programs can serialize
them into byte arrays during lineage submission, and deseri-
alize them during recomputation.
Dependency type: We use wide and narrow dependencies
for efficient recovery(c.f., §5). Narrow dependencies repre-
sent programs that do operations, e.g., filter and map, where
each output file only requires one input file. Wide dependen-
cies represent programs that do operations, e.g., shuffle and



join, where each output file requires more than one input file.
This works similarly to Spark [53].

6.2 Framework Integration

When a program written in a framework runs, before it
writes files, it provides the aforementioned information
(§6.1) to Tachyon. Then, when the program writes files,
Tachyon recognizes the files contained in the lineage. There-
fore, the program can write files to memory only, and
Tachyon relies on the lineage to achieve fault tolerance.
If any file gets lost, and needs to be recomputed, Tachyon
launches the binary program, a wrapper under a framework
invoking user application’s logic, which is stored in the cor-
responding lineage instance, and provides the lineage infor-
mation as well as the list of lost files to the recomputation
program to regenerate the data.

Recomputation Granularity Framework integration can
be done at different granularity, with different integration
complexity and recovery efficiency. An easy but less effi-
cient integration is to recompute data at the job level. Sup-
pose a Map job produces ten files and one file is lost. For
job level integration, Tachyon launches the corresponding
wrapper job to recompute all ten files. Another solution is
to recompute data at the task (within a job) level, which is
harder but more efficient than the above approach. With the
same example, for task level integration, Tachyon launches
the corresponding wrapper job to only recompute the lost
file. Our integrations with MapReduce and Spark are at task
level.

Configurable Feature Though applications on an inte-
grated framework can have memory throughput writes trans-
parently, we make this feature optional, which is config-
urable by applications. This is useful if the application does
not tolerate any temporary unavailability for the generated
data.

7. Evaluation
We evaluated Tachyon11 through a series of raw benchmarks
and experiments based on real-world workloads.

Unless otherwise noted, our experiments ran on an Ama-
zon EC2 cluster with 10 Gbps Ethernet. Each node had 32
cores, 244GB RAM, and 240GB of SSD. We used Hadoop
(2.3.0) and Spark (0.9).

We compare Tachyon with an in-memory installation of
Hadoop’s HDFS (over RAMFS), which we dub MemHDFS.
MemHDFS still replicates data across the network for writes
but eliminates the slowdown from disk.

In summary, our results show the following:
• Performance: Tachyon can write data 110x faster than

MemHDFS. It speeds up a realistic multi-job workflow
by 4x over MemHDFS. In case of failure, it recovers in
around one minute and still finishes 3.8x faster. Tachyon

11 We use HDFS (2.3.0) as Tachyon’s persistence layer in our evaluation.

0	  

100	  

200	  

300	  

400	  

500	  

0	   10	   20	   30	  

Th
ro
ug
hp

ut
	  (G

B/
Se
c)
	  

Number	  of	  Machines	  

Write	  Throughput	  
Tachyon	  Write	  

MemHDFS	  Write	  

TheoreFcal	  ReplicaFon	  
(2	  copies)	  Based	  Write	  

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

0	   10	   20	   30	  

Th
ro
ug
hp

ut
	  (G

B/
Se
c)
	  

Number	  of	  Machines	  

Read	  Throughput	  
Tachyon	  Read	  
MemHDFS	  Read	  
MemHDFS	  Short	  Circuit	  Read	  
HDFS	  Cache	  Short	  Circuit	  Read	  

Figure 7: Tachyon and MemHDFS throughput compari-
son. On average, Tachyon outperforms MemHDFS 110x for
write throughput, and 2x for read throughput.

helps existing in-memory frameworks like Spark im-
prove latency by moving storage off-heap. It recovers
from master failure within 1 second.

• Asynchronous Checkpointing: The Edge algorithm out-
performs any fixed checkpointing interval. Analysis
shows that Tachyon can reduce replication caused net-
work traffic up to 50%.

• Recomputation Impact: Recomputation has minor im-
pact on other jobs. In addition, recomputation would
consume less than 1.6% of cluster resources in traces
from Facebook and Bing.

7.1 Performance

7.1.1 Raw Performance

We first compare Tachyon’s write and read throughputs with
MemHDFS. In each experiment, we ran 32 processes on
each cluster node to write/read 1GB each, equivalent to
32GB per node. Both Tachyon and MemHDFS scaled lin-
early with number of nodes. Figure 7 shows our results.

For writes, Tachyon achieves 15GB/sec/node. Despite
using 10Gbps Ethernet, MemHDFS write throughput is
0.14GB/sec/node, with a network bottleneck due to 3-way
replication for fault tolerance. We also show the theoretical
maximum performance for replication on this hardware: us-
ing only two copies of each block, the limit is 0.5GB/sec/n-
ode. On average, Tachyon outperforms MemHDFS by 110x,
and the theoretical replication-based write limit by 30x.

For reads, Tachyon achieves 38GB/sec/node. We opti-
mized HDFS read performance using two of its most recent
features, HDFS caching and short-circuit reads. With these
features, MemHDFS achieves 17 GB/sec/node. The reason
Tachyon performs 2x better is that the HDFS API still re-
quires an extra memory copy due to Java I/O streams.

Note that Tachyon’s read throughput was higher than
write. This happens simply because memory hardware is
generally optimized to leave more bandwidth for reads.

7.1.2 Realistic Workflow

In this experiment, we test how Tachyon performs with a re-
alistic workload. The workflow is modeled after jobs run at



0	   20	   40	   60	   80	  

Tachyon	  (wo/	  failure)	  
Tachyon	  (w/	  failure)	  

MemHDFS	  

Minutes	  

Figure 8: Performance comparison for realistic workflow.
Each number is the average of three runs. The workflow ran
4x faster on Tachyon than on MemHDFS. In case of node
failure, applications recovers in Tachyon around one minute
and still finishes 3.8x faster.

a video analytics company during one hour. It contains peri-
odic extract, transform and load (ETL) and metric reporting
jobs. Many companies run similar workflows.

The experiments ran on a 30-node EC2 cluster. The whole
workflow contains 240 jobs in 20 batches (8 Spark jobs and
4 MapReduce jobs per batch). Each batch of jobs read 1
TB and produced 500 GB. We used the Spark Grep job to
emulate ETL applications, and MapReduce Word Count to
emulate metric analysis applications. For each batch of jobs,
we ran two Grep applications to pre-process the data. Then
we ran Word Count to read the cleaned data and compute the
final results. After getting the final results, the cleaned data
was deleted.

We measured the end-to-end latency of the workflow
running on Tachyon or MemHDFS. To simulate the real
scenario, we started the workload as soon as raw data had
been written to the system, in both Tachyon and MemHDFS
tests. For the Tachyon setting, we also measured how long
the workflow took with a node failure.

Figure 8 shows the workflow’s performance on Tachyon
and MemHDFS. The pipeline ran in 16.6 minutes on Tachyon
and 67 minutes on HDFS. The speedup is around 4x. When
a failure happens in Tachyon, the workflow took 1 more
minute, still finishing 3.8x faster than MemHDFS.

With Tachyon, the main overhead was serialization and
de-serialization since we used the Hadoop TextInputFormat.
With a more efficient serialization format, the performance
gap is larger.

7.1.3 Overhead in Single Job

When running a single job instead of a pipeline, we found
that Tachyon imposes minimal overhead, and can improve
performance over current in-memory frameworks by reduc-
ing garbage collection overheads. We use Spark as an ex-
ample, running a Word Count job on one worker node.
Spark can natively cache data either as deserialized Java
objects or as serialized byte arrays, which are more com-
pact but create more processing overhead. We compare these
modes with caching in Tachyon. For small data sizes, ex-
ecution times are similar. When the data grows, however,
Tachyon storage is faster than Spark’s native modes because

0	  
50	  

100	  
150	  
200	  
250	  
300	  
350	  
400	  

Ed
ge
	  Al
go
rit
hm
	  

Fix
ed
	  In
ter
va
l	  0
	  

Fix
ed
	  In
ter
va
l	  1
	  

Fix
ed
	  In
ter
va
l	  2
	  

Fix
ed
	  In
ter
va
l	  3
	  

Fix
ed
	  In
ter
va
l	  4
	  

Fix
ed
	  In
ter
va
l	  5
	  

Fix
ed
	  In
ter
va
l	  7
	  

Fix
ed
	  In
ter
va
l	  1
0	  

Fix
ed
	  In
ter
va
l	  2
0	  

Fix
ed
	  In
ter
va
l	  3
0	  

Fix
ed
	  In
ter
va
l	  4
0	  

Fix
ed
	  In
ter
va
l	  5
0	  

Re
co
ve
ry
	  T
im

e	  
(S
ec
)	  

Figure 9: Edge and fixed interval checkpoint recovery per-
formance comparison.

it avoids Java memory management.12 These results show
that Tachyon can be a drop-in alternative for current in-
memory frameworks. Apache Spark official release 1.0.0 al-
ready uses Tachyon as its default off-heap storage solution.

7.1.4 Master Fault Tolerance

Tachyon utilizes hot failovers to achieve fast master recov-
ery. We tested recovery for an instance with 1 to 5 million
files, and found that the failover node resumed the master’s
role after acquiring leadership within 0.5 seconds, with a
standard deviation of 0.1 second. This performance is possi-
ble because the failover constantly updates its file metadata
based on the log of the current master.

7.2 Asynchronous Checkpointing

7.2.1 Edge Checkpointing Algorithm

We evaluate the Edge algorithm by comparing it with fixed-
interval checkpointing. We simulate an iterative workflow
with 100 jobs, whose execution time follows a Gaussian
distribution with a mean of 10 seconds per job. The output
of each job in the workflow requires a fixed time of 15
seconds to checkpoint. During the workflow, one node fails
at a random time.

Figure 9 compares the average recovery time of this
workflow under Edge checkpointing with various fixed
checkpoint intervals. We see that Edge always outperforms
any fixed checkpoint interval. When too small an interval
picked, checkpointing cannot keep up with program progress
and starts lagging behind.13 If the interval is too large, then
the recovery time will suffer as the last checkpoint is too
far back in time. Furthermore, even if an optimal average
checkpoint interval is picked, it can perform worse than the
Edge algorithm, which inherently varies its interval to al-
ways match the progress of the computation and can take
into account the fact that different jobs in our workflow take
different amounts of time.

12 Although Tachyon is written in Java, it stores data in a Linux RAMFS.
13 That is, the system is still busy checkpointing data from far in the past
when a failure happens later in the lineage graph.



We also simulated other variations of this workload, e.g.,
more than one lineage chain or different average job exe-
cution times at different phases in one chain. These simula-
tions have a similar result, with the gap between Edge algo-
rithm and the best fixed interval being larger in more variable
workloads.

7.2.2 Network Traffic Reduction

Data replication from the filesystem consumes almost half
the cross-rack traffic in data-intensive clusters [22]. Because
Tachyon checkpoints data asynchronously some time after
it was written, it can avoid replicating short-lived files alto-
gether if they are deleted before Tachyon checkpoints them,
and thus reduce this traffic. Networked bounded applications
running in the same cluster can therefore leverage saved
bandwidth to have better performance.

We analyze Tachyon’s bandwidth savings via simulations
with the following parameters:
• Let T be the ratio between the time it takes to checkpoint

a job’s output and the time to execute it. This depends on
how IO-bound the application is. For example, we mea-
sured a Spark Grep program using Hadoop Text Input
format, which resulted in T = 4.5, i.e., the job runs 4.5x
faster than network bandwidth. With a more efficient bi-
nary format, T will be larger.

• Let X be the percent of jobs that output permanent data.
For example, 60% (X = 60) of generated data got deleted
within 16 minutes at Facebook (Fig. 3a).

• Let Y be the percentage of jobs that read output of
previous jobs. If Y is 100, the lineage is a chain. If Y is
0, the depth of the lineage is 1. Y is 84% in an analytics
cluster at Twitter.

Based on this information, we set X as 60 and Y as 84. We
simulated 1000 jobs using Edge checkpointing. Depending
on T, the percent of network traffic saved over replication
ranges from 40% at T = 4 to 50% at T ≥ 10.

7.3 Recomputation Impact

7.3.1 Recomputation Resource Consumption

Since Tachyon relies on lineage information to recompute
missing data, it is critical to know how many resources will
be spent on recomputation, given that failures happen every
day in large clusters. In this section, we calculate the amount
of resources spent recovering using both a mathematical
model and traces from Facebook and Bing.

We make our analysis using the following assumptions:
• Mean time to failure (MTTF) for each machine is 3

years. If a cluster contains 1000 nodes, on average, there
is one node failure per day.

• Sustainable checkpoint throughput is 200MB/s/node.
• Resource consumption is measured in machine-hours.
• In this analysis, we assume Tachyon only uses the

coarse-gained recomputation at the job level to compute

worst case, even though it supports fine-grained recom-
putation at task level.

Worst-case analysis In the worst case, when a node fails,
its memory contains only un-checkpointed data. This re-
quires tasks that generate output faster than 200MB/sec:
otherwise, data can be checkpointed in time. If a machine
has 128GB memory, it requires 655 seconds (128GB /
200MB/sec) to recompute the lost data. Even if this data is
recovered serially, and of all the other machines are blocked
waiting on the data during this process (e.g., they were run-
ning a highly parallel job that depended on it), recomputa-
tion takes 0.7% (655 seconds / 24 hours) of the cluster’s run-
ning time on a 1000-node cluster (with one failure per day).
This cost scales linearly with the cluster size and memory
size. For a cluster with 5000 nodes, each with 1TB memory,
the upper bound on recomputation cost is 30% of the clus-
ter resources, which is still small compared to the typical
speedup from Tachyon.

Real traces In real workloads, the recomputation cost is
much lower than in the worst-case setting above, because
individual jobs rarely consume the entire cluster, so a node
failure may not block all other nodes. (Another reason is that
data blocks on a failed machine can often be recomputed in
parallel, but we do not quantify this here.) Figure 10 esti-
mates these costs based on job size traces from Facebook
and Bing (from Table 2 in [12]), performing a similar com-
putation as above with the active job sizes in these clusters.
With the same 5000-node cluster, recomputation consumes
only up to 0.9% and 1.6% of resources at Facebook and Bing
respectively. Given most clusters are only 30–50% utilized,
this overhead is negligible.

7.3.2 Impact of Recomputation on Other Jobs

In this experiment, we show that recomputating lost data
does not noticeably impact other users’ jobs that do not de-
pend on the lost data. The experiment has two users, each
running a Spark ETL pipeline. We ran the test three times,
and report the average. Without a node failure, both users’
pipelines executed in 85 seconds on average (standard devi-
ation: 3s). With a failure, the unimpacted users’s execution
time was 86s (std.dev. 3.5s) and the impacted user’s time was
114s (std.dev. 5.5s).

8. Related Work
Distributed Storage Systems In big data analytics, dis-
tributed file systems [15, 45, 49], e.g., GFS [26] and FDS [14],
and key/value stores [1, 13, 25], e.g., RAMCloud [39]
and HBase [3], replicate data to different nodes for fault-
tolerance. Their write throughput is bottlenecked by net-
work bandwidth. FDS uses a fast network to achieve higher
throughput. Despite the higher cost of building FDS, its
throughput is still far from memory throughput. Tachyon
leverages the lineage concept in the storage layer to es-
chew replication and instead stores a single in-memory copy



Trace Summary

0	  
0.1	  
0.2	  
0.3	  
0.4	  
0.5	  
0.6	  
0.7	  
0.8	  
0.9	  

128	   256	   384	   512	   640	   768	   896	   1024	  

Pe
rc
en

ta
ge
	  o
f	  t
he

	  c
lu
st
er
	  

co
m
pu

ta
=o

n	  
re
so
ur
ce
	  

Memory	  Size	  Per	  Machine	  (GB)	  

Facebook	  Workload	  Analysis	  

1000	  Nodes	  
2000	  Nodes	  
3000	  Nodes	  
4000	  Nodes	  
5000	  Nodes	  

0	  
0.2	  
0.4	  
0.6	  
0.8	  
1	  

1.2	  
1.4	  
1.6	  

128	   256	   384	   512	   640	   768	   896	   1024	  

Pe
rc
en

ta
ge
	  o
f	  t
he

	  c
lu
st
er
	  

co
m
pu

ta
=o

n	  
re
so
ur
ce
	  

Memory	  Size	  Per	  Machine	  (GB)	  

Bing	  Workload	  Analysis	  

1000	  Nodes	  
2000	  Nodes	  
3000	  Nodes	  
4000	  Nodes	  
5000	  Nodes	  

Figure 10: Using the trace from Facebook and Bing, recomputation consumes up to 0.9% and 1.6% of the resource in the worst
case respectively.

of files. The Apache HDFS community is shifting towards
pushing the lineage into the system, which they claimed was
partially inspired by Tachyon [29, 43]. The proposed system
maintains materialized views in un-replicated memory and
can recompute them using the required SQL computations.

BAD-FS [16] separates out a scheduler from storage,
which provides external control to the scheduler. Users sub-
mit jobs to the scheduler through a declarative workflow lan-
guage, and thus the system knows the lineage among jobs.
However, to make this practical for parallel big data engines
(e.g. Spark, MapReduce, Tez), two fundamental issues stood
out: (1) ensuring that the interaction between the scheduler
and the storage system is correct, e.g. avoiding deadlock-
s/priority inversion, (2) bounding recomputation time, which
otherwise in a 24/7 system can grow unbounded. For the first
problem, we provide mechanisms that avoid deadlocks/pri-
ority inversion, while respecting the policy of schedulers.
For the second problem, we provide an asynchronous check-
pointing algorithm that exploits the structure of the lineage
graph to continuously perform checkpointing in the back-
ground to guarantee bounded recovery time.
Cluster Computation Frameworks Spark [53] uses lin-
eage information within a single job or shell, all running in-
side a single JVM. Different queries in Spark cannot share
datasets (RDD) in a reliable and high-throughput fashion,
because Spark is a computation engine, rather than a storage
system. Our integration with Spark substantially improves
existing industry workflows of Spark jobs, as they can share
datasets reliably through Tachyon. Moreover, Spark can ben-
efit from the asynchronous checkpointing in Tachyon, which
enables high-throughput write.

Other frameworks, such as MapReduce [23] and Dryad [30],
also trace task lineage within a job. However, as execution
engines, they do not trace relations among files, and there-
fore can not provide high throughput data sharing among dif-
ferent jobs. Like Spark, they can also integrate with Tachyon
to improve the efficiency of data sharing among different
jobs or frameworks.
Caching Systems Like Tachyon, Nectar [27] also uses the
concept of lineage, but it does so only for a specific pro-
gramming framework (DryadLINQ [51]), and in the con-

text of a traditional, replicated file system. Nectar is a data
reuse system for DryadLINQ queries whose goals are to
save space and to avoid redundant computations. The former
goal is achieved by deleting largely unused files and rerun-
ning the jobs that created them when needed. However, no
time bound is provided to retrieve deleted data. The latter
goal is achieved by identifying pieces of code that are com-
mon in different programs and reusing previously computed
files. Nectar achieves this by heavily resting on the SQL like
DryadLINQ query semantics—in particular, it needs to ana-
lyze LINQ code to determine when results may be reused—
and stores data in a replicated on-disk file system rather than
attempting to speed up data access. In contrast, Tachyon’s
goal is to provide data sharing across different frameworks
with memory speed and bounded recovery time.

PACMan [12] is a memory caching system for data-
intensive parallel jobs. It explores different policies to make
data warehouse caching efficient. However, PACMan does
not improve the performance of writes, nor the first read
of any data item. Therefore, the throughput of many ap-
plications remains disk-limited—for example, a multi-job
MapReduce workflow will still need to replicate data at disk
speed between each step.
Lineage Besides the applications in the above fields, lineage
has been applied in other areas, such as scientific comput-
ing [17, 47], databases [21], and distributed computing [9,
10, 37], for applications such as providing the history of
data, which can be used for accountability, security, and
data audit. [18] and [21] provide detailed surveys of this
work. Tachyon applies lineage in a different environment to
achieve memory throughput read and write, which entails a
different set of challenges.
Checkpoint Research Checkpointing has been a rich re-
search area. Much of the research was on using checkpoints
to minimize the re-execution cost when failures happen dur-
ing long jobs. For instance, much focus was on optimal
checkpoint intervals [48, 50], as well as reducing the per-
checkpoint overhead [24, 40, 41]. Unlike previous work,
which uses synchronous checkpoints, Tachyon does check-
pointing asynchronously in the background, which is en-



abled by using lineage information to recompute any miss-
ing data if a checkpoint fails to finish.

9. Limitations and Future Work
Tachyon aims to improve the performance for its targeted
workloads(§2.1), and the evaluations show promising re-
sults. Although many big data clusters are running our tar-
geted workloads, we realize that there are cases in which
Tachyon provides limited improvement, e.g., CPU or net-
work intensive jobs. In addition, there are also challenges
that future work needs to address:
Random Access Abstractions: Data-intensive applications
run jobs that output files to storage systems like Tachyon.
Often, these files are reprocessed (e.g., to a DBMS) to allow
user-facing applications to use this data. For instance, a Web
application might recommend new friends to a user. Thus,
enabling Tachyon to provide higher-level read-only random-
access abstractions, such as a key/value interface on top
of the existing files would shorten the pipeline and enable
output of data-intensive jobs to be immediately usable.
Mutable data: This is challenging as lineage cannot gen-
erally be efficiently stored for fine-grained random-access
updates. However, there are several directions, such as ex-
ploiting deterministic updates and batch updates.
Multi-tenancy: Memory fair sharing is an important re-
search direction for Tachyon. Policies such as LRU/LFU
might provide good overall performance at the expense of
providing isolation guarantees to individual users. In addi-
tion, security is also another interesting issue to tackle.
Hierarchical storage: Though memory capacity grows ex-
ponentially each year, it is still comparatively expensive to
its alternatives. One early adopter of Tachyon suggested that
besides utilizing the memory layer, Tachyon should also
leverage NVRAM and SSDs. In the future, we will inves-
tigate how to support hierarchical storage in Tachyon.
Checkpoint Algorithm Optimizations: In this work, we
proposed the Edge algorithm to provide a bounded recom-
putation time. It also checkpoints hot files first and avoids
checkpointing temporary files. However, there could be
other techniques to make trade-offs among different met-
rics, e.g. checkpoint cost, single file recovery cost, and all
files recovery cost. We leave those as future work and en-
courage the community to explore different algorithms in
this area.

10. Conclusion
As ever more datacenter workloads start to be in mem-
ory, write throughput becomes a major bottleneck for ap-
plications. Therefore, we believe that lineage-based recov-
ery might be the only way to speed up cluster storage sys-
tems to achieve memory throughput. We proposed Tachyon,
a memory-centric storage system that incorporates lineage
to speed up the significant part of the workload consisting
of deterministic batch jobs. We identify and address some
of the key challenges in making Tachyon practical. Our

evaluations show that Tachyon provides promising speedups
over existing storage alternatives. Approaches similar to ours
are also being adopted by the HDFS community to lever-
age memory efficiently on clusters. We have open sourced
Tachyon at tachyon-project.org for people to use in real en-
vironments or as a system research platform. It has received
contributions from more than 40 individuals and over 15
companies.

11. Acknowledgements
We thank Adam Oliner, Aurojit Panda, Calvin Jia, Daniel
Haas, Dilip Joseph, Evan Sparks, Ganesh Ananthanarayanan,
Gene Pang, Jiannan Wang, Joseph Gonzalez, Kaifei Chen,
Kay Ousterhout, Liwen Sun, Michael Franklin, Mosharaf
Chowdhury, Peter Bailis, Reynold Xin, Sameer Agarwal,
Shivaram Venkataraman, Tathagata Das, and our colleagues
in AMPLab UC Berkeley providing us many good sugges-
tions. We also thank our shepherd, Pradeep Padala, and our
reviewers for their feedback. This research is supported in
part by NSF CISE Expeditions Award CCF-1139158, LBNL
Award 7076018, and DARPA XData Award FA8750-12-2-
0331, and gifts from Amazon Web Services, Google, SAP,
The Thomas and Stacey Siebel Foundation, Adobe, Apple,
Inc., Bosch, C3Energy, Cisco, Cloudera, EMC, Ericsson,
Facebook, GameOnTalis, Guavus, HP, Huawei, Intel, Mi-
crosoft, NetApp, Pivotal, Splunk, Virdata, VMware, and Ya-
hoo!.

References
[1] Apache Cassandra. http://cassandra.apache.org/.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache HBase. http://hbase.apache.org/.

[4] Apache Oozie. http://incubator.apache.org/oozie/.

[5] Apache Crunch. http://crunch.apache.org/.

[6] Dell. http://www.dell.com/us/business/p/servers.

[7] Luigi. https://github.com/spotify/luigi.

[8] Apache Mahout. http://mahout.apache.org/.

[9] L. Alvisi and K. Marzullo. Message logging: Pessimistic,
optimistic, causal, and optimal. Software Engineering, IEEE
Transactions on, 24(2):149–159, 1998.

[10] L. Alvisi, K. Bhatia, and K. Marzullo. Causality tracking in
causal message-logging protocols. Distributed Computing, 15
(1):1–15, 2002.

[11] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.
Disk-Locality in Datacenter Computing Considered Irrele-
vant. In USENIX HotOS 2011, .

[12] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica. PACMan: Coordinated
Memory Caching for Parallel Jobs. In NSDI 2012, .

[13] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. Fawn: A fast array of wimpy
nodes. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, pages 1–14. ACM, 2009.



[14] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell,
and Y. Suzue. Flat Datacenter Storage. In OSDI 2012.

[15] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore:
Providing scalable, highly available storage for interactive
services. In CIDR, volume 11, pages 223–234, 2011.

[16] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and M. Livny. Explicit control in the batch-aware
distributed file system. In NSDI, volume 4, pages 365–378,
2004.

[17] R. Bose and J. Frew. Lineage Retrieval for Scientic Data
Processing: A Survey. In ACM Computing Surveys 2005.

[18] R. Bose and J. Frew. Lineage retrieval for scientific data
processing: a survey. ACM Computing Surveys (CSUR), 37
(1):1–28, 2005.

[19] C. Chambers et al. FlumeJava: easy, efficient data-parallel
pipelines. In PLDI 2010.

[20] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical
processing in big data systems: A cross-industry study of
mapreduce workloads. Proceedings of the VLDB Endowment,
5(12):1802–1813, 2012.

[21] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in
Databases: Why, How, and Where. In Foundations and Trends
in Databases 2007.

[22] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging end-
point flexibility in data-intensive clusters. In Proceedings of
the ACM SIGCOMM 2013 conference on SIGCOMM, pages
231–242. ACM, 2013.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI 2004.

[24] E. Elnozahy, D. Johnson, and W. Zwaenepoel. The Perfor-
mance of Consistent Checkpointing. In 11th Symposium on
Reliable Distributed Systems 1994.

[25] R. Escriva, B. Wong, and E. G. Sirer. Hyperdex: A distributed,
searchable key-value store. ACM SIGCOMM Computer Com-
munication Review, 42(4):25–36, 2012.

[26] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, 2003.

[27] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang. Nectar: Automatic Management of Data and
Computation in Data Centers. In OSDI 2010.

[28] P. J. Guo and D. Engler. CDE: Using system call interposition
to automatically create portable software packages. In Pro-
ceedings of the 2011 USENIX Annual Technical Conference,
pages 247–252, 2011.

[29] J. Hyde. Discardable Memory and Materialized Queries.
http://hortonworks.com/blog/dmmq/.

[30] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. ACM SIGOPS Operating Systems Review, 41(3):59–
72, 2007.

[31] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: Fair scheduling for distributed
computing clusters. In SOSP, November 2009.

[32] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Re-
liable, memory speed storage for cluster computing frame-
works. Technical Report UCB/EECS-2014-135, EECS De-
partment, University of California, Berkeley, Jun 2014.

[33] D. Locke, L. Sha, R. Rajikumar, J. Lehoczky, and G. Burns.
Priority inversion and its control: An experimental investiga-
tion. In ACM SIGAda Ada Letters, volume 8, pages 39–42.
ACM, 1988.

[34] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proceedings
of the VLDB Endowment, 5(8):716–727, 2012.

[35] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 135–
146. ACM, 2010.

[36] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: interactive analysis of
web-scale datasets. Proceedings of the VLDB Endowment, 3
(1-2):330–339, 2010.

[37] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative exe-
cution in a distributed file system. In ACM SIGOPS Operating
Systems Review, volume 39, pages 191–205. ACM, 2005.

[38] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In
SIGMOD ’08, pages 1099–1110.

[39] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Lev-
erich, D. Mazières, S. Mitra, A. Narayanan, D. Ongaro,
G. Parulkar, et al. The case for ramcloud. Communications of
the ACM, 54(7):121–130, 2011.

[40] J. Plank. An Overview of Checkpointing in Uniprocessor
and Distributed Systems, Focusing on Implementation and
Performance. In Technical Report, University of Tennessee,
1997.

[41] J. S. Plank and W. R. Elwasif. Experimental assessment
of workstation failures and their impact on checkpointing
systems. In 28th International Symposium on Fault-Tolerant
Computing, 1997.

[42] R. Power and J. Li. Piccolo: Building Fast, Distributed Pro-
grams with Partitioned Tables. In Proceedings of the 9th
USENIX conference on Operating systems design and imple-
mentation, pages 293–306. USENIX Association, 2010.

[43] S. Radia. Discardable Distributed Memory: Supporting Mem-
ory Storage in HDFS. http://hortonworks.com/blog/ddm/.

[44] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM
Symposium on Cloud Computing. ACM, 2012.

[45] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on, pages
1–10. IEEE, 2010.

[46] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy. Hive a petabyte scale
data warehouse using hadoop. In Data Engineering (ICDE),



2010 IEEE 26th International Conference on, pages 996–
1005. IEEE, 2010.

[47] A. Vahdat and T. E. Anderson. Transparent result caching. In
USENIX Annual Technical Conference, 1998.

[48] N. H. Vaidya. Impact of Checkpoint Latency on Overhead
Ratio of a Checkpointing Scheme. In IEEE Trans. Computers
1997.

[49] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th symposium on Op-
erating systems design and implementation, pages 307–320.
USENIX Association, 2006.

[50] J. W. Young. A first order approximation to the optimum
checkpoint interval. Commun. ACM, 17:530–531, Sept 1974.
ISSN 0001-0782.

[51] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey. Dryadlinq: a system for general-
purpose distributed data-parallel computing using a high-level

language. In Proceedings of the 8th USENIX conference on
Operating systems design and implementation, pages 1–14.
USENIX Association, 2008.

[52] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A simple tech-
nique for achieving locality and fairness in cluster scheduling.
In EuroSys 10, 2010.

[53] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Im-
plementation. USENIX Association, 2012.

[54] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, pages 423–438. ACM,
2013.


	Introduction
	Background
	Target Workload Properties
	The Case Against Replication

	Design Overview
	System Architecture
	An Example
	API Summary
	Lineage Overhead
	Data Eviction
	Master Fault-Tolerance
	Handling Environment Changes
	Why Storage Layer

	Checkpointing
	Edge Algorithm
	Bounded Recovery Time

	Resource Allocation
	Resource Allocation Strategy
	Recomputation Order

	Implementation
	Lineage Metadata
	Framework Integration

	Evaluation
	Performance
	Raw Performance
	Realistic Workflow
	Overhead in Single Job
	Master Fault Tolerance

	Asynchronous Checkpointing
	Edge Checkpointing Algorithm
	Network Traffic Reduction

	Recomputation Impact
	Recomputation Resource Consumption
	Impact of Recomputation on Other Jobs


	Related Work
	Limitations and Future Work
	Conclusion
	Acknowledgements

