89 research outputs found

    HashRand: Efficient Asynchronous Random Beacon without Threshold Cryptographic Setup

    Get PDF
    Regular access to unpredictable and bias-resistant randomness is important for applications such as blockchains, voting, and secure distributed computing. Distributed random beacon protocols address this need by distributing trust across multiple nodes, with the majority of them assumed to be honest. These protocols have found applications in blockchain technology, leading to the proposal of several distributed random beacon protocols, with some already implemented. However, many current random beacon systems rely on threshold cryptographic setups or exhibit high computational costs, while others assume partial or bounded synchronous networks. To overcome these limitations, we propose HashRand, a computation and communication-efficient asynchronous random beacon protocol that uses a secure Hash function to generate beacons and pairwise secure channels. HashRand has a per-node communication complexity of O(λnlog(n))\mathcal{O}(\lambda n \log(n)) bits per beacon. The computational efficiency of HashRand is attributed to the two orders of magnitude lower time of a one-way Hash computation compared to discrete log exponentiation. Interestingly, besides reduced overhead, HashRand achieves Post-Quantum security by leveraging the secure Hash function against quantum adversaries, setting it apart from other random beacon protocols that use discrete log cryptography. In a geo-distributed testbed of n=160n=160 nodes, HashRand produces 1 beacon every second, which is at least 4x higher than Spurt. We also demonstrate the practical utility of HashRand by implementing a Post-Quantum secure Asynchronous SMR protocol, which has a response rate of over 122k txns per second over a WAN at n=40n=40 nodes

    Responsible AI and Analytics for an Ethical and Inclusive Digitized Society

    Get PDF
    publishedVersio

    Reclaiming scalability and privacy in the decentralized setting

    Get PDF
    The advent of blockchains has expanded the horizon of possibilities to novel decentralised applications and protocols that were not possible before. Designing and building such applications, be it for offering new ways for humans to interact or for circumventing the shortcomings of existing blockchains, requires analysing their security with a rigorous and multi-faceted approach. Indeed, the attack surface of decentralised, trustless applications is vastly more expansive than that of classical, server-client-based ones. Desirable properties such as security, privacy and scalability are attainable via established and widely applied approaches in the centralised case, where clients can afford to trust third party servers. Is it possible though for clients to self organize and attain these properties in use cases of interest without reliance on central authorities? We examine this question in the setting of a variety of blockchain-based applications. With an explicit aim of improving the state of the art and extending the limits of possible decentralised operations with precision and robustness, the present thesis explores, builds, analyses, and improves upon payments, content curation and decision making

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    RapidChain: Scaling Blockchain via Full Sharding

    Get PDF
    A major approach to overcoming the performance and scalability limitations of current blockchain protocols is to use sharding, which is to split the overheads of processing transactions among multiple, smaller groups of nodes. These groups work in parallel to maximize performance while requiring significantly smaller communication, computation, and storage per node, allowing the system to scale to large networks. However, existing sharding-based blockchain protocols still require a linear amount of communication (in the number of participants) per transaction, and hence, attain only partially the potential benefits of sharding. We show that this introduces a major bottleneck to the throughput and latency of these protocols. Aside from the limited scalability, these protocols achieve weak security guarantees due to either a small fault resiliency (e.g., 1/8 and 1/4) or high failure probability, or they rely on strong assumptions (e.g., trusted setup) that limit their applicability to mainstream payment systems. We propose RapidChain, the first sharding-based public blockchain protocol that is resilient to Byzantine faults from up to a 1/3 fraction of its participants, and achieves complete sharding of the communication, computation, and storage overhead of processing transactions without assuming any trusted setup. We introduce an optimal intra-committee consensus algorithm that can achieve very high throughputs via block pipelining, a novel gossiping protocol for large blocks, and a provably-secure reconfiguration mechanism to ensure robustness. Using an efficient cross-shard transaction verification technique, RapidChain avoids gossiping transactions to the entire network. Our empirical evaluations suggest that RapidChain can process (and confirm) more than 7,300 tx/sec with an expected confirmation latency of roughly 8.7 seconds in a network of 4,000 nodes with an overwhelming time-to-failure of more than 4,500 years

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities

    Crowdsourcing atop blockchains

    Get PDF
    Traditional crowdsourcing systems, such as Amazon\u27s Mechanical Turk (MTurk), though once acquiring great economic successes, have to fully rely on third-party platforms to serve between the requesters and the workers for basic utilities. These third-parties have to be fully trusted to assist payments, resolve disputes, protect data privacy, manage user authentications, maintain service online, etc. Nevertheless, tremendous real-world incidents indicate how elusive it is to completely trust these platforms in reality, and the reduction of such over-reliance becomes desirable. In contrast to the arguably vulnerable centralized approaches, a public blockchain is a distributed and transparent global consensus computer that is highly robust. The blockchain is usually managed and replicated by a large-scale peer-to-peer network collectively, thus being much more robust to be fully trusted for correctness and availability. It, therefore, becomes enticing to build novel crowdsourcing applications atop blockchains to reduce the over-trust on third-party platforms. However, this new fascinating technology also brings about new challenges, which were never that severe in the conventional centralized setting. The most serious issue is that the blockchain is usually maintained in the public Internet environment with a broader attack surface open to anyone. This not only causes serious privacy and security issues, but also allows the adversaries to exploit the attack surface to hamper more basic utilities. Worse still, most existing blockchains support only light on-chain computations, and the smart contract executed atop the decentralized consensus computer must be simple, which incurs serious feasibility problems. In reality, the privacy/security issue and the feasibility problem even restrain each other and create serious tensions to hinder the broader adoption of blockchain. The dissertation goes through the non-trivial challenges to realize secure yet still practical decentralization (for urgent crowdsourcing use-cases), and lay down the foundation for this line of research. In sum, it makes the next major contributions. First, it identifies the needed security requirements in decentralized knowledge crowdsourcing (e.g., data privacy), and initiates the research of private decentralized crowdsourcing. In particular, the confidentiality of solicited data is indispensable to prevent free-riders from pirating the others\u27 submissions, thus ensuring the quality of solicited knowledge. To this end, a generic private decentralized crowdsourcing framework is dedicatedly designed, analyzed, and implemented. Furthermore, this dissertation leverages concretely efficient cryptographic design to reduce the cost of the above generic framework. It focuses on decentralizing the special use-case of Amazon MTurk, and conducts multiple specific-purpose optimizations to remove needless generality to squeeze performance. The implementation atop Ethereum demonstrates a handling cost even lower than MTurk. In addition, it focuses on decentralized crowdsourcing of computing power for specific machine learning tasks. It lets a requester place deposits in the blockchain to recruit some workers for a designated (randomized) programs. If and only if these workers contribute their resources to compute correctly, they would earn well-deserved payments. For these goals, a simple yet still useful incentive mechanism is developed atop the blockchain to deter rational workers from cheating. Finally, the research initiates the first systematic study on crowdsourcing blockchains\u27 full nodes to assist superlight clients (e.g., mobile phones and IoT devices) to read the blockchain\u27s records. This dissertation presents a novel generic solution through the powerful lens of game-theoretic treatments, which solves the long-standing open problem of designing generic superlight clients for all blockchains

    The effects of blockchain on supply chain trust : a thesis presented in partial of the requirements for the Master of Supply Chain Management at Massey University, Palmerston North, New Zealand

    Get PDF
    Enterprises place strategic importance on supply chains to effectively manage their flow of materials, products, and information. Supply chains primary aim is to have the right product, at the right place, at the right cost, at the right time. Therefore, any gain in efficiency leads to a competitive advantage for the enterprise. A key element to achieving differentiation from competitors is through collaborative partnerships with supply chain suppliers and ultimately, this is achieved by the presence of high-level trust amongst stakeholders. The academic pursuit of this research paper is to explore the type of trust found in supply chain relationships and what effect the adoption of an innovative technology like blockchain would have on trust. Through a thorough literature review, this research thesis addresses comparisons of types of trust, the importance of trust and how trust is achieved in supply chains. Blockchain is, by all definitions, a nascent technology and this amplifies concerns of risk from enterprise and further increases its barriers to adoption. This research thesis argues that blockchain is particularly exposed to a slow rate of adoption due to a lack of knowledge of what distinguishes it from other exponential technologies. In arguing this the research seeks to answer the question: how does blockchain affect trust in supply chain relationships? Through the development of a survey and semi-structured interviews, responses capture the attitude of supply chain professionals surrounding perceived trust in their supply chain, their piloting of exponential technologies and the biggest inhibitors they have experienced to implementing blockchain in their organisations. One of the conclusions of this research is that through the successful implementation of blockchain, enterprises are likely to see increased trust, sustainability, visibility, and efficiency. This cannot be achieved however without an increased understanding from management about the technology, its use cases, and the efficiencies it will bring to a modern, resilient, and adaptive supply chain. This research establishes that the future for blockchain is optimistic if greater awareness of the technological benefits is exposed to the supply chain industry and its various stakeholders
    corecore