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Abstract

The advent of blockchains has expanded the horizon of possibilities to novel decen-

tralised applications and protocols that were not possible before. Designing and build-

ing such applications, be it for offering new ways for humans to interact or for cir-

cumventing the shortcomings of existing blockchains, requires analysing their security

with a rigorous and multi-faceted approach. Indeed, the attack surface of decentralised,

trustless applications is vastly more expansive than that of classical, server-client-based

ones. Desirable properties such as security, privacy and scalability are attainable via

established and widely applied approaches in the centralised case, where clients can

afford to trust third party servers. Is it possible though for clients to self organize and

attain these properties in use cases of interest without reliance on central authorities?

We examine this question in the setting of a variety of blockchain-based applications.

With an explicit aim of improving the state of the art and extending the limits of possi-

ble decentralised operations with precision and robustness, the present thesis explores,

builds, analyses, and improves upon payments, content curation and decision making.
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Lay Summary

In the recent past, the world was introduced to the concept of blockchains, such as

Bitcoin. This new technology enables a variety of new decentralised applications that

were impossible before. Such applications usually provide new capabilities for users,

such as decentralised trading, voting and social networking. Another common aim is

to improve the quality of services already offered by blockchains, for example to speed

up payments.

These applications have a long track record in the centralised, server-client set-

ting, that is when users are willing to trust central authorities that offer the service.

Centralised social networks, payment processors and a variety of other services work

remarkably fast and great care has been taken in their design to avoid security prob-

lems. However, centralisation commonly comes at the expense of users’ privacy, with

immense quantities of users’ personal data being given to such services. It also gives

a clear target for bad actors to attack, making each service provider a “single point of

failure”.

On the other hand, decentralised applications carry the promise of better user pri-

vacy and control while avoiding by design single points of failure. Indeed, users only

have to trust their own computer, not any remote server. Unfortunately, this reduced

trust means that decentralised application designers have to defend against many more

attacks compared to the centralised setting.

In this thesis we attempt to answer whether it is possible to achieve security, pri-

vacy and high performance for various blockchain-based, decentralised applications.

Through rigorous methods, we try to extend the limits of possibilities by building,

analysing and improving decentralised payment networks, as well as aggregation of

users’ reactions on social media content and ranking of such content.
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Chapter 1

Introduction

The recent past has brought a number of revolutions in the fields of cryptography and

decentralised systems. It is now possible to perform payments, store data indefinitely

and perform arbitrary computations on massively replicated, non-hierarchical, consen-

sus driven execution platforms with a minimal amount of trust to the system. The

main technology behind this achievement is the blockchain, the oldest of which is Bit-

coin [1]. A blockchain is an append-only transaction ledger in which transactions are

organised in a sequence of blocks, verified by a consensus mechanism. A number of

blockchain designs exist, each optimised for a different purpose, incorporating a dif-

ferent set of features, improving on previous designs and experimenting with a variety

of tradeoffs. For example, Ethereum [2] was the first blockchain to allow arbitrary

Turing-complete computations to be executed on its chain and thus coined the term

smart contract.

Some blockchains focus on a narrowly defined task. One blockchain in this cat-

egory is Steem [3], which is specifically designed for supporting decentralised social

networks. The primary social network built on top of and tightly integrated with the

Steem blockchain is called Steemit [4], which is a semi-centralised social network: The

contents of interactions are stored on the Steemit servers, whereas their fingerprints are

stored on the Steem blockchain. This way the Steemit servers are not a single point of

failure and need not be trusted for the fundamental features of the social network, but

they prevent massive amounts of data from being added to the blockchain each minute,

as blockchains can only be extended by a limited number of bits per second if they are

to maintain robust security guarantees. Steemit uses a custom mechanism for curating

the constant inflow of content, which aims to maximise the quality of the posts shown

to users; the ranking of a post is decided leveraging users’ feedback. We evaluate the
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quality of this curation mechanism in Chapter 2.

As alluded to before, common designs for blockchains impose an inherent limit to

throughput [5]. Intuitively, this is so because most blockchains require every full node

to download and verify every transaction that has ever taken place. The ability to add

new transactions to the blockchain quickly is further hampered by their decentralised

nature and the reality of existing network interconnections: conservative assumptions

have to be made regarding the time needed for the majority of participants to get in-

formed of each new transaction, even when it is generated by a node with a bad con-

nection, to minimise the probability of having different parts of the network observing

different histories. Such security considerations invariably lead to a reduction of the

number of new transactions that can be added to the blockchain during a set amount of

time. If the number of newly published transactions that expect to be included exceed

this threshold, a mechanism for choosing which to include and which to postpone is

needed. The most common mechanism that maintains decentralisation is a solution in-

spired by the free market: each transaction pays a fee and only the transactions that pay

the highest fee are included. The obvious drawback is that if transaction throughput is

too low, the minimum fees required for inclusion may become prohibitively expensive

during periods of high demand, especially for low volume transactions.

As if low throughput were not enough, blockchains also suffer from high latency,

i.e. the time between submitting a transaction to the network and having it irrevocably

included in the blockchain is considerable. For example, in Bitcoin it is recommended

that one waits for at least 1 hour before considering the transaction finalised, indepen-

dent of the transaction fee. Other blockchains improve latency, e.g. Ethereum improves

this to 3 minutes, but this too is incompatible with the speed required by many users

and applications, and cannot be optimised indefinitely [6].

One proposed solution to the issue of low throughput is sharding [7]. At a high

level, this proposes having each blockchain maintainer only process a fraction of the

transactions, essentially splitting a single blockchain into multiple synchronised ones.

This may greatly reduce the load each maintainer has to bear and thus create potential

for scaling, but comes with a number of challenges. One issue is that there must be

a synchronisation mechanism that precludes including incompatible transactions in

different shards. If implemented naively, such a mechanism nullifies any improvement

of throughput and can in fact further reduce it due to sharding overhead. Furthermore,

sharded blockchains typically need stronger security assumptions than non-sharded

ones, as a number of malicious maintainers, that could be safely ignored in a non-

2



sharded blockchain, may concentrate in a single shard and endanger the security of

the whole blockchain. A further limitation of sharding is that it does not eliminate the

need for running costly consensus protocols among a great number of participants, but

only reduces their number by confining each to a single shard. This alleviates but does

not fully combat problems induced by the network topology and the need for large

amounts of parties to coordinate.

An orthogonal solution that can effectively address both low throughput and high

latency is called payment channels. If two parties pay each other often, they can estab-

lish a payment channel with a single on-chain transaction which locks a sum of coins

in this channel. They can then perform an arbitrary number of payments in either di-

rection by simply exchanging direct messages between them, therefore not having to

involve any other party, and importantly not needing to submit more transactions to the

blockchain. When they want to use the coins outside of the channel, or if one of the

two parties stops sending the expected messages, either party can unilaterally publish

a single transaction to the blockchain to reclaim its channel coins, as recorded after the

last payment in the channel. No trust between the two parties is needed whatsoever.

One of the first such proposals is [8]. Protocols that work on top of a blockchain are

also called layer 2 protocols.

The simple payment channels described above are an effective solution to both

prominent blockchain scalability issues when they are applicable, but this is not al-

ways the case. It is unreasonable to expect a user to correctly predict if they will do

enough transactions with each possible counterparty to warrant opening a channel with

them, let alone to guess in advance exactly how many coins to transfer to the channel.

One solution is proposed and implemented by the lightning network (LN) [9], which

leverages a cryptographic construction called hashed timelocked contract (HTLC) to

enable a payer to send coins to any payee as long as there exists an uninterrupted path

of payment channels, each with enough capacity to carry the payment, between the

payer and the payee. LN is thus one of the first payment channel networks (PCNs) that

enable multi-hop payments. LN alleviates the issue described above, as it increases the

applicability of payment channels to more use cases while maintaining the majority of

the benefits of simple payment channels. In Chapter 3 we formally model and analyse

the security of LN in the cryptographic framework of Universal Composition (UC).

The latter is introduced in Subsection 1.1.2. Our analysis increases our confidence

to LN and explicitly states a number of requirements on the behaviour of honest LN

parties.
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One drawback of PCNs such as LN is that the success of a multi-hop payment de-

pends on the availability and cooperation of all intermediaries. One partial solution to

this issue, which is used by LN, is having the payer also pay routing fees to intermedi-

aries. This incentivises cooperation, but adds an extra cost for each multi-hop payment.

This observation gives rise to the following question: is it possible for the payee and

the payer to open a persistent channel on top of the aforementioned route without any

on-chain transaction and use this channel for pairwise payments as if they had a simple

channel in Bitcoin? We answer this question in the affirmative in Chapter 4. Such con-

structions in which channels are built on top of channels are called virtual channels.

Our construction achieves for the first time variadic, recursive, symmetric channels

over Bitcoin. Definitions of these terms can be found in Chapter 4.

Blockchains have a number of applications, one of which is to facilitate building

private versions of preexisting, centralised protocols, an example of which is the ag-

gregation of users’ opinions. Most, if not all, centralised social networks in existence

employ a way for users to express their opinion on viewed content via predetermined

options, e.g. likes, stars and upvotes or downvotes, and display the aggregate. Such

centralised solutions normally do not protect the users’ privacy, as they learn, and may

monetise, the opinions of each distinct user. In Chapter 5 we propose a novel protocol

that enables a set of parties to express their opinion in a privacy preserving and online

manner. In particular, each user is part of an anonymity set of a constant, publicly

known size, therefore a degree of privacy is guaranteed. Each time all users of an

anonymity set express their opinion, the sum of their opinions is made public, there-

fore it is guaranteed that the aggregate opinion will be updated throughout the protocol

execution and not just at the end, thus providing timely feedback to the users.

1.1 Preliminaries

In this section we introduce a number of prerequisites for the following chapters. Any

prerequisite that is needed for a single chapter only is discussed in that chapter.

1.1.1 Simulation-based Security

In simulation-based security [10], cryptographic tasks are defined via an ideal func-

tionality F , which can be thought of as an incorruptible entity that gets the inputs of

all parties and, by running its prescribed code, returns the expected outputs while also
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interacting with an adversary in a tightly controlled manner. In this way, the function-

ality expresses the essence of a cryptographic task and its security features by unifying

all parties under a single execution environment and therefore avoiding complications

due to the need for secure communication over insecure channels. Such an entity may

only exist in an ideal world. In the real world on the other hand, each party implicated

in the cryptographic task locally executes a protocol Π, which consists of the code that

each party has to run when it receives specific messages. Individual protocols com-

municate through an insecure network which the adversary A can observe and tamper

with. A may be able to corrupt some parties, putting their execution under its full con-

trol. The specific powers of A may be tuned depending on the relevant assumptions

and the use case of each specific protocol. One of the strongest models for A consider

it to be a probabilistic polynomial time (PPT) machine that can read, tamper with and

drop any network message and can corrupt any honest party at any moment of the

execution of the protocol.

The inputs to protocol parties are provided by the environment E . This entity also

expects their outputs and may interact with them multiple times. Eventually it outputs

a single bit, which determines which of the two worlds E deduces it is in. The strength

of our model determines the exact nature of E . One of the strongest models allows E
to be any PPT machine and permits unrestricted, covert communication between itself

and A .

We say that Π realises the functionality F if for any real world adversary we can

define a simulator S , acting as an ideal world adversary, such that no environment

can distinguish between the real world and the ideal world executions, except with

negligible probability. By specifying Π, F and S such that Π realises F , we prove

that the presumably complex protocol achieves the same effects as the functionality,

which expresses the overall goals and security guarantees in a much clearer and more

concise manner than the protocol. This procedure helps us hide the low level intricacies

needed in the real world and highlight only the salient features.

1.1.2 Universal Composability framework

Albeit a powerful tool, simulation-based security only works when a single instance of

the protocol is run in isolation. However, real-world systems almost always run sev-

eral programs concurrently, which furthermore may run different instances of the same

protocol. To facilitate modelling such complex setups, in the Universal Composability
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(UC) [11] framework it is possible to analyse a single instance of the protocol and then

take advantage of a generic composition theorem to infer the security of the protocol

in a broader setting. This is achieved in UC by specifying an explicit, strong model of

execution with minimal assumptions, leaving space for multiple coexisting protocols

and proving the aforementioned generic theorem, which guarantees that if a protocol

Π UC-realises a functionality F in isolation, then it also realises F in the presence of

arbitrarily many concurrent executions of copies of Π and any other protocol. Further-

more, Π may internally use another functionality G , called a hybrid. If protocol Π′ has

been proven to UC-realize G , then the Universal Composition theorem guarantees that

E cannot distinguish between an interaction with Π using Π′ and one with Π using G .

We thus avoid proving again the security of Π′ in the context of Π. Put differently, we

have the power to compose protocols.

In UC, an Interactive Turing Machine (ITM) is the abstract specification of the

execution rules of a single machine. Each entity is represented by an instance (ITI) of

an ITM. Multiple independent ITIs may run the same ITM, this is the case for example

for the various parties of the real world protocol. The environment is an arbitrary PPT

ITI that controls the inputs and receives the outputs of protocol parties and is allowed

to have arbitrary interactions with the adversary. On the other hand, the adversary

has full control of the network communications and can read, tamper with, delay or

even completely drop any message it chooses. Only inputs and outputs of parties are

hidden from the adversary. The adversary also chooses which parties to corrupt and

can do so adaptively throughout the execution. Given its PPT nature, the environment

can internally run any polynomial number of protocols concurrently; this is where the

aforementioned other protocols reside.

UC follows a single-threaded execution where at each instant only a single party

is running. When a party passes an input or an output, or sends a network message, it

simultaneously yields the “execution token” to the receiver of the communication; as

alluded to previously, in the case of network messages the adversary is always either

the receiver or the sender. The single-threaded nature of the execution does not pose

a practical limitation, as any multi-threaded execution can be emulated by carefully

interleaving the various threads.

In the ideal world, the protocol parties are replaced by “dummy” parties that serve

as simple relays between the environment and the functionality. The ideal world ad-

versary, a.k.a. simulator communicates directly with the functionality and adapts any

interface difference so that the environment and the real world adversary (which is
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simulated internally by the simulator) cannot deduce, to the degree possible, that this

is an ideal world execution.

We here present a slightly simplified version of the definition of UC-realisation.

Please refer to [11] for the full definition. Let EXECπ,A ,E the probability distribution

of the output of E at the end of an execution of protocol π with adversary A . For two

probability distributions X ,Y that are parametrised by a security parameter k, we say

that X is indistinguishable from Y and write X ≈ Y if

∀c,d ∈ N,∃k0 ∈ N : ∀k > k0, |Pr[X(k) = 1]−Pr[Y (k) = 1]|< k−c .

To reap the benefits of the generic composition theorem of UC, one has to specify the

protocol Π and the functionality F and prove that Π UC-realises F , i.e.

∀ PPT A ,∃ PPT S : ∀ PPT E ,EXECF ,S ,E ≈ EXECΠ,A ,E .

1.1.3 Universal Composition with Global Setup

UC has one limitation: it demands that any input-output communication between

any two machines must be subroutine respecting. Informally, this means among others

that the protocol of interest can only pass inputs to machines (a.k.a. subroutines) that

cannot receive direct input by E . This is quite a severe limitation. Indeed, the ledger

functionality (discussed in Subsection 1.1.5) represents a single blockchain that should

in principle be able to receive inputs by anyone, including both the protocol and the

environment.

This limitation is lifted by UCGS [12]. This work develops a more relaxed version

of the subroutine respecting property, namely γ-subroutine respecting, which allows

the subroutine γ to break the rule described above – γ is called a global subroutine.

The aforementioned work expands the results of UC and shows that security proofs

and composition still work as intended. We leverage [12] to build our protocols atop

a global ledger. We also use it to modularise our channel construction in Chapter 4,

i.e. having our ideal functionality represent a single channel while allowing multiple

functionalities to build on top of each other. We refer the reader to Subsection 4.5.2

and Section 4.6 for more details.

1.1.4 Blockchains
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A blockchain is a distributed, append-only data structure. Users submit transac-

tions, that are atomic units of data, to the network. Concurrently, a lottery system

selects a block producer. This party organises the valid transactions into blocks and

appends them to the latest known block. The process repeats, forming the blockchain.

A blockchain is customarily used for handling financial transactions, permanently

storing data, and enabling a wide variety of multiparty protocols, all without needing

to trust a central authority. A number of independent blockchains exist (e.g. [1, 2, 13,

14, 15, 16, 17, 18, 19, 20, 3] to mention a few.) Most blockchains come with a native

currency (a.k.a. cryptocurrency) that users can transfer to each other.

Each project serves different purposes and enables diverse applications, but usual

goals are:

• Decentralisation: Allow parties from any social and financial background to

join, use and contribute to the blockchain without gatekeepers, while ensuring

that it is exceedingly difficult for a few parties to dominate the evolution of the

blockchain. No roles should be reserved for distinguished parties.

• Privacy: Provide ways for parties to hide their identity as desired. The system

should not be tied to traditional banking systems.

• Security: Design and develop the system in a manner providing high guarantees

that specific security goals are achieved. This is commonly achieved through

rigorous design processes and open-source development.

• Trustlessness: A minimal amount of trust should be required in order to guaran-

tee the above. This encompasses cryptographic assumptions, which should be

minimal and time-tested, along with social assumptions, which usually distribute

the trust to a big subset of the users. For example, Algorand [16] assumes that

two-thirds of the coins are owned by users that execute the prescribed protocol

honestly.

Most blockchains avoid placing trust to specific machines or requiring authentication

between parties. This makes traditional client-server or distributed architectures un-

suitable, since they normally specify distinguished parties for specific roles, which,

once authenticated, are fully trusted. The network architecture of blockchains is in-

stead customarily based on peer-to-peer network systems, heavily inspired by previous

advances such as BitTorrent [21].
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The field of databases has also heavily inspired blockchain design. In order to

provide robust behaviour against malicious parties, the concept of atomic transac-

tions [22] is employed. Blockchain users submit transactions that are either included

in the blockchain as an indivisible unit or not at all. The simplest transaction is one

that transfers coins from one party to another.

A number of additional goals that blockchains commonly aim for and that are

shared to a greater extent with traditionally architectured systems are:

• Efficiency: Ensure that all functions can be executed rapidly and cheaply. In

particular, the rate of adding new transactions to the blockchain should scale

well with the number of users (a.k.a. high throughput) and a new transaction

should enter the blockchain promptly (a.k.a. low latency).

• Flexibility: Permit a wide variety of applications, ideally any protocol that can

be specified in a Turing-complete language. In the context of blockchains, such

applications are commonly called smart contracts.

• Extensibility & Governance: Ensure that it is both technically and socially pos-

sible to improve and evolve the blockchain in a way that is compatible both with

previous versions and with the desires of the community of the blockchain.

• Useability: Provide an easy-to-use and hard-to-misuse interface for developers

of smart contracts and everyday cryptocurrency users alike.

Due to the increased security requirements of the decentralised setting, these goals are

in general harder to achieve for blockchains than for traditional systems.

1.1.4.1 Bitcoin

Bitcoin [1] is historically the first blockchain. It pioneered the field by combining

a nubmer of preexisting primitives in a novel way. At its core, block producers (a.k.a.

miners) perpetually compete on making the next block by solving a proof of work

puzzle. Each miner locally forms a valid next block and tries multiple variations on it,

until one of them discovers a block of which the SHA256 hash is small enough, in a

process called mining. This process simulates the aforementioned lottery The specific

threshold for the proof of work is recalculated using a deterministic procedure every

2016 blocks; this process nudges the system to produce on average one block every 10

minutes.
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Every valid block contains the hash of its unique previous block. When a new

block is found, it is gossiped throughout the network. Each honest miner always mines

on top of the chain with the most proof of work. Therefore, when she receives a

new block, she stops mining the block she was trying to build and forms a new block

instead, which points to the newly created block and contains new transactions. In case

she receives another chain with the same amound of work in the meanwhile, she can

choose to switch to the other chain. This is called a fork and it is statistically unlikely

that one of the two chains will not exceed the other soon. In particular, it has been

proven [23] that it is exponentially unlikely for long forks to survive. This mechanism

achieves consensus with overwhelming probability on an ever-growing prefix of the

blockchain as long as more than 50% of the mining power is held by honest miners.

Miners are incentivised to act honestly through rewards for the creator of each

block. Each block gives a fixed reward which initially was 50 bitcoins and is cut in

half every 210,000 blocks. The fixed reward is the only way new bitcoins are created.

Furthermore, each block has a maximum size of 1MB, therefore it can only contain a

limited number transactions. Users therefore compete by offering fees to the miners,

which in turn choose to form blocks containing the transactions with the highest fee

per byte.

Valid transactions form a directed acyclic graph. Each transaction has a number

of inputs and a number of outputs. Each input must point to exactly one previously

unspent output; this spends the output. Each output specifies an amount of coins and

the exact conditions under which it can be spent (commonly a valid signature by the

owner of a specified public key) and a valid input must contain the required data.

Output spending conditions are specified in SCRIPT, a stack-based language that was

purpose-built for Bitcoin. In order to avoid creation of coins, a valid transaction must

consume with its inputs at most as many coins as it provides with its outputs; the

difference between the two is the miner’s fee.

Being the first such system, Bitcoin has a number of drawbacks compared to future

iterations. Its efficiency is quite poor [24], the flexibility is intentionally limited by its

non-Turing-complete SCRIPT, improvements to the system are very slow to implement

(both because of technical limitations and due to the established culture) and its poor

useability complicates the design, analysis and implementation of complex smart con-

tracts. We should note that the slow evolution can be also viewed as a benefit, as each

update is rigorously analysed to avoid introducing security, incentive or decentralisa-

tion issues and only improvements that are to the benefit of stakeholders across the
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board are implemented.

1.1.5 Ledger Functionality

GLedger formalizes an ideal distributed append-only data structure akin to a blockchain.

Any participating party can read from GLedger, which returns an ordered list of transac-

tions. Furthermore parties can submit new transactions which, if valid, will be added

to the ledger and made visible to all parties at the discretion of the adversary, but nec-

essarily within a predefined time window. This property is called liveness. Once a

transaction is added to the ledger, it becomes visible to all parties at the discretion of

the adversary, but within another predefined time window, and cannot be removed or

reordered. This is called persistence. The exact definition can be found in Figure 1.1.

Furthermore, GLedger needs the GCLOCK functionality, which models the notion of

time. Every participating party can request to read the current time (which is initialized

to 0) and inform GCLOCK that her round is over. GCLOCK increments the time by one

once all parties have declared the end of their round. Its exact definition can be found

in Figure 1.2. We also note that GLedger and GCLOCK are global functionalities [25, 12]

and therefore can be accessed directly by the environment.

Going into more detail, we provide the complete description of the ledger and clock

functionalities that are drawn from the UC formalisation of [26, 27].

The key characteristics of the functionality are as follows. The variable state

maintains the current immutable state of the ledger. An honest, synchronised party

considers finalised a prefix of state (specified by a pointer position pti for party Ui

below). The functionality has a parameter windowSize such that no finalised prefix

of any player will be shorter than |state| − windowSize. On any input originating

from an honest party the functionality will run the EXTENDPOLICY function that en-

sures that a suitable sequence of transactions will be “blockified” and added to state.

Honest parties may also find themselves in a desynchronised state: this is when honest

parties lose access to some of their resources. The resource that is necessary for proper

ledger maintenance and that the functionality keeps track of is the clock GCLOCK. If

an honest party maintains registration with the clock then after Delay clock ticks it

necessarily becomes synchronised.

The progress of the state variable is guaranteed via the EXTENDPOLICY function

that is executed when honest parties submit inputs to the functionality. While we do

not specify EXTENDPOLICY in this work (we refer to the citations above for the full

specification) it is sufficient to note that EXTENDPOLICY guarantees the following
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properties:

1. in a period of time equal to maxTimewindow, at least a windowSize number of

blocks are added to state.

2. in a period of time equal to minTimewindow, no more blocks may be added to

state if windowSize blocks have been already added.

3. each window of windowSize blocks has at most advBlckswindow adversarial

blocks included in it.

4. if a transaction (i) is submitted by an honest party during a round that is more

than Delay
2 rounds before the round in which the state accepted the block that is

windowSize positions before the head of the state and (ii) is valid with respect

to an honest block that extends state, then it must be included in such block.

Given a synchronised honest party, we say that a transaction tx is finalised when it

becomes a part of state in its view.

We here state and prove a bound on the maximum delay between the submission

and the finalisation of a valid transaction.

Proposition 1. Consider a synchronised honest party that submits a transaction tx to

the ledger functionality by the time the block indexed by h is added to state in its view.

Then tx is guaranteed to be included in the block range [h+1,h+(2+r)windowSize],

where r = ⌈(maxTimewindow+ Delay
2 )/minTimewindow⌉.

Proof. Consider τU
h to be the round that a party U becomes aware of the h-th block in

the state. It follows that τh ≤ τU
h where τh is the round block h enters state. Note

that by time τh +maxTimewindow another windowSize blocks are added to state and

thus τU
h ≤ τh +maxTimewindow.

Suppose U submits the transaction tx to the ledger at time τU
h . Observe that as

long as τh + maxTimewindow is Delay
2 before the time that block with index h + t −

2windowSize enters state, then tx is guaranteed to enter the state in a block with

index up to h+ t since advBlckswindow < windowSize. It follows that we need τh +

maxTimewindow < τh+t−2windowSize− Delay
2 . Let r = ⌈ (maxTimewindow+

Delay
2 )

minTimewindow
⌉. Recall that

in a period of minTimewindow rounds at most windowSize blocks enter state. As

a result r · windowSize blocks require at least r · minTimewindow ≥ maxTimewindow+
Delay

2 rounds. We thus deduce that if t ≥ (2+ r)windowSize the inequality follows.
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General: The functionality is parameterized by four algorithms, VALIDATE,

EXTENDPOLICY, BLOCKIFY, and PREDICT-TIME, along with three parameters:

windowSize,Delay ∈ N, and SinitStake := {(U1,s1), . . . ,(Un,sn)}. The functionality

manages variables state (the immutable state of the ledger), NxtBC (a list of transaction

identifiers to be added to the ledger), buffer (the set of pending transactions), τL (the rules

under which the state is extended), and τ⃗state (the time sequence where all immutable

blocks where added). The variables are initialized as follows:

state := τ⃗state := NxtBC := ε, buffer := /0, τL = 0. For each party Up ∈ P the

functionality maintains a pointer pti (initially set to 1) and a current-state view

statep := ε (initially set to empty). The functionality also keeps track of the timed

honest-input sequence in a vector I⃗ T
H (initially I⃗ T

H := ε).

Party Management: The functionality maintains the set of registered parties P , the

(sub-)set of honest parties H ⊆ P , and the (sub-)set of de-synchronized honest parties

PDS ⊂H (as discussed below). The sets P ,H ,PDS are all initially set to /0. When a

(currently unregistered) honest party is registered at the ledger, if it is registered with the

clock already, then it is added to the party sets H and P and the current time of registration

is also recorded; if the current time is τL > 0, it is also added to PDS. Similarly, when a

party is deregistered, it is removed from both P (and therefore also from PDS or H ). The

ledger maintains the invariant that it is registered (as a functionality) to the clock whenever

H ̸= /0.

Handling initial stakeholders: If during round τ = 0, the ledger did not receive a

registration from each initial stakeholder, i.e., Up ∈ SinitStake, the functionality halts.

Upon receiving any input I from any party or from the adversary, send

(CLOCK-READ,sidC) to GCLOCK and upon receiving response (CLOCK-READ,sidC,τ) set

τL := τ and do the following if τ > 0 (otherwise, ignore input):

1. Updating synchronized/desynchronized party set:

(a) Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been

registered (continuously) to the ledger and the clock since time τ′ < τL−Delay. Set

PDS := PDS \ P̂ .

(b) For any synchronized party Up ∈H \PDS, if Up is not registered to the clock, then

consider it desynchronized, i.e., set PDS∪{Up}.

2. If I was received from an honest party Up ∈ P :

Functionality GLedger
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(a) Set I⃗ T
H := I⃗ T

H ||(I,Up,τL);

(b) Compute N⃗ = (N⃗1, . . . , N⃗ℓ) := EXTENDPOLICY(⃗I T
H ,state,NxtBC,buffer,⃗τstate)

and if N⃗ ̸= ε set state := state||BLOCKIFY(N⃗1)|| . . . ||BLOCKIFY(N⃗ℓ) and

τ⃗state := τ⃗state||τℓL, where τℓL = τL|| . . . , ||τL.

(c) For each BTX ∈ buffer: if VALIDATE(BTX,state,buffer) = 0 then delete BTX

from buffer. Also, reset NxtBC := ε.

(d) If there exists U j ∈H \PDS such that |state|−pt j > windowSize or

pt j < |state j|, then set ptk := |state| for all Uk ∈H \PDS.

3. If the calling party Up is stalled or time-unaware (according to the defined party

classification), then no further actions are taken. Otherwise, depending on the above

input I and its sender’s ID, GLedger executes the corresponding code from the following

list:

– Submitting a transaction:

If I = (SUBMIT,sid,tx) and is received from a party Up ∈ P or from A (on behalf of

a corrupted party Up) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid,τL,Up)

(b) If VALIDATE(BTX,state,buffer) = 1, then buffer := buffer∪{BTX}.

(c) Send (SUBMIT,BTX) to A.

– Reading the state:

If I = (READ,sid) is received from a party Up ∈ P then set

statep := state|min{ptp,|state|} and return (READ,sid,statep) to the requester. If

the requester is A then send (state,buffer, I⃗ T
H ) to A.

– Maintaining the ledger state:

If I = (MAINTAIN-LEDGER,sid,minerID) is received by an honest party Up ∈ P and

(after updating I⃗ T
H as above) PREDICT-TIME(⃗I T

H ) = τ̂ > τL then send

(CLOCK-UPDATE,sidC) to GCLOCK. Else send I to A.

– The adversary proposing the next block:

If I = (NEXT-BLOCK,hFlag,(txid1, . . . , txidℓ)) is sent from the adversary, update

NxtBC as follows:

(a) Set listOfTxid← ε
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(b) For i = 1, . . . , ℓ do: if there exists BTX := (x, txid,minerID,τL,U j) ∈ buffer with

ID txid = txidi then set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (NEXT-BLOCK,ok) to

A.

– The adversary setting state-slackness:

If I = (SET-SLACK,(Ui1 , p̂ti1), . . . ,(Uiℓ , p̂tiℓ)), with {Upi1
, . . . ,Upiℓ

} ⊆H \PDS is

received from the adversary A do the following:

(a) If for all j ∈ [ℓ] : |state|− p̂ti j
≤ windowSize and p̂ti j

≥ |statei j |, set

pti1 := p̂ti1 for every j ∈ [ℓ] and return (SET-SLACK,ok) to A.

(b) Otherwise set pti j
:= |state| for all j ∈ [ℓ].

– The adversary setting the state for desychronized parties:

If I = (DESYNC-STATE,(Ui1 ,state
′
i1), . . . ,(Uiℓ ,state

′
iℓ)), with {Ui1 , . . . ,Uiℓ} ⊆ PDS

is received from the adversary A, set statei j := state′i j
for each j ∈ [ℓ] and return

(DESYNC-STATE,ok) to A.

Figure 1.1: GLedger functionality

The functionality manages the set P of registered identities, i.e., parties Up = (pid,sid). It

also manages the set F of functionalities (together with their session identifier). Initially,

P := /0 and F := /0.

For each session sid the clock maintains a variable τsid. For each identity

Up := (pid,sid) ∈ P it manages variable dUp . For each pair (F,sid) ∈ F it manages variable

d(F,sid) (all integer variables are initially 0).

Synchronization:

• Upon receiving (CLOCK-UPDATE,sidC) from some party Up ∈ P set dUp := 1; execute

Round-Update and forward (CLOCK-UPDATE,sidC,Up) to A.

• Upon receiving (CLOCK-UPDATE,sidC) from some functionality F in a session sid such

that (F,sid) ∈ F set d(F,sid) := 1, execute Round-Update and return

(CLOCK-UPDATE,sidC,F) to this instance of F.

Functionality GCLOCK
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• Upon receiving (CLOCK-READ,sidC) from any participant (including the environment

on behalf of a party, the adversary, or any ideal—shared or local—functionality) return

(CLOCK-READ,sid,τsid) to the requestor (where sid is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and

dUp = 1 for all honest parties Up = (·,sid) ∈ P , then set τsid := τsid +1 and reset

d(F,sid) := 0 and dUp := 0 for all parties Up = (·,sid) ∈ P .

Figure 1.2: GCLOCK functionality

1.1.6 Transaction structure

GLedger does not define what is a valid transaction, but leaves it as a system parameter.

Importantly, no notion of coins is built in GLedger. We therefore specify a valid trans-

action, closely following concepts put forth in Bitcoin [1], but avoiding specifying the

entire Bitcoin script.

At a high level, every transaction consists of inputs and outputs. Each output has

an associated value in coins and a number of “spending methods”. A spending method

specifies the exact requirements for spending the output. Each input must be connected

to exactly one output and satisfy one of its spending methods.

Transactions in GLedger form a DAG. A new transaction is valid only if each of its

inputs correctly spends an output with no other connected input and the sum of the

values of its outputs does not exceed the sum of the values of the outputs connected to

its inputs.

In more detail, a well-formed transaction consists of a list of inputs and a list of

outputs. For the transaction to be valid, each input must be connected to a single valid,

previously unconnected (unspent) output of another transaction in GLedger.

A well-formed output consists of a value in coins and a list of spending methods.

A well-formed input consists of a reference to a previously unconnected output and a

reference to a single of the latter’s spending methods, along with the data needed to

satisfy that method. A well-formed spending method contains any combination of the

following:

• Public keys in disjunctive normal form. An input that spends this output must
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contain signatures valid by the public keys of one of the conjunctions. If no

public keys are specified in the output, no signatures are needed in the input.

• Absolute locktime da, in block height or time. An input that spends this output

can only be in a block of height at least da if da is a block height, or enter the

ledger on or after time da otherwise (blocks are timestamped by block producers

and these timestamps are verified via specific consensus mechanisms). A da

equal to zero means no absolute locktime.

• Relative locktime dr, in block height or time. The distance of an input that spends

this output must be at least dr, counted in block height or time. Zero means no

relative locktime.

• Hashlock value. The output can be spent by an input that contains a preimage

that hashes to the hashlock value. If no hashlock value is specified in the output,

no preimage is needed in the spending input.

• m-of-n multisig (m≤ n). The output contains n distinct public keys. To be spent,

it needs an input with m signatures generated by m secret keys, each correspond-

ing to a distinct public key of the n specified.

Lastly, the sum of coins of the outputs referenced by the inputs of the transaction

(to-be-spent outputs) should be greater than or equal to the sum of coins of the outputs

of the transaction. This guarantees that no new coins are generated by the transaction.

We say that an unspent output is currently exclusively spendable by a player Alice

with a public key pk and a hash list hl if for each spending method one of the following

two holds:

• It still has a locktime that has not expired and thus is currently unspendable, or

• The only specified public key is pk and, if there is a hashlock, its hash is con-

tained in hl.

If an output is exclusively spendable, we say that its coins are exclusively spendable.

1.1.7 Off-chain protocols

Leveraging the scripting capabilities of a blockchain, one can deploy smart con-

tracts that enable specific multiparty protocols. The capabilities of each blockchain
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differ, with some blockchains supporting nothing but simple payments (e.g. [20]). It

however turns out that, even with the limited script of Bitcoin, it is possible to create

so-called off-chain protocols. This umbrella term describes any protocol that, lever-

aging the security guarantees of the underlying blockchain, allows parties to interact

directly with each other multiple times, while needing to interact with the blockchain

very few times. More specifically, such protocols normally need only a constant num-

ber of on-chain transactions and allow for a practically unbounded number of off-chain

interactions. This way the strong security of a blockchain can be exploited while cir-

cumventing its efficiency issues and keeping it less bloated, by including on-chain only

the bare minimum of needed data. For example, multiple rounds of poker can be played

off-chain [28] with minimal on-chain costs, an application that would be impossible to

enjoy strictly on-chain due to the high latency and per-move costs.

1.1.7.1 Payment channels

A major subset of off-chain protocols are payment channels. Such a construction

enables a pair of parties to lock some coins in a “joint account”, inside which each

party owns an agreed upon portion. Subsequently, through purely off-chain, direct

messages, the parties can update their balance as desired, thus performing off-chain

payments. The whole process does not involve any trust between the two parties, as

each party can unilaterally claim its fair share on-chain no matter what the other does.

Numerous payment channel constructions exist [29, 30, 9, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 44, 45], each of which makes varying assumptions, achieves

different goals and makes a choice among a wide spectrum of tradeoffs. One achieve-

ment of note is the ability to perform payments across a number of pairwise channels.

This enables parties without a direct channel to pay each other off-chain, essentially

turning the dispersed channels into one connected network, a.k.a. a payment channel

network (PCN) (e.g. [9]). Also notable is the ability to build state channels, i.e. chan-

nels that enable arbitrary smart contracts to be executed off-chain [46, 47]. For more

details, we refer the reader to Subsection 4.2.2.

As an example, here we will describe how one can implement a unidirectional off-

chain payment channel from Alice to Bob over Bitcoin. Such a channel may be useful

if Alice wants to pay Bob multiple small sums over a fixed time period, e.g. if the latter

takes a commission for selling Alice’s trinkets, and the two parties distrust each other.

The two parties first agree on the initial coins c, a duration T for which the channel
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will be active (in blocks) and the public keys they will use. Then Alice generates

off-chain and sends to Bob two transactions: TXin, that moves c of her coins to a

{Alice,Bob}-multisig and TXout, which moves the c coins of TXin back to her key,

but is timelocked for T blocks into the future. Bob checks that the two transactions

are valid, signs TXout and returns the signature to Alice. She in turn checks that the

signature is valid. If it is, she puts TXin on-chain. She can do this without risk of

having her coins locked up indefinitely, as she can just wait for T blocks and then use

TXout to get her money back in case Bob becomes uncooperative. The channel is now

set up at the cost of a single on-chain transaction.

The n-th time Alice wants to pay Bob, say fn coins, she generates and signs TXn,

which spends TXin and gives ∑
n
i=1 fi to Bob and c−∑

n
i=1 fi coins to herself, without

any timelock. She then sends the signed transaction to Bob. Bob verifies the transaction

and the signature and stores them; he has now been paid fn coins by Alice off-chain.

Observe that there is no upper bound to n.

When the collaboration concludes, or when the timelock T draws close enough

(c.f. Proposition 1), Bob signs and publishes on-chain the last TXn that he has received,

closing the channel and releasing both parties’ funds from it. Observe that it is in Bob’s

benefit to use the latest TXn, as this is the one that gives him the most coins.

In total, 2 on-chain transactions allow Alice to pay Bob arbitrarily many times.

Observe that no trust between the two parties is needed in any step of the protocol,

as either party will get at least its fair share at the end, no matter how the other party

behaves.
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Chapter 2

A Puff of Steem: Security Analysis of

Decentralized Content Curation

2.1 At a glance

Decentralized content curation is the process through which uploaded posts are ranked

and filtered based exclusively on users’ feedback. Platforms such as the blockchain-

based Steemit1 employ this type of curation while providing monetary incentives to

promote the visibility of high quality posts according to the perception of the partic-

ipants. Despite the wide adoption of the platform very little is known regarding its

performance and resilience characteristics. In this chapter, we provide a formal model

for decentralized content curation that identifies salient complexity and game-theoretic

measures of performance and resilience to selfish participants. Armed with our model,

we provide a first analysis of Steemit identifying the conditions under which the system

can be expected to correctly converge to curation while we demonstrate its suscepti-

bility to selfish participant behaviour. We validate our theoretical results with system

simulations in various scenarios.

2.2 Introduction

The modern Internet contains an immense amount of data; a single user can only con-

sume a tiny fraction in a reasonable amount of time. Therefore, any widely used plat-

form that hosts user-generated content (UGC) must employ a content curation mech-

anism. Content curation can be understood as the set of mechanisms which rank, ag-

1https://steemit.com/
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gregate and filter relevant information. In recent years, popular news aggregation sites

like Reddit2 or Hacker News3 have established crowdsourced curation as the primary

way to filter content for their users. Crowdsourced content curation, as opposed to

more traditional techniques such as expert- or algorithmic-based curation, orders and

filters content based on the ratings and feedback of the users themselves, obviating the

need for a central moderator by leveraging the “wisdom of the crowd” [48, 49].

The decentralized nature of crowdsourced curation makes it a suitable solution

for ranking user-generated content in blockchain-based content hosting systems. The

aggregation and filtering of user-generated content emerges as a particularly challeng-

ing problem in permissionless blockchains, as any solution that requires a concrete

moderator implies that there exists a privileged party, which is incompatible with a

permissionless blockchain. Moreover, public blockchains are easy targets for Sybil

attacks [50], as any user can create new accounts at any time for a marginal cost.

Therefore, on-chain mechanisms to resist the effect of Sybil users are necessary for a

healthy and well-functioning platform; traditional counter-Sybil mechanisms [51] are

much harder to apply in the case of blockchains due to the decentralized nature of the

latter. The functions performed by moderators in traditional content platforms need to

be replaced by incentive mechanisms that ensure self-regulation. Having the impact

of a vote depend on the number of coins the voter holds is an intuitively appealing

strategy to achieve a proper alignment of incentives for users in decentralized content

platforms; specifically, it can render Sybil attacks impossible.

However, the correct design of such systems is still an unsolved problem. Block-

chains have created a new economic paradigm where users are at the same time equity

holders in the system, and leveraging this property in a robust manner constitutes an

interesting challenge. A variety of projects have designed decentralized content cura-

tion systems [52, 4, 53]. Nevertheless, a deep understanding of the properties of such

systems is still lacking. Among them, Steemit has a long track record, having been

in operation since 2016 and attaining a user base of more than 1.08 M4 registered ac-

counts5. Steemit is a social media platform which lets users earn money (in the form

of the STEEM cryptocurrency) by both creating and curating content in the network.

Steemit is the front-end of the social network, a graphical web interface which allows

2https://www.reddit.com/
3https://news.ycombinator.com/
4https://steemdb.com/accounts
5The number of accounts should not be understood as the number of active users, as one user can

create multiple accounts.
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users to see the content of the platform. On the other hand, all the back-end information

is stored on a distributed ledger, the Steem blockchain. Steem can be understood as an

“app-chain”, a blockchain with a specific application purpose: serving as a distributed

database for social media applications [4].

2.2.1 Our Contributions

In this work we study the foundations of decentralized content curation from a com-

putational perspective. We develop an abstract model of a post-voting system which

aims to sort the posts created by users in a distributed and crowdsourced manner. Our

model is constituted by a functionality which executes a protocol performed by N play-

ers. The model includes an honest participant behaviour while it allows deviations to

be modeled for a subset of the participants. The N players contribute votes in a round-

based curation process. The impact of each vote depends on the number of coins held

by the player. The posts are arranged in a list, sorted by the value of votes received,

resembling the front-page model of Reddit or Hacker News. In the model, players

vote according to their subjective opinion on the quality of the posts and have a limited

attention span.

Following previous related work [54, 48], we represent each player’s opinion on

each post (i.e. likability) with a numerical value l ∈ [0,1]. The objective quality of

a post is calculated as the simple summation of all players’ likabilities for the post

in question. To measure the effectiveness of a post-voting system, we introduce the

property of convergence under honesty which is parameterised by a number of values

including a metric t, that demands the first t articles to be ordered according to the

objective quality of the posts at the end of the execution assuming all participants

signal honestly to the system their personal preferences. Armed with our post-voting

system abstraction, we proceed to particularize it to model Steemit and provide the

following results.

i) We characterise the conditions under which the Steemit algorithm converges

under honesty. Our results highlight some fundamental limitations of the actual

Steemit parameterization. Specifically, for curated lists of length bigger than 70

the algorithm may not achieve even 1-convergence.

ii) We validate our results with a simulation testing different metrics based on cor-

relation that have been proposed in previous works [55, 56] and relating them to

our notion of convergence.
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iii) We demonstrate that “selfish” deviation from honest behavior results into sub-

stantial gains in terms of boosting the ranking of specific posts in the resulting

list of the post-voting system, and to a grave reduction of the quality of said list.

2.2.2 Steem consensus algorithm

In a nutshell, Delegated Proof of Stake (DPOS) [57, 58, 3] works as follows: Steem

users can sign up as “validator” candidates, exactly 21 of which are eventually chosen.

Each user that owns some STEEM can vote for a validator. The 20 candidates that

receive the most votes (weighted by the respective users’ STEEM) become validators.

One of the candidates that was not elected, chosen at random with probability pro-

portional to her votes, becomes the 21st validator. The number 21 has been chosen

through trial and error, based on a tradeoff between decentralisation and the need to

ensure that the background research on candidates that Steem users need to carry out

remains tractable.

A validator is responsible for receiving new transactions and adding them to blocks.

Validators take turns in block production. An honest validator attaches her block to the

latest valid block she knows and broadcasts it to the network. We say that a block

production round is complete after each validator has had a chance to create a block.

Honest nodes accept the longest known chain as the valid one. Elections for validators

happen once each round, thus each STEEM holder is allowed to change her opinion

very often.

The protocol promises that all new transactions are permanently added to the block-

chain in a short amount of time, given that at least two thirds of the validators are

honest. Unfortunately, we were unable to locate a formal proof of this claim.

Note that our analysis does not focus on DPOS, but on the curation mechanism of

Steemit. The latter is independent of the consensus protocol of Steem.

2.3 Related Work

User-generated content (UGC) has been identified as a fundamental component of so-

cial media platforms and Web 2.0 in general [59]. The content created by users needs

to be curated, and crowdsourced content curation [48] has emerged as an alternative

to expert-based [60] or algorithmic-based [61] curation techniques. Motivated by the
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widespread adoption of crowdsourced aggregation sites such as Reddit or Digg6, sev-

eral research efforts [62, 54, 63] have aimed to model the mechanics and incentives

for users in UGC platforms. This surge of interest is accompanied by studies which

have shown how social media users behave strategically when they publish and con-

sume content [64]. As an example, in the case of Reddit, users try to maximize their

‘karma’ [65], the social badge of the social media platform [66].

Previous works have analysed content curation from an incentives and game-theo-

retic standpoint [54, 62, 67, 64, 63]. Our formalisation is based on these models and

inherits features such as the quality distribution of the articles and the users’ attention

span [48, 54]. In terms of the analysis of our results, the analysis of our t-convergence

metric is similar to the top-k posts in [48]. We also leverage the rank correlation co-

efficients Kendall’s Tau [55] and Spearman’s Rho [56] to measure content curation

efficiency. Our approach describes the mechanics of post-voting systems from a com-

putational perspective, something that departs from the approach of all previous works,

drawing inspiration from the real-ideal world paradigm of cryptography [68, 69] as

employed in our definition of t-convergence.

Post-voting systems constitute a special case of voting mechanisms, as studied

within the theory of social choice, belonging to the subcategory of cardinal voting

systems [70]. In this context, it follows from Gibbard’s theorem [71] that no decen-

tralised non-trivial post-voting mechanism can be strategy-proof. This is consistent

with our results that demonstrate how selfish behaviour is beneficial to the partici-

pants. Our system shares the property of spanning multiple voting rounds with pre-

vious work [72]. Other related literature in social choice [73, 74, 75] is centered on

political elections and as a result attempts to resolve a variation of the problem with

quite different constraints and assumptions. In more detail, in the case of political

elections, voter communication in many rounds is costly while navigating the ballot is

not subject to any constraints as voters are assumed to have plenty of time to parse all

the options available to them. As a result, voters can express their preferences for any

candidate, irrespective of the order in which the latter appear on the ballot paper. On

the other hand, the online and interactive nature of post-voting systems make multi-

round voting a natural feature to be taken advantage of. At the same time, the fairness

requirements are more lax and it is acceptable (even desirable) for participants to act

reactively on the outcome of each others’ evaluations. On the other hand, in the post-

voting case, the “ballot” is only partially available given the high number of posts to be

6http://digg.com/
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ranked that may very well exceed the time available to a (human) user to participate in

the process. As a result a user will be unable to vote for posts that she has not viewed,

for instance, because they are placed at the bottom of the list. This is captured in our

model by introducing the concept of “attention span”.

Content curation is also related to the concept of online governance. The gover-

nance of online communities such as Wikipedia has been thoroughly studied in pre-

vious academic work [76, 77]. However, the financially incentivized governance pro-

cesses in blockchain systems, where the voters are at the same time equity-holders,

have still many open research questions [78, 79]. This shared ownership property has

triggered interest in building social media platforms backed by distributed ledgers,

where users are rewarded for generated content and variants of coin-holder voting are

used to decide how these rewards are distributed.

As already mentioned, coin-weighted voting is a viable mechanism to measure

the influence of users in the platform and, by extension, to make the system more

resistant to Sybil attacks. Different countermeasures for the Sybil problem in content

curation and recommendation sites have been explored in the past [80, 81, 82, 83].

Orthogonal to the coin-weighted voting model, these solutions leverage the trust graph

of the underlying social network (which is explicitly created by users) to bound the

effect of Sybil votes [80, 81, 82]. [84] claim that trust graph-based solutions require

heavy computation, and propose optimizations for real-world applications modeling

the transitive trust relationships as credit networks. We acknowledge these mechanisms

as complementary to coin-weighted voting and potentially implementable in Steemit.

We note that the abstract post-voting system defined in this work can be particularized

to include such trust graph-based solutions.

The effects of explicit financial incentives on the quality of content in Steemit

has been analyzed in [85]. Beyond the Steemit’s whitepaper [4], a series of blog

posts [86, 87] effectively extend the economic analysis of the system. In parallel with

Steemit, other projects such as Synereo [52] and Akasha7 are exploring the conver-

gence of social media and decentralized content curation. Beyond blockchain-based

social media platforms, coin-holder voting systems are present in decentralized plat-

forms such as DAOs [88] and in different blockchain protocols [19, 89]. However,

most of these systems use coin-holder voting processes to agree on a value or take a

consensual decision.

7https://akasha.world/
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2.4 Model

We first introduce some useful notation:

• We denote an ordered list of elements with A = [e1, . . . ,en] and the i-th element

of the list with A [i] = ei.

• Let n ∈ N∗. [n] denotes {1,2, . . . ,n}.

2.4.1 Post list

Definition 1 (Post). Let N ∈ N∗. A post is defined as P = (m, l), with m ∈ [N] , l ∈
[0,1]N .

• Author. The first element of a post is the id of its creator m.

• Likability. The likability of a post is defined as l ∈ [0,1]N .

N represents the number of voters (a.k.a. players). A post has a distinct likability in

[0,1] for each player.

Definition 2 (Ideal Score of a post). Let post P = (m, l). We define the ideal score of P

as idealSc(P) =
|l|
∑

i=1
li.

The ideal score of a post is a single number that represents its overall worth to the

community. By using simple summation, we assume that the opinions of all players

have the same weight.

Definition 3 (Post List). Let M ∈ N∗. A post list P = [P1, . . . ,PM] is an ordered list

containing posts. It may be the case that two posts are identical.

In the case of many UGC platforms, e.g. Steemit, there exists a feed (commonly named

“Trending”) that displays the same ordered posts for all users. In such an ordered list,

posts placed closer to the top are more visible, since users typically consume content

from top to bottom. We can thus measure the quality of an ordered list of posts by

comparing it with a list that contains the same posts in decreasing order of ideal score.

Definition 4 (t-Ideal Post Order). Let P a list of posts, t ∈ [M]. The property IDEALt (P )

holds if

∀i < j ∈ [t], idealSc(P [i])≥ idealSc(P [ j]) .

We say that P has a t-ideal rank if IDEALt (P ) holds and t is the maximum integer less

or equal to M with this property.
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2.4.2 Post Voting System

We now define an abstract post-voting system. Such a system is defined through two

Interactive Turing Machines (ITMs), GFeed and Πhonest. The first controls the list of

posts and aggregates votes, whereas one copy of the second ITM is instantiated for

each player. GFeed sends the post list to one player at a time, receives her vote and

reorders the post list accordingly. The process is possibly repeated for many rounds.

A measure of the quality of a post-voting system is the t-ideal rank of the post list

at the end of the process.

In a more general setting, some of the honest protocol instantiations may be re-

placed with an arbitrary ITM. A robust post-voting system should still produce a post

list of high quality.

Definition 5 (Post-Voting System). Consider four PPT algorithms INIT, AUX, HAN-

DLEVOTE and VOTE. The tuple S consisting of the four algorithms is a Post-Voting

System. S parametrises the following two ITMs:

GFeed is a global functionality that accepts two messages: read, which responds

with the current list of posts and vote, which can take various arguments and does

whatever is defined in HANDLEVOTE.

Πhonest is a protocol that sends READ and VOTE messages to GFeed whenever it

receives (ACTIVATE) from E .

1: Initialization:

2: U← /0 // Set of players

3: INIT (initArgs)

4:

5: Upon receiving (READ) from upid:

6: add
{

upid
}

to U
7: aux← AUX

(
upid
)

8: Send (POSTS, P , aux) to upid

9:

10: Upon receiving (VOTE, ballot) from upid:

11: HANDLEVOTE(ballot)

Functionality GFeed (INIT,AUX,HANDLEVOTE)(P , initArgs)

Figure 2.1: Post-Voting System GFeed
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1: Upon receiving (ACTIVATE) from E :

2: Send (READ) to GFeed

3: Wait for response (POSTS, P , aux)

4: ballot← VOTE (P ,aux)

5: Send (VOTE, ballot) to GFeed

Protocol Πhonest (VOTE)

Figure 2.2: Post-Voting System Πhonest

Players are activated by an Environment ITM that sends activation messages (Algo-

rithm 2.2, line 1).

Definition 6 (Post-Voting System Activation Message). We define actpid as the mes-

sage (ACTIVATE,pid), sent to upid.

Definition 7 (Execution Pattern). Let N,R ∈ N∗,N ≥ 2.

ExecPatN,R ={(
actpid1

, . . . ,actpidNR

)
: ∀i ∈ [R] ,∀k ∈ [N] ,∃ j ∈ [N] : pid(i−1)N+ j = k

}
,

i.e. activation messages are grouped in R rounds and within each round each player is

activated exactly once. The order of activations is not fixed.

Let Environment E that sends messages msgs=
(
actpid1

, . . . ,actpidn

)
sequentially.

We say that E respects ExecPatN,R if msgs ∈ ExecPatN,R. (Note: this implies that

n = NR.)

Definition 8 ((N,R,M, t)-convergence under honesty). We say that a post-voting sys-

tem S = (INIT,AUX,HANDLEVOTE,VOTE) (N,R,M, t)-converges under honesty (or

t-converges under honesty for N players, R rounds and M posts) if, for every input P
such that |P | = M, for every E that respects ExecPatN,R and given that all protocols

execute Πhonest, it holds that after E completes its execution pattern, GFeed contains a

post list P ′ such that IDEALt (P ′) is true.

Note that concrete post voting systems may or may not give information such as the

total number of rounds R to the players. This is decided in algorithm AUX.
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We now give a high-level description of a concrete post voting system, based on

the Steemit platform. According to this mechanism, each player is assigned a number

of coins known as “Steem Power” (SP) that remains constant throughout the execution

and another number called “Voting Power” (VP) in [0,1], initialized to 1. A vote is

a pair containing a post and a weight w ∈ [0,1]. Upon receiving a list of posts, the

honest player chooses to vote her most liked post amongst the top attSpan posts of the

list. The weight is chosen to be equal to the respective likability. The functionality

increases the score of the post by SP(a ·VP ·w+b) and subsequently decreases the

player’s Voting Power by the same amount (but keeping it within the aforementioned

bounds).

Definition 9 (Steemit system). The Steemit system is the post voting system S with

parameters a,b, regen ∈ [0,1] : a+ b < 1,
⌈

a+b
regen

⌉
> 1,attSpan ∈ N∗,SP ∈ RN

+. The

four parametrizing procedures can be found in Figures 2.3, 2.4, 2.5, and 2.6.

1: Store input parameters as constants

2: r← 1

3: lastVoted← (0, . . . ,0) ∈ (N∗)N

4: VP← (1, . . . ,1) ∈ [0,1]N

5: scores← (0, . . . ,0) ∈ (R+)
M

Algorithm INIT (attSpan,a,b, regen,R,SP)

Figure 2.3: Steemit INIT procedure

1: return (attSpan,a,b,r, regen,R,SP)

Algorithm AUX()

Figure 2.4: Steemit AUX procedure
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1: if lastVotedpid ̸= r then // One vote per player per round

2: VPpid,r← VPpid // For proofs

3: VPpid←max{VPpid + regen,1}
4: VPregpid,r← VPpid // For proofs

5: if ballot ̸= null then

6: Parse ballot as (P,weight)

7: cost← a ·VPpid ·weight+b

8: if VPpid− cost≥ 0 then

9: score← cost ·SPpid

10: VPpid← VPpid− cost

11: else

12: score← VPpid ·SPpid

13: VPpid← 0

14: end if

15: scoresP← scoresP + score

16: end if

17: lastVotedpid← r

18: end if

19: if ∀i ∈ [N] , lastVotedi = r then // round over

20: P ← ORDER (P ,scores) // order posts by votes

21: Pr← P // For proofs

22: r← r+1

23: end if

Algorithm HANDLEVOTE
(
ballot,upid

)

Figure 2.5: Steemit HANDLEVOTE procedure

1: Store aux contents as constants

2: voteRounds← VOTEROUNDS (R, |P |)
3: if VOTETHISROUND (R, |P |,r,voteRounds) = yes then

4: top← CHOOSETOPPOSTS (attSpan,P ,votedPosts)

5: (i, l)← argmax
(i,l)∈top

{lpid}

6: votedPosts← votedPosts ∪ (i, l)

Algorithm VOTE (P ,aux)
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7: return
(
(i, l) , lpid

)
8: else

9: return null

10: end if

11:

12: function CHOOSETOPPOSTS(attSpan,P ,votedPosts)

13: res← /0

14: idx← 1

15: while |res|< attSpan & idx≤ |P | do

16: if P [idx] /∈ votedPosts then // One vote per post per player

17: res← res∪{P [idx]}
18: end if

19: idx← idx+1

20: end while

21: return res

22: end function

23:

24: function VOTETHISROUND(R,M,r,voteRounds)

25: if R < M then // if there are more posts than rounds, vote always

26: return yes

27: else if r ∈ voteRounds then

28: return yes

29: else

30: return no

31: end if

32: end function

33:

34: function VOTEROUNDS(R,M)

35: voteRounds← /0

36: for i = 1 to M do

37: voteRounds← voteRounds∪
{

1+
⌊
(i−1) R−1

M−1

⌋}
38: end for

39: return voteRounds

40: end function

Figure 2.6: Steemit VOTE procedure
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Remark 1. The constraint a+ b < 1 ensures that a single vote of full weight cast by

a player with full Voting Power does not completely deplete her Voting Power. The

constraint
⌈

a+b
regen

⌉
> 1 excludes the degenerate case in which the regeneration of a

single round is enough to fully replenish the Voting Power in all cases; in this case the

purpose of Voting Power would be defeated.

Remark 2. The Steem blockchain protocol defines a = 0.02,b = 0.0001 and regen =
3

5·24·60·60 = 0.00000694̄, thus
⌈

a+b
regen

⌉
= 2895. A post can be voted for 7 days from its

creation and at most one vote can be cast every 3 seconds, thus R= 7·24·60·60
3 = 201600.

We do not know why these particular parameters were chosen, but we conjecture that

a,b and regen ensure users can vote often enough without abusing the system, 7 days

is the time needed for the quality of a post to be determined and 3 seconds is the time

needed for transactions to settle in the Steem blockchain.

Remark 3. Note (Algorithm 2.6, lines 24-40) that an honest player attempts to vote for

as many posts as possible and spreads her votes with the maximum distance between

them. The purpose of this is to efficiently utilize the available Voting Power to “make

her voice heard”. Also, efficiently using Voting Power on the Steemit website increases

the voter’s curation reward [86].

Theorem 1.

1. If ∃i ̸= j ∈ [N] : SPi ̸= SP j (i.e. if not all players have the same Steem Power)

then Steemit does not (N,R,M,1)-converge.

2. If ∀i ̸= j ∈ [N] ,SPi = SP j (i.e. if all players have the same Steem Power) and

(a) R−1≥ (M−1)
⌈

a+b
regen

⌉
then Steemit (N,R,M,M)-converges.

(b) R−1 < (M−1)
⌈

a+b
regen

⌉
then Steemit does not (N,R,M,1)-converge.

Proof Sketch. When SP is not constant, we build a post list where the most liked post

is not preferred by rich players and thus is not placed at the top. For a constant SP,

when R−1 ≥ (M−1)
⌈

a+b
regen

⌉
, there are enough rounds to ensure full regeneration of

every player’s Voting Power between two votes and thus the resulting post list reflects

the true preferences of the players. In the opposite case, we can always craft a post list

that exploits the fact that some votes are cast with reduced Voting Power in order to

trick the system into placing a wrong post in the top position. □
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Proof. We first prove statement 1. Reorder the players such that SP1 ≥ SP2 ≥ ·· · ≥
SPN . Let k = min

j∈[N−1]

{
SP j ̸= SP j+1

}
. We first cover the case when attSpan≥ 2.

Let8

weakPost = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0︸ ︷︷ ︸
N−k

)

strongPost = (0, . . . ,0︸ ︷︷ ︸
k−1

,
SPk−SPk+1

2SPk
,1,0, . . . ,0︸ ︷︷ ︸

N−k−1

)

nullPost = (0, . . . ,0︸ ︷︷ ︸
N

)

P = [weakPost,strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

] .

We first note that SPk > SPk+1 ≥ 0⇒ 0≤ SPk−SPk+1
2SPk

≤ 1, thus strongPost is a valid

post. We then observe that

∀i ∈ {3, . . . ,M} , idealSc(P [i]) = 0 <

< idealSc(P [1]) = 1 < 1+
SPk−SPk+1

2SPk
= idealSc(P [2]) ,

thus ∀P ′ that contains the same posts as P and IDEAL1 (P ′) holds, it is P ′ [1] = P [2].

Since attSpan ≥ 2, all players apart from uk+1 vote for P [1] in the first round and

for P [2] in the second, whereas uk+1 votes for P [2] in the first round and for P [1] in

the second. Thus the two first posts will have been voted by all players by the end of

the second round and their score will not change until the execution completes. We

have:

sc2 (P [1]) = scR (P [1]) =
k−1

∑
j=1

SP jb+SPk (a+b)+SPk+1 min
{

b,VPregk+1,r2

}
+

M

∑
j=k+2

SP jb and

sc2 (P [2]) = scR (P [2]) =
k−1

∑
j=1

SP j min{b,VPreg j,r2
}+

SPk min{aSPk−SPk+1

2SPk
VPregk,r2

+b,VPregk,r2
}+SPk+1 (a+b)+

M

∑
j=k+2

SP j min{b,VPreg j,r2
}⇒

8We thank Heng Guo from the University of Edinburgh for this counterexample.
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scR(P [2])≤
k−1

∑
j=1

SP jb+SPk(a
SPk−SPk+1

2SPk
+b)+SPk+1 (a+b)+

M

∑
j=k+2

SP jb .

In the case that VPregk+1,r2
≥ b, it is

scR (P [1]) =
k−1

∑
j=1

SP jb+SPk (a+b)+SPk+1b+
M

∑
j=k+2

SP jb >

k−1

∑
j=1

SP jb+SPk(a
SPk−SPk+1

2SPk
+b)+SPk+1 (a+b)+

M

∑
j=k+2

SP jb≥

scR (P [2])⇒ scR (P [1])> scR (P [2]) ,

thus IDEAL1 (P ′) does not hold.

Since uk+1 does not vote in any round between r1 and r2, and r2 ≥ 2, it holds that

VPregk+1,r2
≥ 1−a−b+ regen. Thus the case when VPregk+1,r2

< b can happen only

when b > 1− a− b+ regen⇔ b > 1−a+regen
2 . We now provide a counterexample for

the case when b > 1−a+regen
2 .

Once more we order the players in descending Steem Power, like in the previous

case. Once again k = min
j∈[N−1]

{
SP j ̸= SP j+1

}
and we only care for the case when

attSpan≥ 2. Let 0 < γ < 1 and

weakPost = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,
γ

2
,0, . . . ,0︸ ︷︷ ︸

N−k−1

)

strongPost = (0, . . . ,0︸ ︷︷ ︸
k−1

,γ,1,0, . . . ,0︸ ︷︷ ︸
N−k−1

)

nullPost = (0, . . . ,0︸ ︷︷ ︸
N

)

P = [weakPost,strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

] .

We observe that ∀i ∈ {3, . . . ,M} , idealSc(P [i]) = 0 < idealSc(P [1]) = 1+ γ

2 <

1+ γ = idealSc(P [2]), thus ∀P ′ that contain the same posts as P and IDEAL1 (P ′)
holds, it is P ′ [1] = P [2].

Since attSpan ≥ 2, all players apart from uk+1 vote for P [1] in the first round and

for P [2] in the second, whereas uk+1 votes for P [2] in the first round and for P [1] in

the second. Thus the two first posts will have been voted by all players by the end of

the second round and their score will not change until the execution completes. We

have:
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sc2 (P [1]) = scR (P [1]) =
k−1

∑
j=1

SP jb+SPk (a+b)+SPk+1VPregk+1,r2
+

M

∑
j=k+2

SP jb and

sc2 (P [2]) = scR (P [2]) =
k−1

∑
j=1

SP j min{b,VPreg j,r2
}+SPk min{aγVPregk,r2

+b,VPregk,r2
}

+SPk+1 (a+b)+
M

∑
j=k+2

SP j min{b,VPreg j,r2
} ≤

k−1

∑
j=1

SP jb+SPkVPregk,r2
+SPk+1 (a+b)+

M

∑
j=k+2

SP jb .

We note that VPregk,r2
= VPregk+1,r2

because both uk and uk+1 vote with full Vot-

ing Power in the first round. Let VP = VPregk,r2
. We have

SPk (a+b)+SPk+1VP > SPkVP+SPk+1 (a+b)⇔

SPk (a+b)+SPk+1VP−SPkVP−SPk+1 (a+b)> 0⇔

(a+b)(SPk−SPk+1)−VP(SPk−SPk+1)> 0⇔

(SPk−SPk+1)(a+b−VP)> 0

The last expression is true because SPk > SPk+1 and VP < b, thus the first expression

is true as well. We can then deduce that scR (P [1]) > scR (P [2]), thus IDEAL1 (P ′)
does not hold.

We conclude the treatment of Statement 1 by covering the case when attSpan = 1.
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Consider the following list of posts:

weakPost =
(

SP1−SPN

SP1−SPN
, . . . ,

SPi−SPN

SP1−SPN
, . . . ,

SPN−SPN

SP1−SPN

)
strongPost =(

SPN−SPN

SP1−SPN
, . . . ,

SPN−i+1−SPN

SP1−SPN
, . . . ,

SPk+2−SPN

SP1−SPN
,

min

{
1,

SPk+1−SPN

SP1−SPN
+

(SPk−SPk+1)
2

2max{1,SP1−SPN}

}
,

SPk−SPN

SP1−SPN
, . . . ,

SP1−SPN

SP1−SPN

)

nullPost =

0, . . . ,0︸ ︷︷ ︸
N


P =

weakPost,strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

 .

All the aforementioned posts are valid, since we have that ∀i∈ [N] ,SP1≥ SPi≥ SPN⇒
1≥ SPi−SPN

SP1−SPN
≥ 0. Also (SPk−SPk+1)

2

2SPN−k max{1,SP1−SPN} > 0, which ensures that strongPostN−k >

0. We also observe that SPk+1 < SPk ≤ SP1⇒ SPk+1−SPN
SP1−SPN

< 1, thus strongPostN−k >
SPk+1−SPN
SP1−SPN

.

Regarding the ideal scores, we have

∀i ∈ {3, . . . ,M} , idealSc(P [i]) = 0 ,

idealSc(P [1]) =
N

∑
i=1

SPi−SPN

SP1−SPN
,

idealSc(P [2])>
N

∑
i=1

SPN−i+1−SPN

SP1−SPN
=

N

∑
i=1

SPi−SPN

SP1−SPN
,

Thus P [2] has the highest ideal score and ∀P ′ that contains the same posts as P and

IDEAL1 (P ′) holds, it is P ′ [1] = P [2].

Since attSpan = 1, all players vote for all posts in the order they appear in the list

of posts, thus P [1] is voted first, with full Voting Power by all players. P [2] will be

voted next by all players with at most full Voting Power, thus sc1 (P [1]) = scR (P [1])
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and sc2 (P [2]) = scR (P [2]). We will prove that scR (P [2])< scR (P [1]). It is

scR (P [1]) =
N

∑
i=1

SPi (aP [1]i +b) =
N

∑
i=1

SPi

(
a

SPi−SPN

SP1−SPN
+b
)

,

scR (P [2])≤
N

∑
i=1

SPi (aP [2]i +b) =
N

∑
i=1

i̸=N−k

SPi

(
a

SPN−i+1−SPN

SP1−SPN
+b
)
+

SPN−k

(
amin

{
1,

SPk+1−SPN

SP1−SPN
+

(SPk−SPk+1)
2

2max{1,SP1−SPN}

}
+b

)
≤

N

∑
i=1

SPi

(
a

SPN−i+1−SPN

SP1−SPN
+b
)
+SPN−ka

(SPk−SPk+1)
2

2max{1,SP1−SPN}
= A .

Since scR (P [2])≤ A, it is sufficient to prove A < scR (P [1]).

A < scR (P [1])⇔ SPN−ka
(SPk−SPk+1)

2

2max{1,SP1−SPN}
+

N

∑
i=1

SPi

(
a

SPN−i+1−SPN

SP1−SPN
+b
)
−

N

∑
i=1

SPi

(
a

SPi−SPN

SP1−SPN
+b
)
< 0⇔

(SPk−SPk+1)
2

2max{1,SP1−SPN}
+

N

∑
i=1

SPi

(
SPN−i+1−SPN

SP1−SPN
− SPi−SPN

SP1−SPN

)
< 0⇔

(SPk−SPk+1)
2

2max{1,SP1−SPN}
+

N

∑
i=1

SPi
SPN−i+1−SPi

SP1−SPN
< 0

It is

(SPk−SPk+1)
2

2max{1,SP1−SPN}
≤ (SPk−SPk+1)

2

2(SP1−SPN)
. (2.1)

Furthermore,

N

∑
i=1

SPi (SPN−i+1−SPi) =

⌊N
2 ⌋

∑
i=1

(SPi (SPN−i+1−SPi)+SPN−i+1 (SPi−SPN−i+1)) .

(2.2)

From (2.1) and (2.2), it suffices to prove that

(SPk−SPk+1)
2

2(SP1−SPN)
+
⌊N

2 ⌋
∑
i=1

SPi (SPN−i+1−SPi)+SPN−i+1 (SPi−SPN−i+1)

SP1−SPN
< 0 .
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(SPk−SPk+1)
2

2(SP1−SPN)
+
⌊N

2 ⌋
∑
i=1

SPi (SPN−i+1−SPi)+SPN−i+1 (SPi−SPN−i+1)

SP1−SPN
< 0⇔

(SPk−SPk+1)
2

2
+
⌊N

2 ⌋
∑
i=1

(SPi (SPN−i+1−SPi)−SPN−i+1 (SPN−i+1−SPi))< 0⇔

(SPk−SPk+1)
2

2
−
⌊N

2 ⌋
∑
i=1

(SPi−SPN−i+1)
2 < 0

If k ≤
⌊N

2

⌋
, then

(SPk−SPk+1)
2

2
−
⌊N

2 ⌋
∑
i=1

(SPi−SPN−i+1)
2 =

(SPk−SPk+1)
2

2
− (SPk−SPN−k+1)

2−
⌊N

2 ⌋
∑
i=1
i̸=k

(SPi−SPN−i+1)
2

It is

−
⌊N

2 ⌋
∑
i=1
i̸=k

(SPi−SPN−i+1)
2 ≤ 0 and

k ≤
⌊

N
2

⌋
⇒ N− k+1≥ k+1⇒ SPN−k+1 ≤ SPk+1⇒

(SPk−SPk+1)
2 ≥ (SPk−SPN−k+1)

2 SPk>SPN−k+1⇒

(SPk−SPk+1)
2 >

(SPk−SPN−k+1)
2

2
⇒

(SPk−SPN−k+1)
2

2
− (SPk−SPk+1)

2 < 0

We deduce that

(SPk−SPk+1)
2

2
−
⌊N

2 ⌋
∑
i=1

(SPi−SPN−i+1)
2 < 0

Else if k >
⌊N

2

⌋
, then

(SPk−SPk+1)
2

2
−
⌊N

2 ⌋
∑
i=1

(SPi−SPN−i+1)
2 =

(SPk−SPk+1)
2

2
− (SPN−k−SPk+1)

2−
⌊N

2 ⌋
∑
i=1

i ̸=N−k

(SPi−SPN−i+1)
2

39



It is

−
⌊N

2 ⌋
∑
i=1

i ̸=N−k

(SPi−SPN−i+1)
2 ≤ 0 and

k >
⌊

N
2

⌋
⇒ N− k < k⇒ SPN−k ≥ SPk⇒

(SPN−k−SPk+1)
2 ≥ (SPk−SPk+1)

2 SPk>SPk+1⇒

(SPN−k−SPk+1)
2 >

(SPk−SPk+1)
2

2
⇒

(SPk−SPk+1)
2

2
− (SPN−k−SPk+1)

2 < 0

We deduce that
(SPk−SPk+1)

2

2
−
⌊N

2 ⌋
∑
i=1

(SPi−SPN−i+1)
2 < 0

We have concluded that in every case scR (P [2])< scR (P [1]), thus IDEAL1 (P ′) does

not hold.

Statement 2a: Suppose that

R−1≥ (M−1)
⌈

a+b
regen

⌉
. (2.3)

Observe that

(2.3)⇒ R−1
M−1

≥
⌈

a+b
regen

⌉
rhs⇒

integer

⌊
R−1
M−1

⌋
≥
⌈

a+b
regen

⌉
. (2.4)

Let pid∈ [N]. From (2.3) and the fact that
⌈

a+b
regen

⌉
> 1 as mandated by Definition 9, we

deduce that R≥M and according to VOTETHISROUND() in Algorithm 2.6, upid votes

non-null in rounds (r1, . . . ,rM) with ri =
⌊
(i−1) R−1

M−1

⌋
+1. We define the following:

k ∈ N,w ∈ R,n ∈ Z, p ∈ [0,1) : (k−1)w = n+ p,m ∈ Z,q ∈ [0,1) : w = m+q .

We have

⌊(k−1)w⌋= n , (2.5)

⌊kw⌋=

n+m, p+q < 1

n+m+1, p+q≥ 1 (impossible if p = 0)
(2.6)

⌊w⌋= m (2.7)

⌈w⌉=

m, p = 0

m+1, p > 0
(2.8)
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(2.5),(2.6),(2.7),(2.8), p+q < 2⇒

⌊kw⌋ ∈ {⌊(k−1)w⌋+ ⌊w⌋,⌊(k−1)w⌋+ ⌈w⌉}
(2.9)

From (2.9) we deduce that

∀i ∈ [M]\{1} ,ri ∈
{

ri−1 +

⌊
R−1
M−1

⌋
,ri−1 +

⌈
R−1
M−1

⌉}
. (2.10)

From (2.4) and (2.10) we have that ∀i ∈ [M−1] ,ri+1− ri ≥
⌈

a+b
regen

⌉
. We will now

prove by induction that ∀i ∈ [M] ,VPpid,ri = 1.

• For i = 1,VPpid,1 = 1 (Algorithm 2.3, line 4).

• Let VPpid,ri = 1. Until ri+1, a single non-null vote is cast by upid, which reduces

VPpid by at most a+b (Algorithm 2.5, line 7) and at least
⌈

a+b
regen

⌉
regenerations,

each of which replenishes VPpid by regen. Thus

VPpid,ri+1 ≥min
{

VPpid,ri−a−b+ regen
⌈

a+b
regen

⌉
,1
}
≥ 1 .

But VPpid cannot exceed 1 (line 4), thus VPpid,ri+1 = 1.

Since the above holds for every pid ∈ [N], it holds that at the end of the execu-

tion, all votes have been cast with full Voting Power, thus ∀i ∈ [M] ,scR (P [i]) =

Nb+a
N
∑

pid=1
P [i]pid and the posts in PR are sorted by decreasing score (Algorithm 2.5,

line 20). We observe that

∀i ̸= j ∈ [M] , idealSc(P [i])> idealSc(P [ j])⇒
N

∑
pid=1

P [i]pid >
N

∑
pid=1

P [ j]pid⇒

Nb+a
N

∑
pid=1

P [i]pid > Nb+a
N

∑
pid=1

P [ j]pid .

Thus all posts will be ordered by their ideal scores; put otherwise, IDEALSCOREM (PR)

holds.

We now prove statement 2b. Suppose that

R−1 < (M−1)
⌈

a+b
regen

⌉
. (2.11)

Several lists of posts will be defined in the rest of the proof. Given that, when

all players are honest, the creator of a post is irrelevant, we omit the creator from the
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definition of posts to facilitate the exposition. Thus every post will be defined as a

tuple of likabilities.

First, we consider the case when

attSpan+R≤M . (2.12)

In this case, no player can ever vote for the last post, as we will show now. First of all,

(2.12)⇒ R < M, thus all players cast R votes in total. Let pid ∈ N, i ∈ [R] and vpid,i

the index of the last post that has ever been in upid’s attention span until the end of

round i, according to the ordering of P . It is vpid,1 = attSpan and ∀i ∈ [R]\{1} ,vpid,i =

vpid,i−1 +1, since in every round upid votes for a single post and the first unvoted post

of the list is added to their attention span. Note that, since this mechanism is the same

for all players, the same unvoted post is added to all players’ attention span at every

round. Thus ∀pid ∈ N,vpid,R = attSpan+R−1
(2.12)
< M. We deduce that no player has

ever the chance to vote for the last post.

The above observation naturally leads us to the following counterexample: Let

strongPost =

1, . . . ,1︸ ︷︷ ︸
N


nullPost =

0, . . . ,0︸ ︷︷ ︸
N


P =

nullPost, . . . ,nullPost︸ ︷︷ ︸
M−1

,strongPost


∀i ∈ [M−1] , it is idealSc(P [M])> idealSc(P [i]), thus ∀P ′ that contain the same

posts as P and IDEAL1 (P ′) holds, it is P ′ [1] = P [M]. However, since the last post

is not voted by any player and the first post is voted by at least one player, it is

scR (P [1])> scR (P [M]), thus IDEAL1 (PR) does not hold.

We now move on to the case when attSpan+R > M. Let V = min{R,M}. Each

player casts exactly V votes. Consider P 1 = 1M×N and pid ∈ [N]. Let

i ∈ [V ] :
(

VPregpid,ri
< 1∧∄i′ < i : VPregpid,ri′

< 1
)

,

i.e. i is the first round in which upid votes with less than full Voting Power. Such a

round exists in every case as we will show now. Note that, since the first round is a

voting round and the Voting Power of all players is full at the beginning, if i exists it is

i≥ 2.
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• If R≥M, it is V = M.

If ∄i ∈ [M] :
(

VPregpid,ri
< 1∧∄i′ < i : VPregpid,ri′

< 1
)

, then it holds that ∀i ∈

[M], VPregpid,ri
= 1⇒∀i ∈ [M]\{1} ,ri ≥ ri−1+

⌈
a+b
regen

⌉
to have enough rounds

to replenish the Voting Power after a full-weight, full-Voting Power vote. Thus

rM ≥ 1+(M−1)
⌈

a+b
regen

⌉
> R, contradiction.

• If R < M, every player votes on all rounds, thus r2 = 2. Note that⌈
a+b
regen

⌉
≥ 2⇒ a+b

regen
> 1⇒ a+b > regen . (2.13)

Thus ∀pid ∈ [N] ,VPregpid,r2
= 1−a−b+ regen

(2.13)
< 1, thus i = 2.

We proved that i exists. Since all players follow the same voting pattern, the Voting

Power of all players in each round is the same. Let rVP = VPreg1,ri
. Assume that

attSpan < i∨ i > 2. We cover the case where attSpan ≥ i∧ i = 2 later. In case N is

even, let 0 < γ < 1,0 < ε < γ(1− rVP),

weakPost =

1, . . . ,1︸ ︷︷ ︸
N/2

,γ− ε, . . . ,γ− ε︸ ︷︷ ︸
N/2

 ,

strongPost =

γ, . . . ,γ︸ ︷︷ ︸
N/2

,1, . . . ,1︸ ︷︷ ︸
N/2

 ,

nullPost =

0, . . . ,0︸ ︷︷ ︸
N

 ,

P =

weakPost, . . . ,weakPost︸ ︷︷ ︸
i−1

,strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−i

 .

First of all, it is

∀ j ∈ [i−1] , idealSc(P [ j]) =
N
2
(1+ γ− ε)<

<
N
2
(1+ γ) = idealSc(P [i])

and ∀ j ∈ {i+1, . . . ,M} , idealSc(P [ j]) = 0 < idealSc(P [i]), thus the strong post has

strictly the highest ideal score of all posts and as a result, ∀P ′ that contains the same

posts as P and IDEAL1 (P ′) holds, it is P ′ [1] = P [i].
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We observe that all players like both weak and strong posts more than null posts,

thus no player will vote for a null post unless her attention span contains only null

posts. This can happen in two cases: First, if the player has not yet voted for all non-

null posts, but the first attSpan posts of the list, excluding already voted posts, are null

posts. Second, if the player has already voted for all non-null posts. For a null post to

rank higher than a non-null one, it must be true that there exists one player that has cast

the first vote for the null post. However, since the null posts are initially at the bottom

of the list and it is impossible for a post to improve its ranking before it is voted, we

deduce that this first vote can be cast only after the voter has voted for all non-null

posts. We deduce that all players vote for all non-null posts before voting for any null

post.

We will now see that the first N
2 players vote first for all weak posts and then for the

strong post. These players like the weak posts more than the strong post. As we saw,

they will not vote any null post before voting for all non-null ones. If attSpan > 1 they

vote for the strong post only when all other posts in their attention span are null ones

and thus they will have voted for all weak posts already. If attSpan = 1 and since no

post can increase its position before being voted, the strong post will become “visible”

for all players only once they have voted for all weak posts. Thus in both cases the first
N
2 players vote for the strong post only after they have voted for all weak posts first.

The two previous results combined prove that the first N
2 players vote for the strong

post in round ri exactly. We also observe that these players have experienced the exact

same Voting Power reduction and regeneration as in the case of P 1 since they voted

only for posts with likability 1, thus in round ri their Voting Power after regeneration

is exactly the same as in the case of P 1 : ∀pid ∈
[N

2

]
,VPregpid,ri

= rVP.

We observe that the first N
2 players vote for all weak posts with full Voting Power.

As for the last N
2 players, we observe that, if attSpan < i, they all vote for the first weak

post of the list in the first round, and thus with full Voting Power. If attSpan ≥ i and

i > 2, they vote for the strong post in the first round and for the first weak post in r2

with full Voting Power. Thus in all cases the last N
2 players vote for the first weak post

with full Voting Power. Therefore, the score of the first weak post at the end of the

execution is scR (P [1]) = N
2 (a+b)+ N

2 ((γ− ε)a+b).

On the other hand, at the end of the execution the strong post has been voted by the

first N
2 players with rVP Voting Power and by the last N

2 players with at most full Voting

Power, thus its final score will be at most scR (P [i]) ≤ N
2 (rVP · γa+b) +N

2 (a+b). It
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is

ε < γ(1− rVP)⇒
N
2
(rVP · γa+b)+

N
2
(a+b)<

N
2
(a+b)+

N
2
((γ− ε)a+b)⇒

scR (P [i])< scR (P [1]) .

Thus PR [1] ̸= P [i] and Ideal1 (PR) does not hold.

As for the case when N is odd (w.l.o.g. assume that we have added 1 player), let

0 < ε < γ
N−3
N−1 (1− rVP). In this case, we assume that the likability of the first i posts

(weak and strong) for the additional player is γ, whereas the likability of the last M− i

posts (the null posts) is 0. This means that the additional player votes first for the weak

and strong posts and then for the null posts. The rest of the likabilities remain as in the

case when N is even. We observe that the ideal score of the strong post is still strictly

higher than the rest. Furthermore, since the additional player votes for the first weak

post within the first i voting rounds, her Voting Power at the time of this vote will be at

least rVP. We thus have the following bounds for the scores:

scR (P [i])≤ N−1
2

(rVP · γa+b)+
N−1

2
(a+b)+ γa+b ,

scR (P [1])≥ N−1
2

(a+b)+
N−1

2
((γ− ε)a+b)+ rVP · γa+b .

Given the bounds on ε, it is scR (P [i])< scR (P [1]), thus Ideal1 (PR) does not hold.

We finally cover the previously untreated edge case where attSpan≥ i∧ i = 2. rVP

is defined like before. We first consider the case when N is even and greater than 2:

∃k ∈ N\{0,1} : N = 2k. Let 0 < γ < 1,0 < ε < min{γ,2γ
1−rVP

(k−1)rVP},

weakPost =

1, . . . ,1︸ ︷︷ ︸
k−1

,γ− ε, . . . ,γ− ε︸ ︷︷ ︸
k−1

,γ,γ

 ,

strongPost =

γ, . . . ,γ︸ ︷︷ ︸
k−1

,1, . . . ,1︸ ︷︷ ︸
k−1

,γ,γ

 ,

P =

weakPost,strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

 .
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We first observe that

∀ j ∈ {3, . . . ,M} ,

idealSc(P [ j]) = 0 < idealSc(P [1]) = k−1+(k−1)(γ− ε)+2γ =

= k−1+(k+1)γ− (k−1)ε < k−1+(k+1)γ = idealSc(P [2]) ,

thus the strong post has strictly the highest ideal score of all posts and as a result, ∀P ′

that contains the same posts as P and IDEAL1 (P ′) holds, it is P ′ [1] = P [2].

The first k−1 and the last two players vote first for P [1] and then for P [2], whereas

players k, . . . ,2k−2 vote first for P [2] and then for P [1], thus at the end of the execu-

tion,

scR (P [1]) = (k−1)(a+b)+2(γa+b)+(k−1)((γ− ε) rVPa+b) ,

scR (P [2]) = (k−1)(a+b)+(k+1)(γrVPa+b) .

Given the bound on ε, it is scR (P [1])> scR (P [2]), thus Ideal1 (PR) does not hold.

Second, we consider the case in which N is odd: ∃k ∈ N : N = 2k+1. Let 0 < γ <

1,0 < ε < min{γ,γ1−rVP
krVP },

weakPost =

1, . . . ,1︸ ︷︷ ︸
k

,γ− ε, . . . ,γ− ε︸ ︷︷ ︸
k

,γ

 ,

strongPost =

γ, . . . ,γ︸ ︷︷ ︸
k

,1, . . . ,1︸ ︷︷ ︸
k

,γ

 ,

P =

weakPost,strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

 .

We first observe that

∀ j ∈ {3, . . . ,M} ,

idealSc(P [ j]) = 0 < idealSc(P [1]) = k+ k (γ− ε)+ γ =

= k+(k+1)γ− kε < k+(k+1)γ = idealSc(P [2]) ,

thus the strong post has strictly the highest ideal score of all posts and as a result, ∀P ′

that contains the same posts as P and IDEAL1 (P ′) holds, it is P ′ [1] = P [2].

The first k and the last player vote first for P [1] and then for P [2], whereas players

k+1, . . . ,2k vote first for P [2] and then for P [1], thus at the end of the execution,

scR (P [1]) = k (a+b)+ γa+b+ k ((γ− ε) rVPa+b) ,

scR (P [2]) = k (a+b)+(k+1)(γrVPa+b) .
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Given the bound on ε, it is scR (P [1])> scR (P [2]), thus Ideal1 (PR) does not hold.

Last but not least, we consider the case in which N = 2. In this case, let 0 < γ < 1

and

P =

(1,0) ,(γ,1− γ
1+ rVP

2

)
,nullPost, . . . ,nullPost︸ ︷︷ ︸

M−2

 .

It is ∀ j ∈ {3, . . . ,M} , idealSc(P [ j]) = 0 < idealSc(P [1]) = 1
rVP<1
< 1+ γ

1−rVP
2 = γ+

1− γ
1+rVP

2 = idealSc(P [2]), thus P [2] has strictly the highest ideal score of all posts

and as a result, ∀P ′ that contains the same posts as P and IDEAL1 (P ′) holds, it is

P ′ [1] = P [2].

On the other hand, it is scR (P [1]) = a+ 2b > γrVPa+ b+
(
1− γ

1+rVP
2

)
a+ b =

scR (P [2]), thus Ideal1 (PR) does not hold.

Corollary 1. The Steemit system parametrised according to Remark 2, for any number

of players N ≥ 2, constant SP and M ≤ 70 posts (N,R,M,M)-converges. If M > 70

or SP is not constant, then there exists a list of posts such that the system does not

(N,R,M,1)-converge.

2.5 Simulation

The previous outcomes are here complemented with experiments that verify and extend

our findings. We have implemented a simulation framework that realizes the execution

of Steemit’s post-voting system as defined above.

In particular, we consider two separate scenarios: First, we simulate the case when

all players follow the prescribed honest strategy of Steemit, investigating how the cu-

ration quality of the system varies with the number of voting rounds. We successfully

reproduce the result of Theorem 1, which implies that the system converges perfectly

when a sufficient number of voting rounds is permitted, but otherwise the resulting

list of posts may have a 0-ideal rank, i.e. the top post may not have the best ideal

score. Moreover, we compare our t-convergence metric with previously used metrics

of convergence based on correlation demonstrating that they are very closely aligned.

The second case measures how resilient is the curation quality of Steemit against

dishonest agents. Since a creator is financially rewarded when her content is upvoted,

she has incentive to promote her own posts. A combination of in-band methods (apart

from striving to produce posts of higher quality) can help her to that end. Voting for

one’s own posts, refraining from voting posts created by others and obtaining Sybil
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accounts that only vote for her posts are only an indicative subset. We thus examine

the quality of the resulting list when certain users do not follow the honest protocol,

but apply the aforementioned self-promoting methods. We observe that even a single

selfish player has a detrimental effect to the t-ideal rank of the post voting system.

Furthermore, we measure the number of positions on the list that the selfish post gains

as the number of selfish players increases.

2.5.1 Methodology

We leverage three metrics to compare the curated list with the ideal list: Kendall’s

Tau [55], Spearman’s Rho [56], and t-ideal rank.

In addition to the t-ideal rank and the rank correlation coefficients used in the first

scenario, in the case of dishonest participants we include a metric that measures the

gains of the selfish players. In particular, the metric is defined as the difference between

the real position of the “selfish” post after the execution and its ranking according to

the ideal order. We are thus able to measure how advantageous it is for users to behave

selfishly. Furthermore, t-ideal rank informs us how this behavior affects the overall

quality of curation of the platform.

2.5.2 Execution

In all simulations, the likabilities of all “honest” posts have been drawn from the [0,1]-

uniform distribution and all players have Steem Power equal to 1; we leave the case of

variable Steem Power as future work.

(a) t-ideal rank evolution (b) Kendall’s Tau and Spearman’s Rho evolution

Figure 2.7: 270 honest players, 70 posts and 200.000 rounds
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(a) t-ideal rank evolution (b) Kendall’s Tau and Spearman’s Rho evolution

Figure 2.8: 300 honest players, 100 posts and 200.000 rounds

(a) Positions gained by selfish post (b) t-ideal rank

Figure 2.9: 100 honest players, 100 posts and 0 to 100 selfish players

The code for the simulation can be found at https://github.com/OrfeasLitos/

fairPostOrdering/tree/master/simulation.

2.5.2.1 Scenario A

As already mentioned, the results closely follow Theorem 1. Figures 2.7a and 2.7b

show the t-ideal rank and Kendall’s Tau coefficient respectively when the number of

rounds is enough for all votes to be cast with full Voting Power. In particular, the

parameters used are a = 1
50 , b = 10−4, regen = 3

5·24·60·60 , R = 200000, attSpan = 10,

N = 270 and M = 70. (Observe that R−1 > (M−1)
⌈

a+b
regen

⌉
.)

As we can see, all three measures show that the quality of the real list initially

improves very slowly, while at the very end of the execution it converges rapidly to the
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ideal order.

Figures 2.8a and 2.8b depict what happens when the rounds are not sufficient for

all votes to be cast with full Voting Power. In particular, the corresponding simulation

was executed with the same parameters, except for M = 100 and N = 300. (Observe

that R−1 < (M−1)
⌈

a+b
regen

⌉
.)

Here we see that at the end of the execution, only the first three posts are correctly

ordered. Regarding the rest of the list, both Kendall’s Tau and Spearman’s Rho coeffi-

cients show that the order of the posts improves only slightly throughout the execution

of the simulation, ending up in a state of bad quality.

2.5.2.2 Scenario B: Selfish users

In order to understand how the presence of voting rings/Sybil accounts affects the

curation quality, we simulate the execution of the game for various ring sizes, where

ring members vote only for a particular “selfish” post. We fix the rest of the system

parameters to handicap the selfish post. In particular, the voting rounds are sufficient

for all votes to be cast with full Voting Power, the likability of the selfish post is 0 for

all players and it is initially placed at the bottom of the post list. Define the gain of

the post of the selfish players as its ideal position minus its final position. Figure 2.9a

shows the gain of the selfish post for a varying number of selfish players, from 1 to

100. Figure 2.9b depicts the t-ideal rank of the resulting list at the same executions.

The system parameters are a = 1
50 ,b = 10−4, regen = 3

5·24·60 ,attSpan = 10,R = 5000

and N varies from 101 to 200.

As we can see in Figure 2.9a, there is a cutoff point around which the selfish players

quickly move from gaining no positions to overtaking all honest posts. The number of

selfish players needed for this advantage is approximately half of the amount of honest

ones. On the other hand, figure 2.9b shows that even a single selfish player can almost

completely ruin the t-ideal rank of the result by only allowing a very small number of

the best posts to be placed in the correct order.

2.6 Summary and Future Work

We have defined an abstract post-voting system, along with a particularization inspired

by the Steemit platform. We proved the exact conditions on the Steemit system pa-

rameters under which it successfully curates arbitrary lists of posts. We provided the
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results of simulations of the voting procedure under various conditions. In particu-

lar, we investigated the case in which only honest players vote, along with the case in

which a mix of both honest and selfish players are implicated. We conclude that cura-

tion quality may be hurt by two factors, firstly the current Voting Power mechanism of

Steem and secondly the fact that self-voting is a profitable strategy.

We have studied the curation properties of decentralized content curation platforms

such as Steemit, obtaining new insights on the resilience of these systems. Some as-

sumptions have been made in the presented model. Various relaxations of these as-

sumptions constitute fertile ground for future work. First of all, the selfish strategy can

be extended and refined in various ways. For example, voting rings can be allowed to

create more than one posts in order to increase their rewards. Optimizing the number

of posts and the vote allocation in this case would contribute towards a robust attack

against the Steemit platform.

Selfish behavior is considered only in the simulation. Our analysis can be aug-

mented with a review of games with selfish players and voting rings.

The addition of the economic factor invites the definition of utility functions and

strategic behavior for the players. Its inclusion would imply the need for an expansion

of our theorems and definitions to the strategic case, along with a full game-theoretic

analysis. Furthermore, several possible refinements could be introduced; for example,

the process of creating Sybil accounts could be associated with a monetary cost.

Last but not least, in our model, posts are created only at the beginning of the exe-

cution. A dynamic model in which posts can be created at any time and the execution

continues indefinitely (as is the case in a real-world UGC system) is also interesting as

a future direction.
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Chapter 3

A Composable Security Treatment of

the Lightning Network

3.1 At a glance

The high latency and low throughput of blockchain protocols constitute one of the

fundamental barriers for their wider adoption. Overlay protocols, notably the lightning

network, have been touted as the most viable direction for rectifying this in practice. In

this chapter, which is based on [90], we present a full formalisation and security analy-

sis of the lightning network in the (global) universal composition setting that leverages

a global ledger functionality for which realisability by the Bitcoin blockchain protocol

has been demonstrated [26]. As a result, our treatment delineates exactly how the se-

curity guarantees of the protocol depend on the properties of the underlying ledger and

the frequent availability of the protocol participants. Moreover, we provide a complete

and modular description of the core of the lightning protocol that highlights precisely

its dependency on underlying basic cryptographic primitives such as digital signatures,

pseudorandom functions, identity-based signatures and a less common two-party prim-

itive, which we term a combined digital signature, that were originally hidden within

the lightning protocol’s implementation.

3.2 Introduction

Improving the latency of blockchain protocols, in the sense of the time it takes for a

transaction to be “finalised”, as well as their throughput, in the sense of the number of

transactions they can handle per unit of time, are perhaps the two most crucial open
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questions in the area of permissionless distributed ledgers and remain fundamental

barriers for their wider adoption in applications that require large scale and reasonably

expedient transaction processing, cf. [24]. The Bitcoin blockchain protocol, introduced

by Nakamoto [1], provides settlement with probability of error that drops exponentially

in the number of blocks k that accumulate over a transaction of interest. This has been

informally argued in the original white paper, and further formally demonstrated in

[91], from where it can be inferred that the total delay in actual time for a transaction

to settle is linear in k in the worst case. These results were subsequently generalised

to the setting of partial synchrony [92] and variable difficulty [23]. Interestingly, this

latency “deficiency” is intrinsic to the blockchain approach (see below), i.e., latency’s

dependency on k is not a side-effect of the security analysis but rather a characteristic

of the underlying protocol and the threat model it operates in.

Given the above state of affairs, one has to either change the underlying settlement

protocol or devise some other mechanism that, in conjunction with the blockchain pro-

tocol, achieves high throughput and low latency. A number of works proceeded with

the first direction, e.g., hybrid consensus [93] or Algorand [16]. A downside of this

approach is that the resulting protocols fundamentally change the threat model within

which Bitcoin is supposed to operate, e.g., by reducing the threshold of corrupted

players, strengthening the underlying cryptographic assumptions or complicating the

setup assumption required (e.g., from a public to a private setup). The additional side-

effect of such solutions is that they are fundamentally incompatible with the Bitcoin

blockchain, which is arguably the currently most successful deployed instance of the

blockchain protocol.

The alternative approach is to build an overlay protocol that utilises the blockchain

protocol as a “fall back” layer and does not relax the threat model in any way while

it facilitates fast “off-chain” settlement under certain additional assumptions. We note

that in light of the impossibility result regarding protocol “responsiveness” from [93]

that states that no protocol can provide settlement in time proportional to actual net-

work delay (i.e., fast settlement) and provide a security threshold over 1/3, we know

that maintaining Bitcoin’s threat model will require some additional assumption for

the overlay protocol to offer fast settlement.

The first instance of this approach and by far the most widely known and utilised

so far, came with the lightning network [9]1 that provided an overlay mechanism over

1The specification (available at https://github.com/lightningnetwork/lightning-rfc/
blob/master/02-peer-protocol.md) is a more descriptive reference for the inner workings of the
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the Bitcoin blockchain, which introduces and leverages the concept of a bilateral pay-

ment channel. The latency for a transaction becomes linear to actual network delay

and one more factor that equals the number of bilateral payment channel hops in the

path that connects the two end-points of the transaction. If a payment is confirmed

by the implicated parties then it is guaranteed that, should the parties wish it, eventu-

ally the ledger will record “gross” settlement transactions between the parties in the

path of the payment that reflect the balance resulting from all in-channel payments.

Deviations from this guarantee are cryptographically feasible but disincentivised via

on-chain penalties: a malicious party trying to commit to an outdated state will lose

funds to a peer that provides evidence of a subsequent state. Moreover, note that no

record of a specific payment transaction need ever appear on-chain thus the number

of lightning transactions that can be exchanged can reach the maximum capacity the

network allows between the parties, without being impeded by any restrictions of the

underlying blockchain protocol.

The lightning network has been very influential in the space and spun a number of

follow up research and implementations (see below for references). We note that the

lightning network is not the only option for building an overlay over a blockchain, see

e.g., [94] for an alternative approach focussing on reducing latency, where it is shown

that if the assumption is raised to a security threshold of 3/4 plus the honesty of an ad-

ditional special player then it is possible to obtain optimal latency on the blockchain.

Nevertheless, this approach still needs transactions to be confirmed by consensus and

therefore does not offer the throughput benefits that are intrinsic to the lightning net-

work.

A thorough formal security analysis for the lightning network is needed, due to its

importance for practical low latency payments over Bitcoin, the fact that it is actually

currently operational2, along with the observation that its complexity makes it difficult

to readily extract precise statements regarding the level of security it offers.

3.2.1 Our Results

We present a complete security analysis of the lightning network in the universal com-

position (UC) setting. We model the payment overlay that the lightning network pro-

vides as a local ideal functionality and we demonstrate how it can be implemented in a

protocol. See also the raiden network that implements Lightning over Ethereum, https://raiden.
network.

2For current deployment statistics see e.g., https://1ml.com/statistics.
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hybrid world which assumes a global ledger functionality. Our treatment is general and

does not assume any specific implementation for the underlying ledger functionality.

The “paynet” functionality FPayNet that we introduce abstracts all the salient security

features achieved by the lightning network. We subsequently describe the whole light-

ning protocol in this setting and we prove that it realises our FPayNet under standard

cryptographic assumptions; the security guarantees of the functionality reflect specific

environmental conditions regarding the availability of the honest parties to poll the

status of the network. In more details our results are as follows.

1. We present the FPayNet functionality which abstracts the syntax and security

properties that are provided by the lightning network. We describe our FPayNet

assuming a global ledger functionality GLedger as defined in [26], and further

refined in [27], which we know that is realised by the Bitcoin blockchain. Our

approach not only captures lightning, but it is also general as it can be applied

to any payment network by finely tuning the following parts of the function-

ality: the exact channel opening message sequence, the details of the on-chain

checks performed by FPayNet, the negligence time bounds and the penalty in case

of a malicious closure being caught. Using FPayNet, parties can open and close

channels, forward payments along channel paths in the network as well as poll

channel status. Importantly, the functionality keeps track of all the off-chain

and on-chain balances of the parties registered and ensures that when a channel

closes, the on-chain balances are in line with the off-chain balances. In order to

handle realistic adversarial deviations in multi-hop payments, the functionality

permits the adversary to determine the outcome of each payment by choosing

one of the following options: (i) let it go through as requested, (ii) charge it to an

adversarial party along the path, (iii) charge it to a negligent honest party along

the path. This last outcome is a crucial security characteristic of the lightning

network: honest parties are expected to poll the functionality at a certain specific

frequency that corresponds to their level of involvement in the network and the

properties of the underlying ledger. If a party does not poll often enough, FPayNet

identifies it as negligent and it may lose funds.

2. We identify the exact polling requirements that are imposed by the lightning

network to the honest participating parties, i.e. how often parties have to check

the state of the ledger functionality GLedger (over which the lightning network

is overlaid) and how to act depending on what they see. These requirements
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ensure that honest parties do not lose funds. The requirements are a function

of the parameters of GLedger. GLedger provides explicit security guarantees with

respect to consistency and liveness which in turn impact the guarantees provided

by FPayNet. The polling requirements for each party are two-fold: (i) the first type

of polling refers to monitoring for closures of channels in which the party is one

of the end-points and is specified by the parameter “delay”, (ii) the second type of

polling refers to monitoring for specific events related to receiving and relaying

payments. In detail, let Alice be an intermediary of a multi-hop payment. When

the payment starts, she specifies two blockheights h,h′. Also, let a be a (derived)

ledger parameter which is the upper bound to the number of blocks that may

be finalised in the ledger from the time a certain transaction is emitted to the

time it becomes finalised (i.e. it is included in a block in the “stable” part of the

ledger). Alice should then poll twice while her local view of the chain advances

from blockheight h to blockheight h′−a. Moreover, the two pollings should be

separated by a time window that allows the chain to grow by at least a blocks.

3. We provide a complete pseudocode description of the lightning network pro-

tocol ΠLN and we prove that indeed it realises FPayNet under a specific set of

cryptographic assumptions, in the Random Oracle model. In order to express

ΠLN in a way that is succinct, we identify a number of underlying cryptographic

primitives that have been used in the specification of the lightning network in a

non-black-box fashion and without reference. Interestingly, while some of these

cryptographic primitives are quite standard (a PRF, a Digital Signature scheme

and an Identity Based Signature scheme) there is one additional primitive that

is somewhat less standard and requires a new definition. The combined digi-

tal signature – as we will call it – is a special case of an asymmetric two-party

digital signature primitive (e.g., see [95] and references therein) with the fol-

lowing characteristic: one of the two parties, called the shareholder, generates

and stores a share of the signing key. The public key of the combined signature

can be determined non-interactively based on public-key information produced

by both parties. Issuing signatures requires the availability of the share, which

is verifiable given the public information provided by the shareholder. We for-

malise the combined digital signature primitive and show that the construction

lying within the lightning specification realises it under standard cryptographic

assumptions. In summary, the realisation of FPayNet is achieved assuming the
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security of the underlying primitives, which in turn can be based on EC-DLOG

and the Random Oracle model.

4. We prove that a more idealized ledger functionality, i.e. a ledger with instant

finality, is unrealisable even assuming a synchronous multicast network. This

result supports our decision to use the more realistic ledger functionality of [26],

since it establishes that if our analysis was based on such a perfect ledger, it

would not be relevant for any real world deployment of a payment network since

such software would – necessarily – depend on a non-perfect ledger. This choice

also distinguishes our work compared to previous attempts [47, 96, 32, 33] to

formalize payment networks, as well as highlights the considerable latency im-

provement that the protocol offers in comparison to directly using the ledger.

3.2.2 Related Work

A first suggestion for building a unidirectional payment channel appeared in [29]. Bidi-

rectional payment channels were developed in [8] and, of course as part of the light-

ning network [9]. Subsequent work on the topic dealt with either improving payment

networks by utilising more expressive blockchains such as Ethereum [33], hardware

assumptions, see e.g., [97], or extending its functionality beyond payments, to smart

contracts, [32] or finally enhancing their privacy, see e.g., [96, 98, 99]. Additional

work looked into developing supporting protocols for the payment networks such as

rebalancing [100] or finding routes in a decentralised fashion [101, 102]. With respect

to idealising the payment network functionality in the UC setting, a number of previ-

ous papers [47, 96, 32, 33] presented ideal functionalities abstracting the concept, but

they did not prove that the lightning network realises them. The fundamental advan-

tage of our approach however here is that we present a payment network functionality

that interoperates with a global ledger functionality for which we know, in light of the

results of [26], that is realisable by the Bitcoin blockchain and hence also reflects the

actual parameters that can be enforced by the implementation and the exact partici-

pation conditions needed for security. In contrast, previous work [47, 96, 33] utilized

“too idealised” ledger functionalities for their analysis which offer instant finality; as

we prove in Theorem 3, a representative variant of these functionalities (Fig. 3.13) is

unrealisable even under strong network assumptions (cf. Section 3.8). It is worth not-

ing here that, were such a ledger realizable, layer-2 payment networks would not be as

useful in practice because one of their two main motivations is the high latency of real
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blockchains. On the other hand, in [32] the ledger is not explicitly specified as a func-

tionality, but only informally described. Several smart contracts are formally defined

instead as UC ITMs, which are the entities with which protocols ultimately interact.

The execution model of these contracts and their interaction with the blockchain is

explained in an intuitive way, but a complete formalization of the ledger is missing.

Lastly, the ledger used in [47] cannot be used directly by protocol parties, only ac-

cessed via higher-level functionalities. This limitation is imposed because otherwise

any party could arbitrarily change the balances of other parties, given the definition of

the functionality. This ledger is therefore a useful abstraction for higher-level proto-

cols, but not amenable to direct usage, let alone concrete realisation.

3.2.3 Organisation

In Section 3.3 we present preliminaries for the model we employ and the relevant cryp-

tographic primitives. In Section 3.4 we present an overview of the lightning network.

Our payment network functionality is given an overview description in Section 3.5.

Our abstraction of the core lightning protocol is provided in Section 3.4. We give full

details on the combined digital signature primitive in Section 3.7. More details on the

preliminary primitives are given afterwards, specifically in Sections 3.3.3.2, 3.3.3.3,

and 3.3.3.1 we discuss digital signatures, identity based signatures and pseudorandom

functions. The transaction structure that is assumed to be provided by the underlying

distributed ledger is discussed in Section 1.1.6. The paynet functionality is presented

in detail in Section 3.9. The complete description of protocol ΠLN is presented in

Section 3.10. Finally, the security theorem, a proof sketch and the complete proof are

presented in Section 3.11.

3.3 Preliminaries

In this section we will give an overview of the tools that we use in this work.

3.3.1 Hybrid functionalities used

Both our main protocol ΠLN and the corresponding functionality FPayNet use GLedger [26,

27], discussed in Section 5.3, as a subroutine. We make heavy use of the two security

properties of GLedger, namely persistence and liveness, as the security of the lightning

network relies crucially on the security of the underlying ledger.

59



As already mentioned, the protocol and functionality defined in the current chapter

do not make direct use of GCLOCK. Indeed, the only notion of time both in the light-

ning protocol and in our work is provided by the height of the blockchain, as reported

respectively by the underlying Bitcoin node and GLedger. We therefore omit it in the

statement of Theorem 4 for simplicity of notation; it should normally appear as hy-

brid along with GLedger. We remind the reader that both GLedger and GCLOCK are global

functionalities, whereas FPayNet is not.

3.3.2 Probability of collision of distributions

Proposition 2. Let k ∈N, let p be a polynomial, let T be an arbitrary distribution and

let U be the uniform distribution, both over a set A of size p(k). It is

Pr[T =U ] =
1

p(k)

Proof.

Pr[T =U ] = ∑
a∈A

Pr[T = a∧U = a] = ∑
a∈A

1
p(k)

Pr[U = a] =

=
1

p(k) ∑
a∈A

Pr[U = a] =
1

p(k)

3.3.3 Cryptographic Primitives

3.3.3.1 Pseudorandom Functions

A “pseudorandom function” [103] F is informally a function with two inputs: a secret

seed and a bitstring. Given that the seed is randomly selected, no PPT algorithm can

distinguish F from a randomly selected function.

A PRF is used in ΠLN to generate the randomness used for KEYSHAREGEN(),

which returns the so-called “per commitment” keypairs (sAlice,com,n, pAlice,com,n) (c.f.

Fig. 3.28, line 4, Fig. 3.29, line 4, Fig. 3.33, line 5, Fig. 3.34, line 7 and Fig. 3.41,

line 18).

Definition 10. Let k ∈ N, s ∈ {0,1}∗, λ : N→ N and fs be a family of functions from

{0,1}λ(|s|) to {0,1}λ(|s|). Furthermore, let Funck be the uniform distribution over the

set of all {0,1}k→{0,1}k functions. We say that fs is a pseudorandom function family

if:
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• ∀s ∈ {0,1}∗,∀x ∈ {0,1}λ(|s|),∃ PPT algorithm that computes fs(x),

• ∀k ∈ N, ∀ PPT A ,

| Pr
s $←{0,1}k

A’s coins

[A fs(·)(1k) = 1]− Pr
f $←Funck
A’s coins

[A f (·)(1k) = 1]|= negl(k) ,

where A is given oracle access to fs(·) and f (·) in each of the probability ex-

pressions above respectively. This requirement can be equivalently stated as

follows:

∀k ∈ N,E-prf(k) = negl(k) ,

where E-prf(k) = sup
A∈PPT

{| Pr
s $←{0,1}k

A’s coins

[A fs(·)(1k) = 1]− Pr
f $←Funck
A’s coins

[A f (·)(1k) = 1]|} .

3.3.3.2 Digital Signatures

Digital signatures [103] enable a party to authenticate messages to other parties. A

signature on a message is created by the signing party using the secret “signing key”;

other parties can later verify that the signature was indeed made on the message us-

ing the public “verification key”. Transactions in Bitcoin [1] are signed using digital

signatures and are considered valid only if signatures verify correctly, thus ensuring

that only parties entitled to particular funds can spend them. Bitcoin uses ECDSA

signatures over the secp256k1 curve3.

To ensure compatibility, LN uses ECDSA over the same curve as its basic signature

scheme. In this work, we abstract the particular construction away and use instead

the established primitive that a secure construction must realise. Looking forward, in

order to facilitate the definition of combined signatures purely on top of classic digital

signatures, we split the key generation algorithm in two explicitly separate steps, one

for the secret and one for the public key generation. Note that this does not affect

the correctness or the security of digital signatures in any way, as no new powers are

given to the adversary. Furthermore, this splitting is fully compatible with the digital

signature construction of interest, ECDSA.

The five algorithms used by a Digital Signatures scheme are:

• sk← SECKEYGEN(1k)

3https://en.bitcoin.it/wiki/Secp256k1
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• pk← PUBKEYGEN(sk)

• (pk,sk)← KEYGEN(1k) where

KEYGEN(1k) :

sk← SECKEYGEN(1k)

pk← PUBKEYGEN(sk)

return (pk,sk)

• σ← SIGNDS(m,sk)

• {0,1}← VERIFYDS(σ,m, pk)

We demand that the following holds for a scheme to have correctness:

∀k ∈ N,m ∈M ,

Pr[(pk,sk)← KEYGEN(1k),VERIFYDS(SIGNDS(m,sk),m, pk) = 1] = 1

1: (pk,sk)← KEYGEN(1k)

2: i← 0

3: (auxi, response)← A(INIT, pk)

4: while response can be parsed as m do

5: i← i+1

6: store m as mi

7: σi← SIGNDS(m,sk)

8: (auxi, response)← A(SIGNATURE,auxi−1,σi)

9: end while

10: parse response as (m∗,σ∗)

11: if m∗ /∈ {m1, . . . ,mi}∧VERIFYDS(σ∗,m∗, pk) = 1 then

12: return 1

13: else

14: return 0

15: end if

Game EUF-CMAA (1k
)

Figure 3.1: EUF-CMAA (1k) game
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Definition 11. A Digital Signatures scheme is strongly EUF-CMA-secure if

∀k ∈ N,∀A ∈ PPT,Pr
[
EUF-CMAA

(
1k
)
= 1
]
= negl(k)or equivalently

∀k ∈ N,E-ds(k) = negl(k) ,

where E-ds(k) = sup
A∈PPT

{
Pr[EUF-CMAA

(
1k
)
= 1]

}
.

3.3.3.3 Identity Based Signatures

In the Lightning Network specification, a custom scheme for deriving three new keys

per channel update is used. Its syntax and security aims closely match those of pre-

viously studied Identity Based Signature schemes [104, 105], thus we use the latter

to abstract away the complexity of the construction and highlight the security require-

ments it satisfies. Our version augments the scheme with explicit verification keys,

which are generated together with the signing keys. Furthermore we introduce a new

key derivation algorithm which, on input of the public parameters mpk and a label l,

returns the verification key pkl . Such a modified IBS scheme provides 5 algorithms:

• (mpk,msk)← SETUP(1k): master keypair generation

• (pkl,skl)← KEYDER(mpk,msk, l): keypair derivation with label l

• pkl ← PUBKEYDER(mpk, l): verification key derivation with label l

• σ← SIGNIBS(m,skl): signature generation with signing key skl

• {0,1}← VERIFYIBS(σ,m, pkl): signature verification

Observe that mpk is not part of the input to SIGNIBS and VERIFYIBS. In our case,

this input is not needed. In fact, because of the underlying similarity of these two algo-

rithms with their counterparts from standard Digital Signatures, such an input would

rather complicate the exposition.

We demand that the following holds for a scheme to have correctness:

• ∀k ∈ N, l ∈ L ,

Pr[(mpk,msk)← SETUP(1k),

(pk1,sk1)← KEYDER (mpk,msk, l) ,

pk2← PUBKEYDER (mpk, l) ,

pk1 = pk2] = 1

63



• ∀k ∈ N,m ∈M ,

Pr[(mpk,msk)← SETUP(1k),

(pk,sk)← KEYDER (mpk,msk, l) ,

VERIFYIBS(SIGNIBS(m,sk),m, pk) = 1] = 1

Let IBSALGS = {SETUP,KEYDER,PUBKEYDER,SIGNIBS,VERIFYIBS}.

1: (mpk,msk)← SETUP(1k)

2: i, j← 0

3: (aux0, response)← A(INIT,mpk)

4: while response can be parsed as (m, l) or l do

5: if response can be parsed as (m, l) then

6: i← i+1

7: store (m, l) as (m, l)i

8: (pk,sk)← KEYDER(mpk,msk, l)

9: σ← SIGNIBS(m,sk)

10: (auxi+ j, response)← A(SIGNATURE,auxi+ j−1,σ)

11: else // response can be parsed as l

12: j← j+1

13: store l as l j

14: (pk,sk)← KEYDER(mpk,msk, l)

15: (auxi+ j, response)← A(KEYPAIR,auxi+ j−1,(pk,sk))

16: end if

17: end while

18: parse response as (m∗, l∗,σ∗)

19: if (m∗, l∗) /∈ {(m, l)1, . . . ,(m, l)i}∧ l∗ /∈
{l1, . . . , l j}∧VERIFYIBS(σ∗,m∗,PUBKEYDER(mpk, l∗)) = 1 then

20: return 1

21: else

22: return 0

23: end if

Game IBS-EUF-CMAA (1k, IBSALGS
)

Figure 3.2: IBS-EUF-CMAA (1k, IBSALGS
)

game
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Definition 12. An Identity Based Signatures scheme IBSALGS is IBS-EUF-CMA-secure

if

∀k ∈ N,∀A ∈ PPT,Pr
[
IBS-EUF-CMAA

(
1k, IBSALGS

)
= 1
]
= negl(k) ,equivalently

∀k ∈ N,E-ibs(k) = negl(k) ,

where E-ibs(k) = sup
A∈PPT

{
Pr[IBS-EUF-CMAA

(
1k, IBSALGS

)
= 1]

}
.

We here define the particular construction for Identity Based Signatures used in LN

and prove its security. Let LN-IBS be its 5 algorithms; the parameters are hard-coded

in the algorithms.

Parameters: hash function H , group generator G

SETUP(1k):

return KEYGEN(1k)

KEYDER(mpk,msk, l):

pk← mpk+H (l ∥mpk) ·G
sk← msk+H (l ∥mpk)

return (pk,sk)

PUBKEYDER(mpk, l):

return mpk+H (l ∥mpk) ·G

SIGNIBS(m,skl):

return SIGNDS(m,skl)

VERIFYIBS(σ,m, pkl):

return VERIFYDS(σ,m, pkl)

Lemma 1. The construction above is IBS-EUF-CMA-secure in the Random Oracle

model under the assumption that the underlying signature scheme is strongly EUF-

CMA-secure and the range of the Random Oracle coincides with that of the underlying

signature scheme signing keys.

Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
IBS-EUF-CMAB

(
1k,LN-IBS

)
= 1
]
= a > negl(k) .

We construct a PPT distinguisher A (Fig. 3.3) such that

Pr
[
EUF-CMAA

(
1k
)
= 1
]
> negl(k)
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that breaks the assumption, thus proving Lemma 1.

1: k $←U [1,T (B)+T (A)] // T (M) is the maximum running time of M

2: Random Oracle: for every first-seen query q from B set H (q) to a random value

3: return H (q) to B

4: (mpk,msk)← SETUP
(
1k
)

5: Random Oracle: Let q be the kth first-seen query from B or A :

6: if q = (l ∥mpk) for some l ∈ L then

7: set H (l ∥mpk) to (vk−mpk) ·G−1

8: else

9: set H (q) to a random value

10: end if

11: return H (q) to B or A

12: i← 0

13: j← 0

14: (aux0, response)← B (INIT,mpk)

15: while response can be parsed as (m, l) or l do

16: if response can be parsed as (m, l) then

17: i← i+1

18: store (m, l) as (m, l)i

19: (pk,sk)← KEYDER(mpk,msk, l)

20: σ← SIGNIBS(m,sk)

21: (auxi+ j, response)← B (SIGNATURE,auxi+ j−1,σ)

22: else // response can be parsed as l

23: j← j+1

24: store l as l j

25: (pk,sk)← KEYDER(mpk,msk, l)

26: (auxi+ j, response)← B (KEYPAIR,auxi+ j−1,(pk,sk))

27: end if

28: end while

29: parse response as (m∗, l∗,σ∗)

30: if vk = PUBKEYDER(mpk, l∗)∧B wins the IBS-EUF-CMA game then // A won the

EUF-CMA game

Algorithm A (vk)
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31: return (m∗,σ∗)

32: else

33: return FAIL

34: end if

Figure 3.3: Reduction of IBS-EUF-CMA attacker to EUF-CMA attacker

Let Y be the range of the random oracle. The modified random oracle used in

Fig. 3.3 is indistinguishable from the standard random oracle by PPT algorithms since

the statistical distance of the standard random oracle from the modified one is at most
1

2|Y | < negl(k) as they differ in at most one element.

Let E denote the event in which neither KEYDER(mpk,msk, l∗) nor PUBKEY-

DER(mpk, l∗) is invoked. In that case the value H (l ∥mpk) is decided after B ter-

minates (Fig. 3.3, line 30) and thus

Pr[vk ∈ KEYDER (mpk,msk, l∗)∨

vk = PUBKEYDER (mpk, l∗) |E]< negl(k)⇒

Pr[(vk ∈ KEYDER (mpk,msk, l∗)∨

vk = PUBKEYDER (mpk, l∗))∧E]< negl(k)⇒

Pr [vk = PUBKEYDER (mpk, l∗)∧E]< negl(k) .

(3.1)

It is

(B wins)→ (vk = PUBKEYDER (mpk, l∗))⇒

Pr [B wins]≤ Pr [vk = PUBKEYDER (mpk, l∗)]⇒

Pr [B wins∧E]≤ Pr [vk = PUBKEYDER (mpk, l∗)∧E]
(3.1)⇒

Pr [B wins∧E]< negl(k) .

But we know that

Pr [B wins] = Pr [B wins∧E]+Pr [B wins∧¬E] and Pr [B wins] = a

by the assumption, thus

Pr [B wins∧¬E]> a−negl(k) . (3.2)
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We now focus at the event ¬E. Let F the event in which the call of to KEY-

DER(mpk,msk, l∗) or PUBKEYDER(mpk, l∗) results in the kth invocation of the Ran-

dom Oracle. Since k is chosen uniformly at random and using Proposition 2, it is

Pr [F |¬E] = 1
T (B)+T (A) . Observe that Pr [F |E] = 0⇒ Pr [F ] = Pr [F |¬E] = 1

T (B)+T (A) .

In the case where the event (F ∧B wins∧¬E) holds, it is

PUBKEYDER (mpk, l∗) = mpk+H (l∗ ∥mpk) ·G = mpk+(vk−mpk) ·G−1 ·G = vk

Since F holds, the kth invocation of the Random Oracle queried H (l∗ ∥mpk). There-

fore it is PUBKEYDER (mpk, l∗) = vk. This means that the verification is success-

ful, i.e., VERIFYIBS (σ∗,m∗,vk) = 1. We conclude that, if (F ∧B wins∧¬E), A
wins the EUF-CMA game. A final observation is that the probability that the events

(B wins∧¬E) and F are almost independent, thus

Pr [F ∧B wins∧¬E] = Pr [F ]Pr [B wins∧¬E]±negl(k)
(3.2)
=

a−negl(k)
T (A)+T (B)

±negl(k)> negl(k)

Finally, a less common two-party cryptographic primitive is employed that we for-

malise as combined digital signatures, see Section 3.7.

3.4 Lightning Network overview

3.4.1 Two-party channels

The aim of LN is to enable fast, cheap, off-chain transactions, without compromising

security. Specifically no trust between counterparties is needed. This is achieved as

follows: Two parties that plan to have recurring monetary exchanges lock up some

funds with one special on-chain transaction. We say that they opened a new channel.

They can then transact with the locked funds multiple times solely by interacting pri-

vately, without informing the blockchain. If they want to use their funds in the usual,

on-chain way again, they have to close the channel and unlock the funds with one

more on-chain transaction. Therefore the number of on-chain transactions implicated

in a channel is constant in the number of off-chain payments. Furthermore, each party

can unilaterally close the channel and retrieve the coins they are entitled to – according

to the latest channel state – and thus neither party has to trust the other.
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In more detail, to open a channel Alice and Bob first exchange a number of keys

and desired timelocks relDelA, relDelB (explained below) and then build locally some

transactions; no transaction is published yet. The “funding transaction” F (Figure 3.4)

contains a 2-of-2 multisig output with one “funding” public key pkF,A, pkF,B for each

counterparty. This multisig output needs signatures for both designated public keys in

order to be spent. F is funded with cF coins that belong only to one of the two parties,

the funder. W.l.o.g., we assume this party is Alice.

Figure 3.4: Funding TX (on-chain): Rules over output, coins below output. pk1∧ pk2 is

a 2-of-2 multisig with keys pk1 and pk2.

Each party also builds a slightly different version of the “commitment transaction”,

CA (Figure 3.5) for Alice and CB (Figure 3.6) for Bob. Alice uses her “delayed payment”

key pkdcom,A and Bob’s “revocation” key pkrev,B (received before), whereas Bob uses

Alice’s “payment” key pkcom,A (received before). Both CA and CB spend the funding

output of F and allow Alice to retrieve her funds if she acts honestly, as we will explain

shortly. Alice sends Bob the signature of CB made with her skF,A and vice-versa. Both

parties verify that the received signature is valid.

Figure 3.5: Alice’s initial commitment TX (off-chain): Required data over input, spent

output below input.

Observe that Alice can now safely publish the funding transaction F without fear

of losing her coins: the only possible ways for it to be spent are either via CA or CB,

both of which transfer her funding coins back to a key she owns. She now broadcasts

the funding transaction F ; once both parties see that it is confirmed, they generate

and exchange new “commitment” keys (used for updating the channel later) and the

channel is open.
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Figure 3.6: Bob’s initial commitment TX (off-chain): All coins belong to Alice, so she

can immediately spend them if Bob closes.

Figure 3.7: All transactions of an open channel with an HTLC in flight. Alice owns cA

coins, Bob cB coins, and ch coins will be transferred to Bob if he discloses the preimage

of h until the ledger has heightcltv blocks, otherwise they will return to Alice. “funding”

is in the ledger, Alice keeps locally “commA” and “HTLCA”, and Bob keeps “commB”

and “HTLCB”.
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Every time they want to make a payment to each other, they exchange a series of

messages that have two effects. First, a new pair of commitment transactions, along

with their signatures by the funding keys, is created, one for each counterparty. The

outputs of the new commitment transactions use new keys and reflect the new channel

balance. Each of these transactions ensures that, if broadcast, each party will be able

to spend the appropriate share from the coins contained in the funding output. Second,

the two old commitment transactions are revoked. This ensures that no party can close

a channel using an old commitment transaction, as such an old commitment transaction

reflects a superseded channel state, which may be more beneficial than the latest state

for one of the two parties.

Invalidating past commitments requires some care. The reason is that it is impos-

sible to actually make past commitments invalid without spending the funding output

on-chain; doing this for every update would however defeat the purpose of LN. The

following idea is leveraged instead: If Alice broadcasts an old commitment and Bob

sees it, he can punish Alice by taking all the money in the channel. Therefore Alice is

technically able to broadcast an old commitment, but has no financial benefit in doing

so. The same reasoning holds if Bob broadcasts an old commitment. On the downside

this imposes the requirement that parties must observe the blockchain periodically —

see below the explanation of timelocks and how they facilitate a time window within

which parties should react.

The punishing mechanism operates as follows. Suppose Alice considers posting

one of her old local commitments, which has an output that carries her old share of

the funds (c.f. Fig. 3.5). This output can be spent in two ways: either with a signa-

ture by Alice’s “delayed payment” secret key skdcom,A which is a usual ECDSA key,

or with a signature by Bob’s “revocation” secret key skrev,B, which is also an ECDSA

key, but with an additional characteristic that we will explain soon. Thus, if Alice

broadcasts an old commitment, Bob will be able to obtain her funds by spending her

output using his “revocation” key. This privilege of course opens the possibility for

Bob to abuse it (in particular, when a channel is closed — see below — Bob may steal

Alice’s funds by using such a revocation key) and hence this side effect should also be

carefully mitigated. The mitigation has the following form. At the time of creation of

a new commitment, both parties will know Bob’s “revocation” public key pkrev,B, but

no party knows its corresponding secret – the key can only be computed by combin-

ing one secret value skcom,n,A that Alice knows and one secret value skcom,n,B that Bob

knows. Alice therefore can prevent Bob from using his revocation key until she sends
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him skcom,n,A. Therefore, Alice will send skcom,n,A to Bob only after the new commit-

ment transaction is built and signed. As a result, all old commitment transactions are

revoked, only the latest one is not. Thus Bob cannot abuse his revocation key on a com-

mitment before this transaction is revoked. We note that the underlying cryptographic

mechanism that enables such “revocation keys” is not straightforward and, as part of

our contributions, we formalise it as a new two-party cryptographic primitive. We call

it “combined signature” and we prove in Section 3.7 that the construction hidden in the

LN implementation realises it in the random oracle model under the assumption that

the underlying digital signature scheme is secure.

The last element needed to make channel updates secure is the already mentioned

“relative timelock”. If Alice broadcasts a commitment transaction, she is not allowed

to immediately spend her funds with her “delayed payment” key. Instead, she has

to wait for the transaction to reach a pre-agreed block depth (the relative timelock,

negotiated during the opening of the channel and hardcoded in the output script of

the commitment transaction) in order to give some time to Bob to see the transaction

and, if it does not correspond to the latest version of the channel, punish her with his

“revocation” key. This avoids a scenario in which Alice broadcasts an old commitment

transaction and immediately spends her output, which would prevent Bob from ever

proving that this commitment was old.

Lastly, if Alice wants to unilaterally close a channel, all she has to do is broadcast

her latest local commitment (the only one not revoked) and any outstanding HTLC

transactions (explained below) and wait for the timelock to expire in order to spend her

funds. The LN specification further allows for cooperative channel closure, achieved

by negotiating and broadcasting the “closing transaction” which is not encumbered

with a timelock, providing immediate availability of funds.

As we mentioned previously, timelocks provide specific time windows within which

both parties have to check the blockchain in order to punish a misbehaving counter-

party who broadcasts an old commitment transaction. This means that parties have to

be regularly online to safeguard against theft. Furthermore, LN makes it possible to

trustlessly outsource this to so-called watchtowers, but this mechanism is not analyzed

in the current chapter.
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3.4.2 Multi-hop payments

Having funds locked down for exclusive use with a particular counterparty would be a

serious limitation. LN goes beyond that by allowing multi-hop payments. In a situation

where Alice has a channel with Bob and he has another channel with Charlie, it is

possible for Alice to pay Charlie off-chain by leveraging Bob’s help. Remarkably, this

can be achieved without any one party trusting any of the other two. One can think of

Alice giving some “marked” money to Bob, who in turn either delivers it to Charlie or

returns it to Alice – it is impossible for Bob to keep the money. It is also impossible for

Alice and Charlie to make Bob pay for this transaction out of his pocket.

We will now give a brief overview of how this counterintuitive dynamic is made

possible. Alice initiates the payment by asking Charlie to create a new hash for a pay-

ment of x coins. Charlie chooses a random secret, hashes it and sends the hash to Alice.

Alice promises Bob to pay him x in their channel if he shows her the preimage of this

particular hash within a specific time frame. Bob makes the same promise to Charlie:

if Charlie tells Bob the preimage of the same hash within a specific time frame (shorter

than the one Bob has agreed with Alice), Bob will pay him x in their common chan-

nel. Charlie then sends him the preimage (which is the secret he generated initially)

and Bob agrees to update the channel to a new version where x is moved from him to

Charlie. Similarly, Bob sends the preimage to Alice and once again Alice updates their

channel to give Bob x coins. Therefore x coins were transmitted from Alice to Charlie

and Bob did not gain or lose anything, he just increased his balance in the channel with

Alice and reduced his balance by an equal amount in the channel with Charlie.

This type of promise where a preimage is exchanged for money is called Hashed

Time Locked Contract (HTLC). It is enforceable on-chain in case the payer does not

cooperatively update upon disclosure of the preimage, thus no trust is needed. It is

realised as an additional output of the commitment transactions, which contains the

specified hash and transfers its funds either to the party that should provide the preim-

age or to the other party after a timeout. A corresponding “HTLC transaction” that can

spend this output is built by each party. In the previous example with Alice, Bob and

Charlie, two HTLC transactions were signed and fulfilled in total for the payment to

go through. Two updates happened in each channel: one to sign the HTLC and one to

fulfill it. The time frames were chosen so that every intermediary has had the time to

learn the preimage and give it to the previous party on the path. Figure 3.7 shows all

transactions implicated in a channel that has an HTLC in flight.
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In LN zero-hop payments (i.e. direct payments within a single channel) are also

carried out using HTLCs.

LN gives the possibility for intermediaries to charge a fee for their service, but

such fees are not incorporated in the current analysis for the benefit of avoiding the

added complexity and making it easier for the functionality to keep track of the correct

balances. We note in passing that the “wormhole” attack described in [106] is captured

by our model, as an adversary that controls two non-neighbouring nodes on a payment

path can skip the intermediate nodes. Nevertheless, such an attack is inconsequential in

our analysis given the lack of fees. Furthermore, LN leverages the Sphinx onion packet

scheme [107] to increase the privacy of payments, but we do not formaly analyze the

privacy of LN in this work – we just use it in our protocol description to syntactically

match the message format used by LN.

3.5 Overview of FPayNet

One of our contributions is the specification of FPayNet, a local functionality that de-

scribes the functional and security guarantees given by an ideal payment network. Its

definition can be found in Section 3.9. The central aim of FPayNet is opening payment

channels, keeping track of their state, updating them according to requested payments

and closing them, as requested by honest players, all in a secure manner. In partic-

ular, the four main messages it can receive from Alice are (OPENCHANNEL), (PAY),

(CLOSECHANNEL) and (FORCECLOSECHANNEL).

When FPayNet receives (OPENCHANNEL, Alice, Bob, x, tid) from Alice, it informs

simulator S of the intention of environment E to create a channel between Alice and

Bob where Alice owns x coins. When it receives (PAY, Bob, x,
−−→
path, receipt) from

Alice, it informs S that E asked to perform a multi-hop payment of x coins from Alice

to Bob along the
−−→
path. In the same vein, when FPayNet receives (CLOSECHANNEL,

receipt, pchid) or (FORCECLOSECHANNEL, receipt, pchid) from Alice (for a co-

operative or unilateral close respectively), it leaks to S the fact that E wants to close

the relevant channel.

In order to provide security guarantees, there are various moments when FPayNet

verifies whether certain expected events have actually taken place and halts if these

checks fail. Note that the protocol ΠLN (which realises FPayNet, c.f. Theorem 4) never

halts, therefore all possible halts of FPayNet correspond to specific security guarantees

that ΠLN satisfies. A number of messages prompt FPayNet to read from GLedger and
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perform these checks. In the actual implementations of LN these checks are done

periodically by a polling daemon. Such checks are done by FPayNet in the following

cases:

• On receiving (POLL) by Alice, FPayNet asks GLedger for Alice’s latest state ΣAlice

and verifies that no bad events have happened. In particular, FPayNet halts if any

of Alice’s channels has been closed maliciously with a transaction at height h

and, even though Alice has POLLed within [h,h+delay(Alice)−1], she did not

manage to punish the counterparty. If FPayNet does not halt, it leaks to S the

polling details (including the identity of the poller and the state of the ledger in

their view).

• FPayNet expects S to send a (RESOLVEPAYS, charged) message that gives de-

tails on the outcome of one or more multi-hop payments that include the identity

of the party that is charged. Moreover, for each resolved payment, the mes-

sage includes two expiry values that are expressed in absolute block height:

OutgoingCltvExpiry on the one hand, which is the highest block in which

the charged party could claim money from the previous hop (closer to the payer)

and IncomingCltvExpiry on the other, which is the lowest block in which the

charged party could claim money from the next hop (closer to the payee). FPayNet

checks that for each payment the charged party was one of the following: (a) the

one that initiated the payment, (b) a malicious party or (c) an honest party that is

negligent. The latter case happens when the honest party either:

1. did not POLL in time to catch a malicious closure (similarly to the check

performed when a POLL message is handled, as described above) or

2. did not POLL twice while the block height in the view of the player was

in [OutgoingCltvExpiry,IncomingCltvExpiry− (2+ r)windowSize]

with a distance of at least (2+ r)windowSize between the two POLLs or

3. did not enforce the retrieval of the funds that were lost as a result of this

payment when the chain in her view had height IncomingCltvExpiry−
(2+ r)windowSize with a FULFILLONCHAIN message, as discussed be-

low.

Note that (2+ r)windowSize is the maximum number of blocks an honest party

needs to wait from the moment a valid transaction is submitted until it is added to

the ledger state. FPayNet also ensures that the two expiries (OutgoingCltvExpiry
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and IncomingCltvExpiry) have a distance of at least relayDelay(Alice) +

(2+ r)windowSize, otherwise it halts. In case the charged party was honest,

not the payer and non-negligent, FPayNet halts. It also halts if a particular pay-

ment resulted in a channel update for which S did not inform FPayNet.

• FPayNet executes the function checkClosed(ΣAlice) every time it receives Alice’s

ledger state ΣAlice from GLedger. In this case, it checks that every channel that E
has asked to be closed or S designated as closed indeed has a closing transaction

that corresponds to its latest state in ΣAlice. Enough time is given for that transac-

tion to settle in ΣAlice, but if that time passes and the channel is still open or it is

closed to a wrong version and no opportunity for punishment was given, FPayNet

halts.

A number of messages that support the protocol progress are also handled:

• Every player has to send (REGISTER, delay, relayDelay) before participating

in the network. This informs FPayNet how often the player has to POLL. “delay”

corresponds to the maximum time between POLLs so that malicious closures will

be caught. “relayDelay” is useful when the player is an intermediary of a multi-

hop payment. It roughly represents the size of the time window the player has to

learn a preimage from the next and reveal it to the previous node. Subsequently

FPayNet asks S to create and send a public key that will hold the player’s funds.

This public key is subsequently sent back to the player.

• To complete her registration, Alice has to send the (TOPPEDUP) message. It lets

FPayNet know that the desired amount of initial funds have been transferred to

Alice’s public key. FPayNet reads Alice’s state on GLedger to retrieve this num-

ber and subsequently allows Alice to participate in the payment network after it

updates her onChainBalance.

• When FPayNet receives (CHECKFORNEW, Alice, Bob, tid) from Alice, it asks

GLedger for Alice’s latest state ΣAlice and looks for a funding transaction F in it.

If one is found, S is asked to complete the opening procedure.

• (PUSHFULFILL, pchid), (PUSHADD, pchid) and (COMMIT, pchid) all nudge S
to carry on with the protocol that updates the state of a specific channel. FPayNet

simply forwards these messages to S .
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• (FULFILLONCHAIN) prompts S to close channels in which the counterparty is

not willing to pay, even though they have promised to do so upon disclosure of

a particular preimage. This message is simply forwarded to S , but FPayNet takes

a note that such a message was received and the current blockheight in the view

of the calling party.

Last but not least, E sends (GETNEWS) to obtain the latest changes regarding newly

opened or closed channels, along with updates to the state of existing ones. Here we

make an interesting observation: The most complex part of LN is arguably the nego-

tiations that happen when a multi-hop payment takes place, due to the many channel

updates needed; indeed, two complete channel updates for each hop are needed for a

successful payment to go through. The fact that a proposal for an update can happen

asynchronously with the commitment to this update, along with the fact that a single

commitment may commit to many indiviual update proposals only adds to the com-

plexity. It is therefore only natural to want FPayNet to be unaware of these details. In

order to disentangle the abstraction of FPayNet from such minutiae, we allow the adver-

sary full control of the updates that are reported back to E via FPayNet. Nevertheless,

FPayNet enforces that any reporting deviations induced by the adversary will be caught

when a channel closes. This is quite intuitive: Consider a user of the payment net-

work that does not understand its inner workings but can read GLedger and count her

funds there. FPayNet provides no guarantees regarding any specific interim reporting

but the user is assured that in case she chooses to close the relevant channel, her state

in GLedger will be consistent with all the payments that went through.

3.6 Lightning Protocol ΠLN Overview

In order to prove that software adhering to the LN specification fulfills the security

guarantees given by FPayNet, a concrete protocol that implements LN in the UC model

is needed. To that end we define the formal protocol ΠLN, an overview of which is

given here.

For the rest of this section, we will assume that Alice, Bob and Charlie are inter-

active Turing machine instances (ITIs) [11] that honestly execute ΠLN. Similarly to the

ideal world, the main functions of ΠLN are triggered when it receives (OPENCHANNEL),

(PAY), (CLOSECHANNEL) and (FORCECLOSECHANNEL) from E . These three mes-

sages along with (GETNEWS) informally correspond to actions that a “human user”

would instruct the system to perform. (REGISTER) and (TOPPEDUP) are sent by E
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for player intialization. The rest of the messages sent from E prompt ΠLN to perform

actions that a software implementation would spontaneously perform periodically. All

messages sent between Alice, Bob and Charlie correspond to messages specified by

LN. For clarity of exposition, we avoid mentioning the exact name and contents of

every message. The formal definition of ΠLN can be found in Section 3.10.

3.6.1 Registration

Before Alice can use the network, E first has to send her a (REGISTER, delay, relayDe-

lay) message. She generates her persistent key and sends it back to E . The latter may

choose to add some funds to this key and then send (TOPPEDUP) to Alice, who checks

her state in GLedger and records her on-chain balance.

3.6.2 Channel opening

When she receives (OPENCHANNEL, Alice, Bob, x, tid) from E , Alice initiates the

message sequence needed to open a channel with Bob, funded by her with x coins.

After following the steps described in Section 3.4, the funding transaction has been

submitted to GLedger. However the channel is not open yet.

At a later point E may send (CHECKFORNEW, Alice, Bob, tid) to Alice. She then

checks if her state in GLedger contains the funding transaction with the temporary ID

tid and in that case she exchanges new commitment keys with Bob, as per Section 3.4.

The channel is now open. Both parties keep a note to give E a receipt of the new

channel the next time they receive (GETNEWS).

3.6.3 Channel closing

When sent by E , the messages CLOSECHANNEL and FORCECLOSECHANNEL prompt

Alice to close the channel cooperatively or unilaterally respectively, as explained in

Section 3.4. In both cases she takes a note to notify E that the channel is closed when

she receives (GETNEWS).

3.6.4 Performing payments

We will now follow the exact steps needed for a multi-hop payment, filling in many

details that we omitted from Section 3.4. When she receives (PAY, Charlie, x,
−−→
path)
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from E , Alice attempts to pay Charlie x coins, using the provided
−−→
path. Let us as-

sume that the path is Alice – Bob – Charlie. Alice asks Charlie for an “invoice” with

the HTLC hash, to which Charlie reacts by choosing a random preimage and send-

ing back to Alice its hash. Alice then prepares a Sphinx [107] onion packet with the

relevant information for each party on the
−−→
path and sends it to Bob. Bob “peels” his

layer of the onion and, after performing sanity checks and extracting the hash, he takes

a note of this pending HTLC. He does not yet forward the onion to Charlie, because

Alice is not yet committed to paying Bob. The latter happens if Alice subsequently re-

ceives (COMMIT, pchidAB) from E , where pchidAB is the ID of the Alice – Bob channel.

She then sends Bob all the signatures needed to make the new commitment transac-

tion spendable, who replies with the secret commitment key of the old commitment

transaction (thus revoking it), along with the public commitment key of the future

commitment transaction (to allow Alice to prepare the next update, when that hap-

pens). LN demands that before Bob forwards the onion to Charlie, he must commit as

well to the HTLC to Alice. This happens if he receives the relevant COMMIT message

from E . Now that both parties have the HTLC in their commitment transaction and

all past commitment transactions are revoked, they consider this HTLC “irrevocably

committed”.

Bob may then receive (PUSHADD, pchidAB) from E . Bob sends the onion to

Charlie, who in turn peels it, recognizes that the payment is for him and that indeed

he knows the preimage (since he generated it himself) and waits for the HTLC be-

tween him and Bob to be irrevocably committed. After both Bob and Charlie receive

(COMMIT), Charlie awaits for a (PUSHFULFILL, pchidBC) message from E . If it ar-

rives, Charlie sends the preimage to Bob, who sends it back to Alice. Once more every

party has to receive a (COMMIT) message for each of the channels it participates in in

order to remove the HTLC and update the definitive balance of each player to the ap-

propriate value after the payment is complete. After this last update, each party keeps

a note to inform E about the new balance when it receives (GETNEWS). Alice and

Charlie also keep a note to inform E that the payment it had asked for succeeded.

Observe that while locked up in an HTLC, funds do not belong to either player;

they are rather in a temporary, transitive state. If one party learns the preimage, the

funds become theirs, whereas if it does not learn the preimage after some time, the

other party is entitled to the funds. Also observe that within the UC framework the

necessary messages COMMIT, PUSHFULFILL and PUSHADD may never arrive, but

in a correct software implementation the corresponding actions happen automatically,
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without waiting for a prompt by the user.

3.6.5 Polling

Lastly, E may send (POLL) to Alice. She then reads her state in GLedger and checks

for closed channels. If she finds maliciously closed channels (closed using old com-

mitments), she punishes the counterparty and takes all the funds in the channel. If

she finds in an honestly closed channel a preimage of an HTLC that she has previously

signed and for which she is an intermediary, she records it and prepares to send it when

she receives (PUSHFULFILL). Finally, if she finds an honestly closed channel with an

HTLC output for which she knows the preimage, she spends it immediately. For every

closed channel she finds, she keeps a note to report it to E the next time she receives

(GETNEWS).

Remark 4 (Differences between LN and ΠLN). In LN, a custom construction for gen-

erating a new secret during each channel update is used. It reduces the space needed

to maintain a channel from O(n) to O(logn) in the number of updates. As far as we

know, its security has not been formally analysed. In the current paper we use instead

a PRF [103].

As mentioned earlier, LN uses a custom construction that takes advantage of el-

liptic curve homomorphic properties in order to derive any number of keypairs by

combining a single “basepoint” with different “labels”. We instead use Identity Based

Signatures [104, 105] (IBS) to abstract the properties provided by the construction.

We also prove in Section 3.3.3.3 that it actually implements an IBS.

Additionally, we have chosen to simplify the protocol in a number of ways in or-

der to keep the analysis tractable. In particular LN defines several additional mes-

sages that signal various types of errors in transmission. It also specifies exactly how

message retransmission should happen upon reconnection, specifically for the case of

connection failure while updating a channel. This allows for a more robust system by

excluding many cases of accidental channel closures. What is more, an LN user can

change their “delay” and “relayDelay” parameters even after registration, which is

not the case in ΠLN.

Lastly, in order to incentivize users to act as intermediaries or check for channel

closures on behalf of others, LN permits receiving fees for these two roles. Further-

more, in order to reduce transaction size and ensure that bitcoin nodes relay the trans-

actions, it specifies exact rules for pruning outputs of too low value (known as “dust

80



outputs”). In the current analysis we do not consider these features.

Figure 3.8 lists an exhaustive list of the exact data a channel participant needs to

store.

• Alice’s secret keys:

– sAlice: key for on-chain funds (DS)a

– sAlice,F : funding (DS)

– sbAlice,pay: payment basepoint (IBS)b

– sbAlice,dpay: delayed payment basepoint (IBS)

– sbAlice,htlc: htlc basepoint (IBS)

– sbAlice,rev: revocation basepoint (CSc – master)

• Bob’s public keys: public counterparts to 5 keys above

• seed: for deriving Alice’s per commitment keys sAlice,com,i with PRF

• Bob’s per commitment points:

– ∀i ∈ [1, . . . ,n],sBob,com,i: one secret per REVOKEANDACK received

(CS – share)

– pBob,com,n+1 and pBob,com,n+2: current and next points (CS – share)

• Alice’s coins

• Bob’s coins

• for every HTLC that is included in the latest irrevocably committed (local

or remote) commitment:

– direction (Alice→ Bob or Bob→ Alice)

– hash

– preimage (if known)

– coins

– Is it included in latest localComn? (boolean)

– HTLC number
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• signatures:

– signature resulting from SIGNDS(localComn+1,sBob,F) (DS)

– for every HTLC included in localComn+1, if HTLC is outgoing, a

signature for HTLC−timeout, else a signature for HTLC−success

with sBob,htlc,n+1 (IBS)
abasic Digital Signature
bIdentity Based Signature
cCombined Signature

Figure 3.8: Data Alice holds in an Alice – Bob channel with n updates

3.7 The Combined Signature primitive

As previously mentioned, we define a new primitive for combining keys and generating

signatures, which is leveraged in the revocation and punishment mechanism of channel

updates. Furthermore, we prove that the construction designed by the creators of LN

realizes this primitive. We provide here the concrete syntax and correctness definitions,

along with the intuition behind it, the exact security definitions, a concrete construction

and proof of its security.

Previous work on the subject of multi-party signatures [95, 108, 109, 110, 111,

112] focuses on use-cases where some parties desire to generate a signature without

revealing their private information; the latter is created using an interactive protocol.

The resulting signatures can be verified by a single verification key, which is also

included in the output of the key generation protocol. As we will see however, the

primitive defined here has different aims and limitations and, to our knowledge, has

not been formalized yet.

A combined signature is a two-party primitive, say between Alice and Bob, with

Bob being the signer and Alice the holder of a share of the secret key. This share

is essential for issuing signatures, which in turn are verifiable with the “combined”

verification key. The verification key is generated using public information drawn from

Alice and Bob and is feasible without any party knowing the corresponding signing key.

Bob will be able to construct the signing key only if Alice shares her secret information

with him.
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More specifically, the seven algorithms used by a Combined Signatures scheme

are:

• (mpk,msk)←MASTERKEYGEN
(
1k)

• (pk,sk)← KEYSHAREGEN
(
1k)

• cpkl ← COMBINEPUBKEY (mpk, pk)

• (cpkl,cskl)← COMBINEKEY (mpk,msk, pk,sk)

• {0,1}← TESTKEY (pk,sk)

• σ← SIGNCS (m,csk)

• {0,1}← VERIFYCS (σ,m,cpk)

We demand that these three properties hold for a scheme to have correctness:

• ∀k ∈ N,
Pr[(pk,sk)← KEYSHAREGEN

(
1k) ,

TESTKEY(pk,sk) = 1] = 1

I.e. KEYSHAREGEN() must always generate a valid keypair.

• ∀k ∈ N,
Pr[(mpk,msk)←MASTERKEYGEN

(
1k) ,

(pk,sk)← KEYSHAREGEN
(
1k) ,

(cpk1,csk1)← COMBINEKEY (mpk,msk, pk,sk) ,

cpk2← COMBINEPUBKEY (mpk, pk) ,

cpk1 = cpk2] = 1

I.e. for suitable input, COMBINEPUBKEY() and COMBINEKEY() produce the

same public key.

• ∀k ∈ N,m ∈M ,

Pr[(mpk,msk)←MASTERKEYGEN
(
1k) ,

(pk,sk)← KEYSHAREGEN
(
1k) ,

(cpk,csk)← COMBINEKEY (mpk,msk, pk,sk) ,

VERIFYCS(SIGNCS(m,csk),m,cpk) = 1] = 1

I.e. for suitable input, honestly generated signatures always verify correctly.
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Beyond correctness, combined signatures have two security properties expressed

as follows. Share-EUF security expresses security from the point of view of Alice, and

establishes that Bob cannot issue a valid combined signature if he does not possess

Alice’s corresponding secret share. Formally:

1: (aux,mpk,n)← A (INIT)

2: for i← 1 to n do

3: (pki,ski)← KEYSHAREGEN
(
1k
)

4: end for

5: (cpk∗, pk∗,m∗,σ∗)← A (KEYS,aux, pk1, . . . , pkn)

6: if pk∗ ∈ {pk1, . . . , pkn}∧ cpk∗ = COMBINEPUBKEY (mpk, pk∗)∧
VERIFYCS (σ∗,m∗,cpk∗) = 1 then

7: return 1

8: else

9: return 0

10: end if

Game share-EUFA (1k
)

Figure 3.9: share-EUFA (1k) game

Definition 13. A Combined Signatures scheme is share-EUF-secure if

∀A ∈ PPT,Pr
[
share-EUFA

(
1k
)
= 1
]
= negl(k)or equivalently

E-share(k) = negl(k) ,

where E-share(k) = sup
A∈PPT

{Pr[share-EUFA
(

1k
)
= 1]}

On the other hand, master-EUF-CMA security is modeled very similarly to standard

EUF-CMA security, with the difference that Bob (the signer) combines malicious shares

into his public key and issues signatures with respect to such combined keys. The se-

curity property ensures that these signatures provide no advantage to the adversary in

terms of producing a forged message for a combined key of its choice. Formally:
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1: (mpk,msk)←MASTERKEYGEN
(
1k
)

2: i← 0

3: (auxi, response)← A (INIT,mpk)

4: while response can be parsed as (pk,sk,m) do

5: i← i+1

6: store pk,sk,m as pki,ski,mi

7: (cpki,cski)← COMBINEKEY (mpk,msk, pki,ski)

8: σi← SIGNCS (mi,cski)

9: (auxi, response)← A (SIGNATURE,auxi−1,σi)

10: end while

11: parse response as (cpk∗, pk∗,m∗,σ∗)

12: if m∗ /∈ {m1, . . . ,mi}∧ cpk∗ = COMBINEPUBKEY (mpk, pk∗)∧
VERIFYCS (σ∗,m∗,cpk∗) = 1 then

13: return 1

14: else

15: return 0

16: end if

Game master-EUF-CMAA (1k
)

Figure 3.10: master-EUF-CMAA (1k) game

Definition 14. A Combined Signatures scheme is master-EUF-CMA-secure if

∀A ∈ PPT,Pr
[
master-EUF-CMAA

(
1k
)
= 1
]
= negl(k)or equivalently

E-master(k) = negl(k) ,

where E-master(k) = sup
A∈PPT

{Pr[master-EUF−CMAA
(

1k
)
= 1]}

Definition 15. A Combined Signatures scheme is combine-EUF-secure if it is both

share-EUF-secure and master-EUF-CMA-secure.

In conclusion, a collection of algoritms is said to be a secure Combined Signatures

scheme if it conforms to the syntax of the seven aforementioned algorithms, it satisfies

the three correctness properties and provides existential unforgeability against key-

only attacks with respect to key shares and existential unforgeability against chosen

message attacks with respect to master keys.
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We here define the particular construction for Combined Signatures used in LN and

prove its security.

Parameters: hash function H , group generator G

MASTERKEYGEN(1k):

return KEYGEN(1k)

KEYSHAREGEN(1k):

return KEYGEN(1k)

COMBINEPUBKEY(mpk, pk):

return mpk ·H (mpk∥ pk)+ pk ·H (pk∥mpk)

COMBINEKEY(mpk,msk, pk,sk):

return (COMBINEPUBKEY(mpk, pk),msk ·H (mpk∥ pk)+ sk ·H (pk∥mpk))

TESTKEY(pk,sk):

if pk = PUBKEYGEN(sk) then
return 1

else
return 0

end if

SIGNCS(m,csk):

return SIGNDS(m,csk)

VERIFYCS(σ,m,cpk):

return VERIFYDS(σ,m,cpk)

One can check by inspection that the syntax above matches the one required by the

Combined Signatures scheme definition. Furthermore, assuming that SIGNDS() and

VERIFYDS() are provided by a correct Digital Signature construction, it is straightfor-

ward to confirm that the construction here satisfies the Combined Signatures correct-

ness properties.

We now move on to proving that the construction is also secure.

Lemma 2. The construction defined above is share-EUF-secure in the Random Oracle

model under the assumption that the underlying signature scheme is strongly EUF-

CMA-secure and the range of the Random Oracle coincides with that of the underlying

signature scheme signing keys.
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Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
share-EUFB

(
1k
)
= 1
]
= a = non-negl(k) .

We construct a PPT distinguisher A (Fig. 3.11) such that

Pr
[
EUF-CMAA

(
1k
)
= 1
]
= non-negl(k)

that breaks the assumption, thus proving Lemma 2.

1: j $←U [1,T (B)] // T (M) is the maximum running time of M

2: Random Oracle: for every first-seen query q from B set H (q) to a random value

3: return H (q) to B

4: (aux,mpk,n)← A (INIT)

5: for i← 1 to n do

6: (pki,ski)← KEYSHAREGEN
(
1k
)

7: end for

8: Random Oracle: Let q be the j-th first-seen query from B:

9: if q = (mpk∥x) then

10: if H (x∥mpk) unset then

11: set H (x∥mpk) to a random value

12: end if

13: set H (mpk∥x) to (vk− x ·H (x∥mpk)) ·mpk−1

14: else if q = (x∥mpk) then

15: if H (mpk∥x) unset then

16: set H (mpk∥x) to a random value

17: end if

18: set H (x∥mpk) to (vk−mpk ·H (mpk∥x)) · x−1

19: else

20: set H (q) to a random value

21: end if

22: return H (q) to B

23: (cpk∗, pk∗,m∗,σ∗)← B (KEYS,aux, pk1, . . . , pkn)

24: if vk = cpk∗∧B wins the share-EUF game then // A won the EUF-CMA game

25: return (m∗,σ∗)

26: else

27: return FAIL

Algorithm A (vk)
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28: end if

Figure 3.11: Reduction of share-EUF attacker to EUF-CMA attacker

Let Y be the range of the random oracle. The modified random oracle used in

Fig. 3.11 is indistinguishable from the standard random oracle by PPT algorithms since

the statistical distance of the standard random oracle from the modified one is at most
1

2|Y | = negl(k) as they differ in at most one element.

Let E denote the event in which B does not invoke COMBINEPUBKEY to produce

cpk∗. In that case the values H (pk∗ ∥mpk) and H (mpk∥ pk∗) are decided after B
terminates (Fig. 3.11, line 24) and thus

Pr [cpk∗ = COMBINEPUBKEY (mpk, pk∗) |E] = 1
|Y |

= negl(k)⇒

Pr [cpk∗ = COMBINEPUBKEY (mpk, pk∗)∧E] = negl(k) .

(3.3)

It is

(B wins)→ (cpk∗ = COMBINEPUBKEY (mpk, pk∗))⇒

Pr [B wins]≤ Pr [cpk∗ = COMBINEPUBKEY (mpk, pk∗)]⇒

Pr [B wins∧E]≤ Pr [cpk∗ = COMBINEPUBKEY (mpk, pk∗)∧E]
(3.3)⇒

Pr [B wins∧E] = negl(k) .

But we know that Pr [B wins] =Pr [B wins∧E]+Pr [B wins∧¬E] and Pr [B wins] =

a by the assumption, thus

Pr [B wins∧¬E]> a−negl(k) . (3.4)

We now focus at the event ¬E. Let F the event in which the call of B to COM-

BINEPUBKEY to produce cpk∗ results in the j-th invocation of the Random Oracle.

Since j is chosen uniformly at random and using Proposition 2, Pr [F |¬E] = 1
T (B) .

Observe that Pr [F |E] = 0⇒ Pr [F ] = Pr [F |¬E] = 1
T (B) .

In the case where the event (F ∧B wins∧¬E) holds, it is

cpk∗ = COMBINEPUBKEY (mpk, pk∗) =

mpk ·H (mpk∥ pk∗)+ pk∗ ·H (pk∗ ∥mpk)
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Since F holds, the j-th invocation of the Random Oracle queried either the value

H (mpk∥ pk∗) or H (pk∗ ∥mpk). In either case (Fig. 3.11, lines 9-18), it is cpk∗ =

vk. This means that VERIFYCS (σ∗,m∗,vk) = 1. We conclude that under the event

(F ∧B wins∧¬E), A wins the EUF-CMA game. A final observation is that the proba-

bility that the events (B wins∧¬E) and F are almost independent, thus

Pr [F ∧B wins∧¬E] = Pr [F ]Pr [B wins∧¬E]±negl(k)
(3.4)
=

a−negl(k)
T (B)

±negl(k) = non-negl(k)

Lemma 3. The construction above is master-EUF-CMA-secure in the Random Oracle

model under the assumption that the underlying signature scheme is strongly EUF-

CMA-secure and the range of the Random Oracle coincides with that of the underlying

signature scheme signing keys.

Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
master-EUF-CMAB

(
1k
)
= 1
]
= a = non-negl(k) .

We construct a PPT distinguisher A (Fig. 3.12) such that

Pr
[
EUF-CMAA

(
1k
)
= 1
]
= non-negl(k)

that breaks the assumption, thus proving Lemma 3.

1: j $←U [1,T (B)+T (A)] // T (M) is the maximum running time of M

2: Random Oracle: for every first-seen query q from B set H (q) to a random value

3: return H (q) to B

4: (mpk,msk)←MASTERKEYGEN
(
1k
)

5: Random Oracle: Let q be the j-th first-seen query from B or A :

6: if q = (mpk∥x) then

7: if H (x∥mpk) unset then

8: set H (x∥mpk) to a random value

9: end if

10: set H (mpk∥x) to (vk− x ·H (x∥mpk)) ·mpk−1

11: else if q = (x∥mpk) then

12: if H (mpk∥x) unset then

Algorithm A (vk)
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13: set H (mpk∥x) to a random value

14: end if

15: set H (x∥mpk) to (vk−mpk ·H (mpk∥x)) · x−1

16: else

17: set H (q) to a random value

18: end if

19: return H (q) to B or A

20: i← 0

21: (auxi, response)← B (INIT,mpk)

22: while response can be parsed as (pk,sk,m) do

23: i← i+1

24: store pk,sk,m as pki,ski,mi

25: (cpki,cski)← COMBINEKEY (mpk,msk, pki,ski)

26: σi← SIGNCS (mi,cski)

27: (auxi, response)← B (SIGNATURE,auxi−1,σi)

28: end while

29: parse response as (cpk∗, pk∗,m∗,σ∗)

30: if vk = cpk∗∧B wins the master-EUF-CMA game then // A won the EUF-CMA game

31: return (m∗,σ∗)

32: else

33: return FAIL

34: end if

Figure 3.12: Reduction of master-EUF-CMA attacker to EUF-CMA attacker

The modified random oracle used in Fig. 3.12 is indistinguishable from the standard

random oracle for the same reasons as in the proof of Lemma 2.

Let E denote the event in which COMBINEPUBKEY is not invoked to produce

cpk∗. In that case the values H (pk∗ ∥mpk) and H (mpk∥ pk∗) are decided after B
terminates (Fig. 3.12, line 30) and thus

Pr [cpk∗ = COMBINEPUBKEY (mpk, pk∗) |E] = negl(k)⇒

Pr [cpk∗ = COMBINEPUBKEY (mpk, pk∗)∧E] = negl(k) .
(3.5)

We can reason like in the proof of Lemma 2 to deduce that

Pr [B wins∧¬E]> a−negl(k) . (3.6)
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We now focus at the event ¬E. Let F the event in which the call of to COM-

BINEPUBKEY that produces cpk∗ results in the j-th invocation of the Random Oracle.

Since j is chosen uniformly at random and using Proposition 2, Pr [F |¬E] = 1
T (B)+T (A) .

Observe that Pr [F |E] = 0⇒ Pr [F ] = Pr [F |¬E] = 1
T (B)+T (A) .

Once more we can reason in the same fashion as in the proof of Lemma 2 to deduce

that

Pr [F ∧B wins∧¬E] = Pr [F ]Pr [B wins∧¬E]±negl(k)
(3.6)
=

a−negl(k)
T (B)+T (A)

±negl(k) = non-negl(k)

The two results can then be combined to obtain the desired security property:

Theorem 2. The construction above is combine-EUF-secure in the Random Oracle

model under the assumption that the underlying signature scheme is strongly EUF-

CMA-secure.

Proof. The construction is combine-EUF-secure as a consequence of Lemma 2, Lemma 3

and the definition of combine-EUF-security.

3.8 Instant finality ledgers are unrealisable

Previous attempts at formalising payment channels in UC [47, 96, 32, 33] assume a

variant of a ledger functionality with instant finality. In particular, in [47, 33, 96]

the specified ledger functionality settles every submitted transaction immediately and

makes it visible to all players. To date, such a ledger has not been realized by any

protocol. Furthermore, any realistic model of the network should consider the fact that

messages reach their destination with a delay and possibly in a different order from the

one they were sent. Therefore it is plausible to believe that such a ledger functionality

is not realizable on top of realistic network models, even when corruptions are not

allowed. We here prove formally this intuition.

In [32] the ledger is not explicitly specified as a functionality, but it is only infor-

mally described. Several smart contracts are formally defined instead as UC ITMs,

which are the entities with which protocols ultimately interact. The execution model

of these contracts and their interaction with the blockchain is explained in an intuitive

way, but a complete formalization of the ledger is missing.
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1: State: List of txs L

2: Upon receiving (SUBMIT, m) from P or A , append m to L and send (SUBMIT, P or A ,

m) to A

3: Upon receiving (READ) from P, send (READ, L) to P

Functionality FPerfectL

Figure 3.13: FPerfectL functionality

We define a representative variant of the perfect ledger FPerfectL in Figure 3.13

where all submitted transactions are instantly added to the ledger and immediately

available to be read by all players. Subsequently we argue that, albeit an attractive ab-

straction, such a functionality is unrealisable, even under strong network assumptions,

i.e. a multicast synchronous network F 1
N-MC (c.f. Figure 3.14). Such a network ensures

that messages sent by honest parties will be instantly delivered to all other parties; no

delays can be introduced by the adversary. The formal definition of F 1
N-MC can be

found in Figure 3.14. The adversary however may choose to send its own messages

only to specific parties. This allows the adversary to spread conflicting information or

withhold data from some parties. This adversarial ability precludes the possibility of

such a ledger to be realised.

The functionality is parameterised with a set of possible senders and receivers P . Any

newly registered (resp. deregistered) party is added to (resp. deleted from) P .

• Honest sender multicast. Upon receiving (MULTICAST,sid,m) from some Up ∈ P ,

where P = {U1, . . . ,Un} denotes the current party set, choose n new unique message-IDs

mid1, . . . ,midn, initialize 2n new variables Dmid1 := DMAX
mid1

. . . := Dmidn := DMAX
midn

:= 1,

set M⃗ := M⃗||(m,mid1,Dmid1 ,U1)|| . . . ||(m,midn,Dmidn ,Un), and send

(MULTICAST,sid,m,Up,(U1,mid1), . . . ,(Un,midn)) to the adversary.

• Adversarial sender (partial) multicast. Upon receiving

(MULTICAST,sid,(mi1 ,Ui1), . . . ,(miℓ ,Uiℓ) from the adversary with {Ui1 , . . . ,Uiℓ} ⊆ P ,

Functionality F ∆
N-MC
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choose ℓ new unique message-IDs midi1 , . . . ,midiℓ , initialize ℓ new variables

Dmidi1
:= DMAX

midi1
:= . . . := Dmidiℓ

:= DMAX
midiℓ

:= 1, set

M⃗ := M⃗||(mi1 ,midi1 ,Dmidi1
,Ui1)|| . . . ||(miℓ ,midiℓ ,Dmidiℓ

,Uiℓ), and send

(MULTICAST,sid,(mi1 ,Ui1 ,midi1), . . . ,(miℓ ,Uiℓ ,midiℓ) to the adversary.

• Honest party fetching. Upon receiving (FETCH,sid) from Up ∈ P (or from A on behalf

of Up if Up is corrupted):

1. For all tuples (m,mid,Dmid,Up) ∈ M⃗, set Dmid := Dmid−1.

2. Let M⃗Up
0 denote the subvector M⃗ including all tuples of the form (m,mid,Dmid,Up)

with Dmid = 0 (in the same order as they appear in M⃗). Delete all entries in M⃗Up
0 from

M⃗, and send M⃗Up
0 to Up.

• Adding adversarial delays. Upon receiving

(DELAYS,sid,(Tmidi1
,midi1), . . . ,(Tmidiℓ

,midiℓ)) from the adversary do the following for

each pair (Tmidi j
,midi j):

If DMAX
midi j

+Tmidi j
≤ ∆ and mid is a message-ID registered in the current M⃗, set

Dmidi j
:= Dmidi j

+Tmidi j
and set DMAX

midi j
:= DMAX

midi j
+Tmidi j

; otherwise, ignore this pair.

• Adversarially reordering messages. Upon receiving (SWAP,sid,mid,mid′) from the

adversary, if mid and mid′ are message-IDs registered in the current M⃗, then swap the

triples (m,mid,Dmid, ·) and (m,mid′,Dmid′ , ·) in M⃗. Return (SWAP,sid) to the adversary.

Figure 3.14: F ∆
N-MC functionality

Theorem 3 (Perfect Ledger is Unrealisable). No ITM ΠPerfectL with hybrids F 1
N-MC

and ḠCLOCK can realise FPerfectL. Put otherwise, for any ITM ΠPerfectL with hybrids

F 1
N-MC and ḠCLOCK, there exist ITMs EPL, APL such that for any ITM S

EXEC
F 1

N-MC,ḠCLOCK

ΠPerfectL,APL,EPL
̸≈ EXEC

FPerfectL,ḠCLOCK

S ,EPL

Proof Sketch. We take advantage of APL’s ability to selectively send messages to spe-

cific players. In particular, EPL starts an execution with two players and generates a

random message m. In half of the executions (randomly selected), the adversary simu-

lates a “broken” ΠPerfectL execution where the effects of submitting m are only shared

with one of the two players, say Alice by APL (in the real world). The environment
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then sends (READ) to the other player, say Bob. If Bob returns a ledger containing m,

then EPL concludes that it is the ideal world, otherwise it sends (READ) to Alice. If

she returns a ledger with m, then EPL concludes it is in the real world, otherwise it

concludes it is in the ideal world.

The above is not sufficient since a protocol may choose to return an empty ledger;

to counter this, in the other half of the executions, EPL sends (SUBMIT, m) to Alice and

then (READ) to Bob. If, and only if, Bob knows m, then EPL concludes this is the ideal

world. This forces the ΠPerfectL protocol to achieve instant finality and will establish

that a distinguishing advantage exists no matter how ΠPerfectL is implemented. □

Proof of Theorem 3. We first define the offending environment and adversary and sub-

sequently show how they can distinguish the ideal from the real world.

Spawn two players, Alice and Bob. Flip a coin. If it returns 0, execute

WRITEWITHPLAYER, otherwise execute WRITEWITHADVERSARY.

1: procedure WRITEWITHPLAYER

2: First activation:

3: choose random number m $←{0,1}k

4: assign at random names Alice, Bob to two players

5: send (SUBMIT, m) to Alice

6: Second activation:

7: send (READ) to Bob

8: if Bob does not give subroutine output then

9: return 0 // real world

10: else if Bob’s subroutine output L contains m then

11: return 1 // players communicated

12: else if L does not contain m then

13: return 0 // players did not communicate

14: end if

15: end procedure

16: procedure WRITEWITHADVERSARY

17: First activation:

Environment EPL
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18: choose random number m $←{0,1}k

19: assign at random names Alice, Bob to two players

20: send (LEAK, m, Alice) to A // in real world A will MULTICAST to Alice

21: Second activation:

22: send (READ) to Bob

23: Third activation:

24: if Bob does not give subroutine output then

25: return 0 // real world

26: else if Bob’s subroutine output LBob contains m then

27: return 1 // ideal world

28: end if

29: send (READ) to Alice

30: if Alice does not give subroutine output then

31: return 0 // real world

32: else if Alice’s subroutine output LAlice contains m then

33: return 0 // real world

34: else if LAlice does not contain m then

35: return 1 // ideal world or real Alice misbehaving

36: end if

37: end procedure

Figure 3.15: EPL environment

Upon receiving (LEAK, m, Alice) from EPL, simulate ΠPerfectL reacting to (SUBMIT, m). If it

attempts to send a message (MULTICAST, m′) to F 1
N-MC, send (MULTICAST, (m′, Alice)) to

F 1
N-MC.

Adversary APL

Figure 3.16: APL adversary

Since we quantify over all possible S and ΠPerfectL, we have to refer to the proba-
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bilities of them taking specific actions of interest:

pΠPerfectL
submits = Pr[Upon receiving (SUBMIT, m) from E ,

ΠPerfectL sends (MULTICAST, f (m)) to F 1
N-MC for some function f ]

pΠPerfectL
fetches = Pr[Upon receiving (READ) from E ,

ΠPerfectL sends (FETCH) to F 1
N-MC for data m′

and sends back to E a (READ, L) such that

if there is a unique element m in L , it is f (m) = m′]

We first analyze the event in which the initial coin flip of E results in 0, Coin0. In

the ideal world, the submitted message m always ends up in the ledger right away and

therefore when E has Bob READ, it always sees m in the answer, therefore (Fig. 3.15,

line 11)

Pr[EXEC
FPerfectL,ḠCLOCK

S ,EPL
= 1|Coin0] = 1 .

In the real world, in order for the submitted message m to be in Bob’s response to

READ, he must have fetched from F 1
N-MC and considered this data as a new ledger

entry, and Alice must have sent some function of m to F 1
N-MC when she received

(SUBMIT, m), except if he could guess m, which can happen with negligible proba-

bility, therefore

Pr[EXEC
F 1

N-MC,ḠCLOCK

ΠPerfectL,APL,EPL
= 1|Coin0]< pΠPerfectL

submits pΠPerfectL
fetches +negl(k) .

We now move on to the event in which the initial coin flip results in 1, Coin1. In

the ideal world, if S SUBMITs the received m to the ledger then E’s READ request to

Bob will be answered with an output that contains m and E will output 1 (Fig. 3.15,

line 27). If on the other hand S does not SUBMIT it, then neither Bob’s nor Alice’s

answer will contain m, so E’s output will also be 1 (Fig. 3.15, line 35).

Pr[EXEC
FPerfectL,ḠCLOCK

S ,EPL
= 1|Coin1] = 1 .

Lastly, in the real world, Bob’s buffer in F 1
N-MC does not contain any informa-

tion, so he may return a ledger containing m only with negligible probability. In case

he returns a ledger without m, Alice will respond to E’s READ query with a ledger

containing m exactly in the case that the event that defines pΠPerfectL
fetches is true, therefore

Pr[EXEC
F 1

N-MC,ḠCLOCK

ΠPerfectL,APL,EPL
= 1|Coin1]< (1− pΠPerfectL

fetches )+negl(k) .
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Note that ΠPerfectL cannot leverage knowledge of its own pid in order to have Alice

behave differently from Bob in a manner that tricks EPL into believing that it interacts

with the ideal world (i.e. make Alice also not return a ledger that contains m) because

the roles of Alice and Bob are assigned and the coin is flipped secretly at random by

EPL.

In aggregate,

Pr[EXEC
F 1

N-MC,ḠCLOCK

ΠPerfectL,APL,EPL
= 1] =

1
2
(Pr[EXEC

F 1
N-MC,ḠCLOCK

ΠPerfectL,APL,EPL
= 1|Coin0]+Pr[EXEC

F 1
N-MC,ḠCLOCK

ΠPerfectL,APL,EPL
= 1|Coin1])<

1
2
(pΠPerfectL

submits pΠPerfectL
fetches +1− pΠPerfectL

fetches )+negl(k) =

1
2
+ pΠPerfectL

fetches
pΠPerfectL

submits −1
2

+negl(k) ,

and

Pr[EXEC
FPerfectL,ḠCLOCK

S ,EPL
= 1] =

1
2
(Pr[EXEC

FPerfectL,ḠCLOCK

S ,EPL
= 1|Coin0]+Pr[EXEC

FPerfectL,ḠCLOCK

S ,EPL
= 1|Coin1]) = 1 .

For these two probabilities to be equal (which is necessary and sufficient for in-

distinguishability to hold), it would have to be pΠPerfectL
fetches (pΠPerfectL

submits − 1) = 1. One can

verify that there is no assignment to the two probabilities that satisfies this equation

and maintains both values within [0,1]. Therefore, the real and the ideal world are

distinguishable.

3.9 Payment Network Functionality

Interface:

• from E :

– (REGISTER, delay, relayDelay)

– (TOPPEDUP)

– (OPENCHANNEL, Alice, Bob, x, tid)

Functionality FPayNet – preamble
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– (CHECKFORNEW, Alice, Bob, tid)

– (PAY, Bob, x,
−−→
path, receipt)

– (CLOSECHANNEL, receipt, tid)

– (POLL)

– (PUSHFULFILL, pchid)

– (PUSHADD, pchid)

– (COMMIT, pchid)

– (FULFILLONCHAIN)

– (GETNEWS)

• to E :

– (REGISTER, Alice, delay(Alice), relayDelay(Alice), pubKey)

– (REGISTERED)

– (CHANNELCLOSED, receipt)

– (NEWS, newChannels, closedChannels, updatesToReport)

• from S :

– (REGISTERDONE, Alice, pubKey)

– (CORRUPTED, Alice)

– (CHANNELANNOUNCED, Alice, pAlice,F , pBob,F , fchid, pchid, tid)

– (UPDATE, receipt, Alice)

– (RESOLVEPAYS, payid, charged)

• to S :

– (REGISTER, Alice, delay, relayDelay, lastPoll)

– (OPENCHANNEL, Alice, Bob, x, fchid, tid)

– (CHANNELOPENED, Alice, fchid)

– (PAY, Alice, Bob, x,
−−→
path, receipt, payid)

– (CONTINUE)

– (CLOSECHANNEL, fchid, Alice)
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– (POLL, ΣAlice, Alice)

– (PUSHFULFILL, pchid, Alice)

– (PUSHADD, pchid, Alice)

– (COMMIT, pchid, Alice)

– (FULFILLONCHAIN, t, Alice)

Figure 3.17

1: Initialisation:

2: channels,pendingPay,pendingOpen,corrupted,Σ← /0

3: Upon receiving (REGISTER,delay, relayDelay) from Alice:

4: delay(Alice)← delay // Must check chain at least once every delay(Alice) blocks

5: relayDelay(Alice)← relayDelay

6: updatesToReport(Alice) ,newChannels(Alice)← /0

7: polls(Alice)← /0

8: focs(Alice)← /0

9: register Alice to GLedger, send (READ) to GLedger as Alice, store reply to ΣAlice, add

ΣAlice to Σ and add largest block number to polls(Alice)

10: checkClosed(ΣAlice)

11: send (REGISTER,Alice,delay, relayDelay, lastPoll) to S

12: Upon receiving (REGISTERDONE,Alice,pubKey) from S :

13: pubKey(Alice)← pubKey

14: send (REGISTER, Alice, delay(Alice), relayDelay(Alice), pubKey) to Alice

15: Upon receiving (TOPPEDUP) from Alice:

16: send (READ) to GLedger as Alice and store reply to ΣAlice

17: checkClosed(ΣAlice)

18: assign the sum of all output values that are exclusively spendable by Alice to

onChainBalance

Functionality FPayNet – support

99



19: send (REGISTERED) to Alice

20: Upon receiving any message except for (REGISTER) from Alice:

21: ignore message if Alice has not registered

22: Upon receiving (CORRUPTED,Alice) from S :

23: add Alice to corrupted

24: for the rest of the execution, upon receiving any message for Alice, bypass normal

execution and simply forward it to S

Figure 3.18

1: Upon receiving (OPENCHANNEL,Alice,Bob,x, tid) from Alice:

2: ensure tid hasn’t been used by Alice for opening another channel before

3: choose unique channel ID fchid

4: pendingOpen(fchid)← (Alice,Bob,x, tid)

5: send (OPENCHANNEL,Alice,Bob,x, fchid, tid) to S

6: Upon receiving (CHANNELANNOUNCED,Alice, pAlice,F , pBob,F , fchid,pchid, tid) from

S :

7: ensure that there is a pendingOpen(fchid) entry with temporary id tid

8: add “Alice announced”, pAlice,F , pBob,F , pchid to pendingOpen(fchid)

9: Upon receiving (CHECKFORNEW, Alice, Bob, tid) from Alice:

10: ensure there is a matching channel in pendingOpen(fchid), marked with “Alice

announced”

11: (funder, fundee,x, pAlice,F , pBob,F)← pendingOpen(fchid)

12: send (READ) to GLedger as Alice and store reply to ΣAlice

13: checkClosed(ΣAlice)

14: ensure that there is a TX F ∈ ΣAlice with a (x,(pfunder,F ∧ pfundee,F)) output

15: mark channel with “waiting for FUNDINGLOCKED”

Functionality FPayNet – open
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16: send (FUNDINGLOCKED, Alice, ΣAlice, fchid) to S

17: Upon receiving (FUNDINGLOCKED, fchid) from S :

18: ensure a channel is in pendingOpen(fchid), marked with “waiting for

FUNDINGLOCKED” and replace mark with “waiting for CHANNELOPENED”

19: send (READ) to GLedger as Bob and store reply to ΣBob

20: checkClosed(ΣBob)

21: ensure that there is a TX F ∈ ΣBob with a (x,(pfunder,F ∧ pfundee,F)) output

22: add receipt(channel) to newChannels(Bob)

23: send (FUNDINGLOCKED, Bob, ΣBob, fchid) to S

24: Upon receiving (CHANNELOPENED, fchid) from S :

25: ensure a channel is in pendingOpen(fchid), marked with “waiting for

CHANNELOPENED” and remove mark

26: offChainBalance(funder)← offChainBalance(funder)+ x

27: onChainBalance(funder)← onChainBalance(funder)− x

28: channel← (funder, fundee,x,0,0, fchid,pchid)

29: add channel to channels

30: add receipt(channel) to newChannels(Alice)

31: clear pendingOpen(fchid) entry

Figure 3.19

1: Upon receiving
(

PAY,Bob,x,
−−→
path

)
from Alice:

2: choose unique payment ID payid

3: add
(

Alice,Bob,x,
−−→
path,payid

)
to pendingPay

4: send
(

PAY,Alice,Bob,x,
−−→
path,payid, STATE,Σ

)
to S

5: Upon receiving (UPDATE, receipt, Alice) from S :

6: add receipt to updatesToReport(Alice) // trust S here, check on RESOLVEPAYS

7: send (CONTINUE) to S

Functionality FPayNet – pay
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Figure 3.20

1: Upon receiving (RESOLVEPAYS,charged) from S : // after first sending PAY,

PUSHFULFILL, PUSHADD, COMMIT

2: for all Alice keys ∈ charged do

3: for all (Dave,payid) ∈ charged(Alice) do

4: retrieve
(

Alice,Bob,x,
−−→
path

)
with ID payid and remove it from

pendingPay

5: if Dave =⊥ then

6: continue with next iteration of inner loop

7: else if Dave ∈ corrupted then

8: run code of Fig. 3.22

9: offChainBalance(Bob)← offChainBalance(Bob)+ x

10: else // Dave honest

11: if ΣDave contains a tx that is not a localComn or a remoteComn and

spends a funding tx for an open channel that contains Dave then

12: halt // DS forgery

13: else if ΣDave contains in block htx an old remoteComm that does not

contain the HTLC and a tx that spends the delayed output of remoteComm then

14: if polls(Dave) contains an element in

[htx,htx+delay(Dave)−1] then

15: halt // Dave POLLed, but malicious closure

16: else

17: negligent(Alice)← true

18: end if

19: else if Dave ̸= Alice then

20: calculate IncomingCltvExpiry, OutgoingCltvExpiry of Dave

(as in Fig. 3.37, l. 19)

21: if ΣDave does not contain an old remoteComm then

22: if IncomingCltvExpiry−OutgoingCltvExpiry<

relayDelay(Alice)+(2+ r)windowSize∨ (polls(Dave) contains two elements in

Functionality FPayNet – resolve payments
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[OutgoingCltvExpiry,IncomingCltvExpiry− (2+ r)windowSize] that have a

difference of at least (2+ r)windowSize ∧ focs(Dave) contains

IncomingCltvExpiry− (2+ r)windowSize ∧
23: the element in polls(Dave) was added before the element in focs(Dave)) then

24: halt // Dave POLLed and fulfilled, but charged

25: else

26: negligent(Alice)← true

27: end if

28: end if

29: end if

30: run code of Fig. 3.22

31: offChainBalance(Dave)← offChainBalance(Dave)− x

32: offChainBalance(Bob)← offChainBalance(Bob)+ x

33: end if

34: end for

35: end for

Figure 3.21: r, windowSize as in Proposition 1

1: for all open channels ∈ −−→path that are not in any closedChannels, starting from the

one where Dave pays do

2: in the first iteration, payer is Dave. In subsequent iterations, payer is the unique

player that has received but has not given. The other channel party is payee

3: if payer has x or more in channel then

4: update channel to the next version and transfer x from payer to payee

5: else

6: revert all updates done in this loop

7: end if

8: end for

9: for all updated channels in the previous loop do

10: ensure that a corresponding element has been added to the updatesToReport of

each honest counterparty, otherwise halt

11: end for

Loop over payment hops for update and check
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Figure 3.22: This loop is separated for better readability

1: Upon receiving (CLOSECHANNEL, receipt, tid) from Alice

2: ensure that there is a channel ∈ channels : receipt(channel) = receipt with

ID tid

3: retrieve fchid from channel

4: add (fchid, receipt(channel), ⊥) to pendingClose(Alice)

5: do not serve any other (PAY or CLOSECHANNEL) message from Alice for this

channel

6: send (CLOSECHANNEL, receipt, tid, Alice) to S

Functionality FPayNet – close

Figure 3.23

1: function CHECKCLOSED(ΣAlice) // Called after every (READ), ensures requested closes

eventually happen

2: for all entries

(fchid,receipt,h) ∈ pendingClose(Alice)∪closedChannels(Alice) do

3: if there is a commitment transaction in ΣAlice for open channel with ID fchid

with a balance that corresponds to receipt then

4: let x,y the balances of Alice and the channel counterparty Bob respectively

5: offChainBalance(Alice)← offChainBalance(Alice)− x

6: onChainBalance(Alice)← onChainBalance(Alice)+ x

7: offChainBalance(Bob)← offChainBalance(Bob)− y

8: onChainBalance(Bob)← onChainBalance(Bob)+ y

9: remove channel from channels

10: remove entry from pendingClose(Alice)

11: if there is an (fchid, _, _) entry in pendingClose(Bob) then

12: remove it from pendingClose(Bob)

Functionality FPayNet – checkClosed()
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13: end if

14: else if there is a tx in ΣAlice that is not a commitment tx and spends the funding

tx of the channel with ID fchid then

15: halt // DS forgery

16: else if there is a commitment transaction in block of height h in ΣAlice for open

channel with ID fchid with a balance that does not correspond to the receipt and the

delayed output has been spent by the counterparty then

17: if polls(Alice) contains an entry in [h,h+delay(Alice)−1] then

18: halt

19: else

20: negligent(Alice)← true

21: end if

22: else if there is no such closing transaction ∧ h =⊥ then

23: assign largest block number of ΣAlice to h of entry

24: else if there is no such closing transaction ∧ h ̸=⊥ ∧ (largest block number of

ΣAlice)≥ h+(2+ r)windowSize then

25: halt

26: end if

27: end for

28: if Alice has no open channels in ΣAlice AND negligent(Alice) = false then

29: if offChainBalance(Alice) ̸= 0 OR onChainBalance(Alice) is not equal to the

total funds exclusively spendable by Alice in ΣAlice then

30: halt

31: end if

32: end if

33: end function

Figure 3.24

1: Upon receiving (POLL) from Alice:

2: send (READ) to GLedger as Alice and store reply to ΣAlice

3: add largest block number in ΣAlice to polls(Alice)

4: checkClosed(ΣAlice)

Functionality FPayNet – poll
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5: if ∃channel ∈ ΣAlice that contains Alice and is closed by a tx that is not a

commitment transaction then

6: halt // DS forgery

7: end if

8: for all channels ∈ ΣAlice that contain Alice and are maliciously closed by a remote

commitment tx (one with an older channel version than the irrevocably committed

one) in block with height htx do

9: if the delayed output (of the counterparty) has been spent then

10: if polls(Alice) has an element in [htx,htx+delay(Alice)−1] then

11: halt // Alice wasn’t negligent but couldn’t punish

12: else

13: negligent(Alice)← true

14: end if

15: end if

16: end for

17: send (POLL, ΣAlice, Alice) to S

Figure 3.25

1: Upon receiving (PUSHFULFILL, pchid) from Alice:

2: send (PUSHFULFILL, pchid, Alice, STATE, Σ) to S

3: Upon receiving (PUSHADD, pchid) from Alice:

4: send (PUSHADD, pchid, Alice, STATE, Σ) to S

5: Upon receiving (COMMIT, pchid) from Alice:

6: send (COMMIT, pchid, Alice, STATE, Σ) to S

7: Upon receiving (FULFILLONCHAIN) from Alice:

8: send (READ) to GLedger as Alice, store reply to ΣAlice and assign largest block

number to t

9: add t to focs(Alice)

Functionality FPayNet – daemon messages
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10: checkClosed(ΣAlice)

11: send (FULFILLONCHAIN, t, Alice) to S

12: Upon receiving (CLOSEDCHANNEL, channel, Alice) from S :

13: add (fchid of channel, receipt(channel), ⊥) to closedChannels(Alice) // trust

S here, check on checkClosed()

14: send (CONTINUE) to S

15: Upon receiving (GETNEWS) from Alice:

16: clear newChannels(Alice), closedChannels(Alice), updatesToReport(Alice)

and send them to Alice with message name NEWS, stripping fchid and h from

closedChannels(Alice)

Figure 3.26

3.10 Lightning Protocol

1: Initialisation:

2: channels,pendingOpen,pendingPay,pendingClose← /0

3: newChannels,closedChannels,updatesToReport← /0

4: unclaimedOfferedHTLCs,unclaimedReceivedHTLCs,pendingGetPaid← /0

5: Upon receiving (REGISTER, delay, relayDelay) from E :

6: delay← delay // Must check chain at least once every delay blocks

7: relayDelay← relayDelay

8: send (READ) to GLedger and assign largest block number to lastPoll

9: (pkAlice,skAlice)← KEYGEN ()

10: send (REGISTER, Alice, delay, relayDelay, pkAlice) to E

11: Upon receiving (TOPPEDUP) from E :

Protocol ΠLN (self is Alice always) – support
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12: send (READ) to GLedger and assign reply to ΣAlice

13: assign the sum of all output values that are exclusively spendable by Alice to

onChainBalance

14: send (REGISTERED) to E

15: Upon receiving any message (M) except for (REGISTER):

16: if we haven’t received (REGISTER) from E then

17: send (INVALID, M) to E and ignore message

18: end if

19: function GETKEYS

20: (pF ,sF)← KEYGEN () // For F output

21:
(

ppay,spay
)
← SETUP () // For com output to remote

22:
(

pdpay,sdpay
)
← SETUP () // For com output to self

23: (phtlc,shtlc)← SETUP () // For htlc output to self

24: seed
$←U(k) // For per com point

25: (prev,srev)←MASTERKEYGEN () // For revocation in com

26: return
(
(pF ,sF) ,

(
ppay,spay

)
,
(

pdpay,sdpay
)
,

27: (phtlc,shtlc) ,seed,(prev,srev))

28: end function

Figure 3.27

1: Upon receiving (OPENCHANNEL,Alice,Bob,x, tid) from E :

2: ensure tid hasn’t been used for opening another channel before

3:
(
(phF ,shF) ,

(
phbpay,shbpay

)
,
(

phbdpay,shbdpay
)
,

(phbhtlc,shbhtlc) ,seed,(phbrev,shbrev))← GETKEYS ()

4: prand1← PRF (seed,1)

5: (phcom,1,shcom,1)← KEYSHAREGEN
(
1k;prand1

)
6: associate keys with tid

7: add
(
Alice,Bob,x,tid,(phF ,shF) ,

(
phbpay,shbpay

)
,
(

phbdpay,shbdpay
)

(phbhtlc,shbhtlc) ,(phbcom,1,shbcom,1) , (phbrev,shbrev) , tid) to pendingOpen

8: send (OPENCHANNEL,

Protocol ΠLN – OPENCHANNEL from E
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x,delay+(2+ r)windowSize, phF , phbpay, phbdpay, phbhtlc, phcom,1, phbrev, tid) to

Bob

Figure 3.28

1: Upon receiving (OPENCHANNEL,

x,remoteDelay, ptF , ptbpay, ptbdpay, ptbhtlc, ptcom,1, ptbrev, tid) from Bob:

2: ensure tid has not been used yet with Bob

3:
(
(phF ,shF) ,

(
phbpay,shbpay

)
,
(

phbdpay,shbdpay
)
,(phbhtlc,shbhtlc) ,seed,

(phbrev,shbrev))← GETKEYS ()

4: prand1← PRF (seed,1)

5: (phcom,1,shcom,1)← KEYSHAREGEN
(
1k;prand1

)
6: associate keys with tid and store in pendingOpen

7: send (ACCEPTCHANNEL,

delay+(2+ r)windowSize, phF , phbpay, phbdpay, phbhtlc, phcom,1, phbrev, tid) to Bob

Protocol ΠLN – OPENCHANNEL from Bob

Figure 3.29

1: Upon receiving (ACCEPTCHANNEL, remoteDelay, ptF , ptbpay, ptbdpay, ptbhtlc,

ptcom,1, ptbrev, tid) from Bob:

2: ensure there is a temporary ID tid with Bob in pendingOpen on which

ACCEPTCHANNEL hasn’t been received

3: associate received keys with tid

4: send (READ) to GLedger and assign reply to ΣAlice

5: assign to prevout a transaction output found in ΣAlice that is currently exclusively

spendable by Alice and has value y≥ x

6: F ← TX {input spends prevout with a SIGNDS(TX, skAlice), output 0 pays y− x

to pkAlice, output 1 pays x to tid.phF ∧ ptF}

7: pchid←H (F)

8: add pchid to pendingOpen entry with id tid

Protocol ΠLN – ACCEPTCHANNEL
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9: ptrev,1← COMBINEPUBKEY (ptbrev, phcom,1)

10: (phdpay,1,shdpay,1)← KEYDER
(

phbdpay,shbdpay, phcom,1
)

11: (phpay,1,shpay,1)← KEYDER
(

phbpay,shbpay, phcom,1
)

12: (phhtlc,1,shhtlc,1)← KEYDER (phbhtlc,shbhtlc, phcom,1)

13: remoteCom← remoteCom1← TX {input: output 1 of F , outputs:(
x, phpay,1

)
,
(
0, phrev,1∨

(
ptdpay,1,delay+(2+ r)windowSize relative

))
}

14: localCom← TX {input: output 1 of F , outputs:(
x, ptrev,1∨

(
phdpay,1,remoteDelay relative

))
,
(
0, ptpay,1

)
}

15: add remoteCom and localCom to channel entry in pendingOpen

16: sig← SIGNDS (remoteCom1,shF)

17: lastRemoteSigned← 0

18: send (FUNDINGCREATED, tid, pchid, sig) to Bob

Figure 3.30

1: Upon receiving (FUNDINGCREATED, tid, pchid, BobSig1) from Bob:

2: ensure there is a temporary ID tid with Bob in pendingOpen on which we have

sent up to ACCEPTCHANNEL

3: phrev,1← COMBINEPUBKEY (phbrev ptcom,1)

4: ptdpay,1← PUBKEYDER
(

ptbdpay, ptcom,1
)

5: ptpay,1← PUBKEYDER
(

ptbpay, ptcom,1
)

6: pthtlc,1← PUBKEYDER (ptbhtlc, ptcom,1)

7: localCom← localCom1← TX {input: output 1 of F , outputs:(
x, ptpay,1

)
,
(
0, ptrev,1∨

(
phdpay,1,remoteDelay relative

))
}

8: ensure VERIFYDS (BobSig1,localCom1, ptF) = True

9: remoteCom← remoteCom1← TX {input: output 1 of F , outputs:(
x, phrev,1∨

(
ptdpay,1,delay+(2+ r)windowSize relative

))
,
(
0, phpay,1

)
}

10: add BobSig1,remoteCom1 and localCom1 to channel entry in pendingOpen

11: sig← SIGNDS (remoteCom1,shF)

12: mark channel as “broadcast, no FUNDINGLOCKED”

13: lastRemoteSigned,lastLocalSigned← 0

14: send (FUNDINGSIGNED, pchid, sig) to Bob

Protocol ΠLN – FUNDINGCREATED

Figure 3.31
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1: Upon receiving (FUNDINGSIGNED, pchid, BobSig1) from Bob:

2: ensure there is a channel ID pchid with Bob in pendingOpen on which we have

sent up to FUNDINGCREATED

3: ensure VERIFYDS (BobSig1,localCom, pbF) = True

4: localCom1← localCom

5: lastLocalSigned← 0

6: add BobSig1 to channel entry in pendingOpen

7: sig← SIGNDS (F,skAlice)

8: mark pchid in pendingOpen as “broadcast, no FUNDINGLOCKED”

9: send (SUBMIT, (sig,F)) to GLedger

Protocol ΠLN – FUNDINGSIGNED

Figure 3.32

1: Upon receiving (CHECKFORNEW, Alice, Bob, tid) from E : // lnd polling daemon

2: ensure there is a matching channel in pendingOpen with id pchid, with a

“broadcast” and a “no FUNDINGLOCKED” mark, funded with x coins

3: send (READ) to GLedger and assign reply to ΣAlice

4: ensure ∃ unspent TX in ΣAlice with ID pchid and a (x, phF ∧ ptF) output

5: prand2← PRF (seed,2)

6: (phcom,2,shcom,2)← KEYSHAREGEN
(
1k;prand2

)
7: add TX to channel data

8: replace “broadcast” mark in channel with “FUNDINGLOCKED sent”

9: send (FUNDINGLOCKED, pchid, phcom,2) to Bob

Protocol ΠLN – CHECKFORNEW

Figure 3.33
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1: Upon receiving (FUNDINGLOCKED, pchid, ptcom,2) from Bob:

2: ensure there is a channel with ID pchid with Bob in pendingOpen with a “no

FUNDINGLOCKED” mark

3: if channel is not marked with “FUNDINGLOCKED sent” then // i.e. marked with

“broadcast”

4: send (READ) to GLedger and assign reply to ΣAlice

5: ensure ∃ unspent TX in ΣAlice with ID pchid and a (x, phF ∧ ptF) output

6: add TX to channel data

7: prand2← PRF (seed,2)

8: (phcom,2,shcom,2)← KEYSHAREGEN
(
1k;prand2

)
9: generate 2nd remote delayed payment, htlc, payment keys

10: end if

11: replace “no FUNDINGLOCKED” mark in channel with “FUNDINGLOCKED

received”

12: move channel data from pendingOpen to channels

13: add receipt of channel to newChannels

14: if channel is not marked with “FUNDINGLOCKED sent” then

15: replace “broadcast” mark in channel with “FUNDINGLOCKED sent”

16: send (FUNDINGLOCKED, pchid, phcom,2) to Bob

17: end if

Protocol ΠLN – FUNDINGLOCKED

Figure 3.34

1: Upon receiving (POLL) from E :

2: send (READ) to GLedger and assign reply to ΣAlice

3: assign largest block number in ΣAlice to lastPoll

4: toSubmit← /0

5: for all τ ∈ unclaimedOfferedHTLCs do

6: if input of τ has been spent then // by remoteHTLC−success

7: remove τ from unclaimedOfferedHTLCs

8: if we are intermediary then

9: retrieve preimage R, pchid′ of previous channel on the path of the

Protocol ΠLN – poll
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HTLC, and HTLCNo′ of the corresponding HTLC′ in pchid′

10: add (HTLCNo′,R) to pendingFulfillspchid′

11: end if

12: else if input of τ has not been spent and timelock is over then

13: remove τ from unclaimedOfferedHTLCs

14: add τ to toSubmit

15: end if

16: end for

17: run loop of Fig. 3.36

18: for all honestly closed remoteComn that were processed above, with channel id

pchid do

19: for all received HTLC outputs i of remoteComn do

20: if there is an entry in pendingFulfillspchid with the same HTLCNo and R

then

21: TX← {input: i HTLC output of remoteComn with (phhtlc,n,R) as

method, output: pkAlice}

22: sig← SIGNIBS (T X ,shhtlc,n)

23: add (sig, TX) to toSubmit

24: remove entry from pendingFulfillspchid

25: end if

26: end for

27: end for

28: send (SUBMIT, toSubmit) to GLedger

29: Upon receiving (GETNEWS) from Alice:

30: clear newChannels, closedChannels, updatesToReport and send them to

Alice with message name NEWS

Figure 3.35

1: for all remoteComn ∈ ΣAlice that spend F of a channel ∈ channels do

2: if we do not have shrev,n then // Honest closure

3: for all unspent offered HTLC outputs i of remoteComn do

Loop over closed channels for poll
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4: TX← {input: i HTLC output of remoteComn with phhtlc,n as method,

output: pkAlice}

5: sig← SIGNIBS (T X ,shhtlc,n)

6: if timelock has not expired then

7: add (sig, TX) to unclaimedOfferedHTLCs

8: else if timelock has expired then

9: add (sig, TX) to toSubmit

10: end if

11: end for

12: for all spent offered HTLC output i of remoteComn do

13: if we are intermediary then

14: retrieve preimage R, pchid′ of previous channel on the path of the

HTLC, and HTLCNo′ of the corresponding HTLC′ in pchid′

15: add (HTLCNo′,R) to pendingFulfillspchid′

16: end if

17: end for

18: else // malicious closure

19: rev← TX {inputs: all remoteComn outputs, choosing phrev,n method, output:

pkAlice}

20: sig← SIGNCS (rev,shrev,n)

21: add (sig, rev) to toSubmit

22: end if

23: add receipt(channel) to closedChannels

24: remove channel from channels

25: end for

Figure 3.36: This loop is separated for better readability

1: Upon receiving (PAY, Bob, x,
−−→
path) from E :

2: ensure that
−−→
path consists of syntactically valid (pchid, CltvExpiryDelta) pair //

Payment completes only if

∀ honest i ∈ −−→path,CltvExpiryDeltai ≥ 3k+RelayDelayi

3: ensure that the first pchid ∈ −−→path corresponds to an open channel ∈ channels in

which we own at least x in the irrevocably committed state.

Protocol ΠLN – invoice
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4: choose unique payment ID payid // unique for Alice and Bob

5: add (Bob, x,
−−→
path, payid, “waiting for invoice”) to pendingPay

6: send (SENDINVOICE, payid) to Bob

7: Upon receiving (SENDINVOICE, payid) from Bob:

8: ensure there is no (Bob, payid) entry in pendingGetPaid

9: choose random, unique preimage R

10: add (Bob, R, payid) to pendingGetPaid

11: send (INVOICE,H (R) ,relayDelay+(2+ r)windowSize,payid) to Bob

12: Upon receiving (INVOICE, h, minFinalCltvExpiry, payid) from Bob:

13: ensure there is a (Bob, x,
−−→
path, payid, “waiting for invoice”) entry in pendingPay

14: ensure h is valid (in the range of H )

15: retrieve CltvExpiryDeltas from
−−→
path and remove entry from pendingPay

16: send (READ) to GLedger and assign largest block number to t

17: l← |
(−−→
path

)
|

18: CltvExpiryl ← t +minFinalCltvExpiry

19:

∀i ∈ {1, . . . , l−1},CltvExpiryl−i← CltvExpiryl−i+1 +CltvExpiryDeltal−i+1

20: ensure CltvExpiry1 ≥ CltvExpiry2 +relayDelay+(2+ r)windowSize

21: m← the concatenation of l (x,CltvExpiry)

22: (µ0,δ0)← SphinxCreate
(

m, public keys of
−−→
path parties

)
23: let remoteComn the latest signed remote commitment tx

24: reduce simple payment output in remoteCom by x

25: add an additional (x, phrev,n+1∨ (phhtlc,n+1∧ pthtlc,n+1, on preimage

of h)∨ phhtlc,n+1,CltvExpiry1 absolute) output (all with n+1 keys) to remoteCom,

marked with HTLCNo

26: reduce delayed payment output in localCom by x

27: add an additional (x, ptrev,n+1∨ (pthtlc,n+1, on preimage

of h)∨ (phhtlc,n+1∧ pthtlc,n+1,CltvExpiry1 absolute)) output (all with n+1 keys) to

localCom, marked with HTLCNo

28: increment HTLCNopchid by one and associate x,h,pchid with it

29: mark HTLCNo as “sender”

30: send (UPDATEADDHTLC, first pchid of
−−→
path,HTLCNopchid,x,h,CltvExpiry1,(µ0,δ0)) to pchid channel counterparty
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Figure 3.37

1: Upon receiving (UPDATEADDHTLC, pchid, HTLCNo,x,h,IncomingCltvExpiry,M)

from Bob:

2: ensure pchid corresponds to an open channel in channels where Bob has at least

x

3: ensure HTLCNo= HTLCNopchid +1

4: (pchid′,x′,OutgoingCltvExpiry,δ)← SphinxPeel(skAlice,M)

5: send (READ) to GLedger and assign largest block number to t

6: if δ = receiver then

7: ensure pchid′ =⊥,x = x′,IncomingCltvExpiry≥ OutgoingCltvExpiry=

minFinalCltvExpiry

8: mark HTLCNo as “receiver”

9: else // We are an intermediary

10: ensure x = x′,IncomingCltvExpiry≥
max{OutgoingCltvExpiry, t}+relayDelay+2(2+ r)windowSize

11: ensure pchid′ corresponds to an open channel in channels where we have at

least x

12: mark HTLCNo as “intermediary”

13: end if

14: increment HTLCNopchid by one

15: let remoteComn the latest signed remote commitment tx

16: reduce delayed payment output in remoteCom by x

17: add an (x, phrev,n+1∨ (phhtlc,n+1∧ pthtlc,n+1,IncomingCltvExpiry absolute)∨
phhtlc,n+1, on preimage of h) htlc output (all with n+1 keys) to remoteCom, marked

with HTLCNo

18: reduce simple payment output in localCom by x

19: add an (x, ptrev,n+1∨ pthtlc,n+1,IncomingCltvExpiry absolute)∨
((pthtlc,n+1∧ phhtlc,n+1, on preimage of h)) htlc output (all with n+1 keys) to

remoteCom, marked with HTLCNo

20: if δ = receiver then

21: retrieve R : H (R) = h from pendingGetPaid and clear entry

22: add (HTLCNo,R) to pendingFulfillspchid

23: else if δ ̸= receiver then // Send HTLC to next hop

Protocol ΠLN – UPDATEADDHTLC
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24: retrieve pchid′ data

25: let remoteCom′n the latest signed remote commitment tx

26: reduce simple payment output in remoteCom′ by x

27: add an additional (x, phrev,n+1∨ (phhtlc,n+1∧ pthtlc,n+1, on preimage

of h)∨ phhtlc,n+1OutgoingCltvExpiry absolute) output (all with n+1 keys) to

remoteCom′, marked with HTLCNo′

28: reduce delayed payment output in localCom′ by x

29: add an additional (x, ptrev,n+1∨ (pthtlc,n+1, on preimage

of h)∨ (pthtlc,n+1∧ phhtlc,n+1OutgoingCltvExpiry absolute)) output (all with n+1

keys) to remoteCom′, marked with HTLCNo′

30: increment HTLCNo′ by 1

31: M′← SphinxPrepare(M,δ,skAlice)

32: add (HTLCNo′,x,h,OutgoingCltvExpiry,M′) to pendingAddspchid′

33: end if

Figure 3.38

1: Upon receiving (UPDATEFULFILLHTLC, pchid, HTLCNo, R) from Bob:

2: if HTLCNo> lastRemoteSigned∨HTLCNo> lastLocalSigned∨H (R) ̸= h,

where h is the hash in the HTLC with number HTLCNo then

3: close channel (as in Fig. 3.44)

4: return

5: end if

6: ensure HTLCNo is an offered HTLC (localCom has h tied to a public key that we

own)

7: add value of HTLC to delayed payment of remoteCom

8: remove HTLC output with number HTLCNo from remoteCom

9: add value of HTLC to simple payment of localCom

10: remove HTLC output with number HTLCNo from localCom

11: if we have a channel phcid′ that has a received HTLC with hash h with number

HTLCNo′ then // We are intermediary

12: send (READ) to GLedger and assign reply to ΣAlice

13: if latest remoteCom′n ∈ ΣAlice then // counterparty has gone on-chain

14: TX← {input: (remoteCom′ HTLC output with number HTLCNo′,R),

Protocol ΠLN – UPDATEFULFILLHTLC
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output: pkAlice}

15: sig← SIGNIBS (TX,shhtlc,n)

16: send (SUBMIT, (sig, TX)) to GLedger // shouldn’t be already spent by remote

HTLCTimeout

17: else // counterparty still off-chain

18: // Not having the HTLC irrevocably committed is impossible (Fig. 3.43,

l. 15)

19: send (UPDATEFULFILLHTLC,pchid′,HTLCNo′,R) to counterparty

20: end if

21: end if

Figure 3.39

1: Upon receiving (COMMIT, pchid) from E :

2: ensure that there is a channel ∈ channels with ID pchid

3: retrieve latest remote commitment tx remoteComn in channel

4: ensure remoteCom ̸= remoteComn // there are uncommitted updates

5: ensure channel is not marked as “waiting for REVOKEANDACK”

6: send (READ) to GLedger and assign largest block number to t

7: undo adding all outgoing HTLCs in remoteCom for which we are intermediary and

IncomingCltvExpiry< t +relayDelay+(2+ r)windowSize

8: remoteComn+1← remoteCom

9: ComSig← SIGNDS (remoteComn+1,shF)

10: HTLCSigs← /0

11: for i from lastRemoteSigned to HTLCNo do

12: remoteHTLCn+1,i← TX {input: HTLC output i of remoteComn+1, output:(
chtlc,i, phrev,n+1∨

(
ptdpay,n+1,delay+(2+ r)windowSize relative

))
}

13: add SIGNIBS (remoteHTLCn+1,i,shhtlc,n+1) to HTLCSigs

14: end for

15: add SIGNIBS (remoteHTLCn+1,m+1,shhtlc,n+1) to HTLCSigs

16: lastRemoteSigned← HTLCNo

17: mark channel as “waiting for REVOKEANDACK”

18: send (COMMITMENTSIGNED, pchid, ComSig, HTLCSigs) to pchid counterparty

Protocol ΠLN – COMMIT
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Figure 3.40

1: Upon receiving (COMMITMENTSIGNED, pchid, comSign+1, HTLCSigsn+1) from Bob:

2: ensure that there is a channel ∈ channels with ID pchid with Bob

3: retrieve latest local commitment tx localComn in channel

4: ensure localCom ̸= localComn and localCom ̸= pendingLocalCom // there are

uncommitted updates

5: if VERIFYDS
(
comSign+1,localCom, ptF

)
= false∨|HTLCSigsn+1| ̸=

HTLCNo−lastLocalSigned+1 then

6: close channel (as in Fig. 3.44)

7: return

8: end if

9: for i from lastLocalSigned to HTLCNo do

10: localHTLCn+1,i← TX {input: HTLC output i of localCom, output:(
chtlc,i, phrev,n+1∨

(
ptdpay,n+1,remoteDelay relative

))
}

11: if VERIFYIBS
(
HTLCSigsn+1,i,localHTLCn+1,i, pthtlc,n+1

)
= false then

12: close channel (as in Fig. 3.44)

13: return

14: end if

15: end for

16: pendingLocalCom← localCom

17: mark pendingLocalCom as “irrevocably committed”

18: prandn+2← PRF (seed,n+2)

19: (phcom,n+2,shcom,n+2)← KEYSHAREGEN
(
1k;prandn+2

)
20: send (REVOKEANDACK, pchid, prandn, phcom,n+2) to Bob

Protocol ΠLN – COMMITMENTSIGNED

Figure 3.41
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1: Upon receiving (REVOKEANDACK, pchid, stcom,n, ptcom,n+2) from Bob:

2: ensure there is a channel ∈ channels with Bob with ID pchid marked as “waiting

for REVOKEANDACK”

3: if TESTKEY (stcom,n, ptcom,n) ̸= 1 then // wrong stcom,n - closing

4: close channel (as in Fig. 3.44)

5: return

6: end if

7: mark remoteComn+1 as “irrevocably committed”

8: localComn+1← pendingLocalCom

9: unmark channel

10: add receipt(channel) to updatesToReport

11: shrev,n← COMBINEKEY (phbrev,shbrev, ptcomn,stcom,n)

12: phrev,n+2← COMBINEPUBKEY (phbrev, ptcom,n+2)

13: ptrev,n+2← COMBINEPUBKEY (ptbrev, phcom,n+2)

14: (phdpay,n+2,shdpay,n+2)← KEYDER
(

phbdpay,shbdpay, phcom,n+2
)

15: ptdpay,n+2← PUBKEYDER
(

ptbdpay, ptcom,n+2
)

16: (phpay,n+2,shpay,n+2)← KEYDER
(

phbpay,shbpay, phcom,n+2
)

17: ptpay,n+2← PUBKEYDER
(

ptbpay, ptcom,n+2
)

18: (phhtlc,n+2,shhtlc,n+2)← KEYDER (phbhtlc,shbhtlc, phcom,n+2)

19: pthtlc,n+2← PUBKEYDER (ptbhtlc, ptcom,n+2)

Protocol ΠLN – REVOKEANDACK

Figure 3.42

1: Upon receiving (PUSHFULFILL, pchid) from E :

2: ensure that there is a channel ∈ channels with ID pchid

3: choose a member (HTLCNo, R) of pendingFulfillspchid that is both in an

“irrevocably committed” remoteComn and localComn

4: send (READ) to GLedger and assign reply to ΣAlice

5: remove (HTLCNo, R) from pendingFulfillspchid

6: if remoteComn /∈ ΣAlice then // counterparty cooperative

7: send (UPDATEFULFILLHTLC, pchid, HTLCNo, R) to pchid counterparty

8: else // counterparty gone on-chain

Protocol ΠLN – PUSH
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9: TX← {input: (remoteComn HTLC output with number HTLCNo,R), output:

pkAlice}

10: sig← SIGNIBS (TX,shhtlc,n)

11: send (SUBMIT, (sig, TX)) to GLedger // shouldn’t be already spent by remote

HTLCTimeout

12: end if

13: Upon receiving (PUSHADD, pchid) from E :

14: ensure that there is a channel ∈ channels with ID pchid

15: choose a member (HTLCNo,x,h,CltvExpiry,M) of pendingAddspchid that is both

in an “irrevocably committed” remoteComn and localComn

16: remove chosen entry from pendingAddspchid

17: send (UPDATEADDHTLC, pchid, HTLCNo, x,h,CltvExpiry,M) to pchid

counterparty

18: Upon receiving (FULFILLONCHAIN) from E :

19: send (READ) to GLedger and assign largest block number to t

20: toSubmit← /0

21: for all channels do

22: if there exists an HTLC in latest localComn for which we have sent both

UPDATEFULFILLHTLC and COMMITMENTSIGNED to a transaction without that

HTLC to counterparty, but have not received the corresponding REVOKEANDACK

AND the HTLC expires within [t, t +(2+ r)windowSize] then

23: add localComn of the channel and all corresponding valid

HTLC−successes and HTLC−timeouts (for both localComn and remoteComn
a),

along with their signatures to toSubmit

24: end if

25: end for

26: send (SUBMIT, toSubmit) to GLedger

aEnsures funds retrieval if counterparty has gone on-chain

Figure 3.43
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1: Upon receiving (CLOSECHANNEL, receipt, tid) from E :

2: ensure receipt corresponds to an open channel ∈ channels with ID tid

3: assign latest channel sequence number to n

4: HTLCs← /0

5: for every HTLC output ∈ localComn with number i do

6: sig← SIGNIBS (localHTLCn,i,shhtlc,n)

7: add
(
sig,HTLCSigsn,i,localHTLCn,i

)
to HTLCs

8: end for

9: sig← SIGNDS (localComn,shF)

10: add receipt(channel) to closedChannels

11: remove channel from channels

12: send (SUBMIT, (sig,remoteSign,localComn) ,HTLCs) to GLedger

Protocol ΠLN – close

Figure 3.44

3.11 Security Theorem and Proof

Theorem 4 (Lightning Payment Network Security). The protocol ΠLN UC-realises the

local functionality FPayNet given a global functionality GLedger assuming the security of

the underlying digital signature, identity-based signature, combined digital signature

and PRF. Specifically,

∀k ∈ N,∃ PPT S :∀ PPT E , |Pr[EXEC
GLedger
ΠLN,Ad,E = 1]−Pr[EXEC

FPayNet,GLedger
S ,E = 1]| ≤

2nmE-ds(k)+6npE-ids(k)+2nmpE-share(k)+2nmE-master(k)+2E-prf(k) .

where n is the maximum number of registered users, m is the maximum number of

channels that a user is involved in, p is the maximum number of times that a channel

is updated and the “E-” terms correspond to the insecurity bounds of the primitives.

Proof Sketch. The proof is done in 5 steps of successive game replacement. In

Lemma 4 we define a simulator SLN that internally simulates a full execution of ΠLN

for each player, and a “dummy” functionality that acts as a simple relay between E and
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SLN. We argue that this version of the ideal world trivially produces the exact same

messages for E as the real world.

In each subsequent step, we incrementally move responsibilities from the simulator

to the functionality, while ensuring the change is transparent to both E and A . Each

step defines a different functionality that handles some additional messages from E
exactly like FPayNet, until the last step (Lemma 8) where we use FPayNet itself. Cor-

respondingly, the simulator of each step is adapted so that the new ideal execution

is computationally indistinguishable from the previous one. For each step we exhaus-

tively trace the differences from the previous step in order to prove that, given the same

messages from E and A , the resulting responses remain unchanged.

In the second step, Lemma 5 lets F handle registration messages, along with the

corruption messages from S . In the third step, Lemma 6 the functionality addition-

ally handles messages related to channel opening. It behaves like FPayNet, but does

not execute checkClosed(). In the fourth step, Lemma 7 has the functionality handle

all messages sent during channel updates. Lastly, Lemma 8 has the entire FPayNet

as its functionality, by incorporating the message for closing a channel, executing

checkClosed() normally and handing the message that returns to E the receipts for

newly opened, updated and closed channels. The last two steps introduce a probability

of failure in case the various types of signatures used in ΠLN are forged. We analyze

these cases separately and argue that, if such forgeries do not happen, the emulation is

perfect. Therefore we can calculate the concrete security bounds shown in the theo-

rem. □

1: Upon receiving any message M from Alice:

2: if M is a valid FPayNet message from a player then

3: send (M,Alice) to S
4: end if

5: Upon receiving any message (M,Alice) from S :

6: if M is a valid FPayNet message from S then

7: send M to Alice

8: end if

Functionality FPayNet,dummy
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Figure 3.45

Expects the same messages as the protocol, but messages that the protocol expects to

receive from E , the simulator expects to receive from FPayNet,dummy with the name of the

player appended. The simulator internally executes one copy of the protocol per player.

Upon receiving any message, the simulator runs the relevant code of the protocol copy tied

to the appended player name. Mimicking the real-world case, if a protocol copy sends a

message to another player, that message is passed to A as if sent by the player and if A
allows the message to reach the receiver, then the simulator reacts by acting upon the

message with the protocol copy corresponding to the recipient player. A message sent by a

protocol copy to E will be routed by S to FPayNet,dummy instead. To distinguish which

player it comes from, S also appends the player name to the message. Corruption messages

in the backdoor tapes of simulated parties are also forwarded to FPayNet,dummy.

Simulator S LN

Figure 3.46

Lemma 4. EXEC
GLedger
ΠLN,Ad,E = EXEC

FPayNet,dummy,GLedger
SLN,E

Proof. Consider a message that E sends. In the real world, the protocol ITIs produce

an output. In the ideal world, the message is given to S LN through FPayNet,dummy. The

former simulates the protocol ITIs of the real world (along with their coin flips) and

so produces an output from the exact same distribution, which is given to E through

FPayNet,dummy. Thus the two outputs are indistinguishable.
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1: For messages REGISTER, REGISTERDONE, TOPPEDUP and CORRUPTED, act like

FPayNet, but skip lines that call checkClosed().

2: Upon receiving any other message M from Alice:

3: if M is a valid FPayNet message from a player then

4: send (M,Alice) to S
5: end if

6: Upon receiving any other message (M,Alice) from S :

7: if M is a valid FPayNet message from S then

8: send M to Alice

9: end if

Functionality FPayNet,Reg

Figure 3.47

Like S LN, but it does not accept (TOPPEDUP) from FPayNet,Reg. Additional differences:

1: Upon receiving (REGISTER, Alice, delay, relayDelay, lastPoll) from FPayNet,Reg:

2: delay of Alice ITI ← delay

3: relayDelay of Alice ITI ← relayDelay

4: lastPoll of Alice ITI ← lastPoll

5: (pkAlice,skAlice) of Alice ITI ← KEYGEN()

6: send (REGISTERDONE, Alice, pkAlice) to FPayNet,Reg

7: Upon receiving (CORRUPT) on the backdoor tape of Alice’s simulated ITI:

8: add Alice to corrupted

9: for the rest of the execution, upon receiving any message for Alice, bypass normal

execution and simply forward it to Alice

10: send (CORRUPTED, Alice) to FPayNet,Reg

Simulator S LN−Reg

Figure 3.48
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Lemma 5. EXEC
FPayNet,dummy,GLedger
SLN,E = EXEC

FPayNet,Reg,GLedger
SLN−Reg,E

Proof. When E sends (REGISTER, delay, relayDelay) to Alice, it receives as a response

(REGISTER, Alice, delay, relayDelay, pkAlice) where pkAlice is a public key generated by

KEYGEN() both in the real (c.f. Fig. 3.27, line 9) and in the ideal world (c.f. Fig. 3.48,

line 5).

Furthermore, one (READ) is sent to GLedger from Alice in both cases (Fig. 3.27,

line 8 and Fig. 3.18, line 9).

Additionally, S LN−Reg ensures that the state of Alice ITI is exactly the same as what

would have been in the case of S LN, as lines 6-9 of Fig. 3.27 change the state of Alice

ITI in the same way as lines 2-5 of Fig. 3.48.

Lastly, the fact that the state of the Alice ITIs are changed in the same way in both

worlds, along with the same argument as in the proof of Lemma 4 ensures that the rest

of the messages are responded in an indistinguishable way in both worlds.

1: For messages REGISTER, REGISTERDONE, TOPPEDUP, OPENCHANNEL,

CHANNELANNOUNCED and CHECKFORNEW, act like FPayNet, but skip lines that call

checkClosed().

2: Upon receiving any other message M from Alice:

3: if M is a valid FPayNet message from a player then

4: send (M,Alice) to S
5: end if

6: Upon receiving any other message (M,Alice) from S :

7: if M is a valid FPayNet message from S then

8: send M to Alice

9: end if

Functionality FPayNet,Open

Figure 3.49
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Like S LN−Reg. Differences:

1: Upon receiving (OPENCHANNEL, Alice, Bob, x, fchid, tid) from FPayNet,Open:

2: if both Alice and Bob are honest then

3: Simulate the interaction between Alice and Bob in their respective ITI, as

defined in Figures 3.28-3.32. All messages should be handed to and received from A ,

as in the real world execution.

4: After sending (FUNDINGSIGNED) as Bob to Alice, send

(CHANNELANNOUNCED,Bob, pAlice,F , pBob,F , fchid,pchid, tid) to FPayNet,Open.

5: After submitting F to GLedger as Alice, send

(CHANNELANNOUNCED,Alice, pAlice,F , pBob,F , fchid,pchid) to FPayNet,Open.

6: else if Alice is honest, Bob is corrupted then

7: Simulate Alice’s part of the interaction between Alice and Bob in Alice’s ITI, as

defined in Figures 3.28, 3.30, and 3.32.All messages should be handed to and received

from A , as in the real world execution.

8: After submitting F to GLedger as Alice, send

(CHANNELANNOUNCED,Alice, pAlice,F , pBob,F , fchid,pchid) to FPayNet,Open.

9: else if Alice is corrupted, Bob is honest then

10: send (OPENCHANNEL, Alice, Bob, x, fchid, tid) to simulated (corrupted) Alice

11: Simulate Bob’s part of the interaction between Alice and Bob in Bob’s ITI, as

defined in Figures 3.29 and 3.31. All messages should be handed to and received from

A , as in the real world execution.

12: After sending (FUNDINGSIGNED) as Bob to Alice, send

(CHANNELANNOUNCED,Bob, pAlice,F , pBob,F , fchid,pchid) to FPayNet,Open.

13: else if both Alice and Bob are corrupted then

14: forward message to A // A may open the channel or not

15: end if

16: Upon receiving (FUNDINGLOCKED, Alice, ΣAlice, fchid) from FPayNet,Open:

17: execute lines 5-9 of Fig. 3.33 with Alice’s ITI, using ΣAlice from message

18: if Bob is honest then

19: expect the delivery of Alice’s (FUNDINGLOCKED) message from A
20: send (FUNDINGLOCKED, fchid) to FPayNet,Open

21: upon receiving (FUNDINGLOCKED, Bob, ΣBob, fchid) from FPayNet,Open:

22: simulate Fig. 3.34 with message from Alice in Bob’s ITI, using ΣBob from

FPayNet,Open’s message

Simulator S LN−Reg−Open
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23: end if

24: Upon receiving the (FUNDINGLOCKED) message with the simulated Alice ITI:

25: simulate Fig. 3.34 receiving the message with Alice’s ITI

26: send (CHANNELOPENED, fchid) to FPayNet,Open

Figure 3.50

Lemma 6. EXEC
FPayNet,Reg,GLedger
SLN−Reg,E = EXEC

FPayNet,Open,GLedger
SLN−Reg−Open,E

Proof. When E sends (OPENCHANNEL, Alice, Bob, x, fchid, tid) to Alice, the inter-

action of Figures 3.28-3.32 will be executed in both the real and the ideal world. In

more detail, in the ideal world the execution of the honest parties will be simulated by

the respective ITIs run by SLN−Reg−Open, so their state will be identical to that of the

parties in the real execution. Furthermore, since SLN−Reg−Open executes faithfully the

protocol code, it generates the same messages as would be generated by the parties

themselves in the real-world setting.

We observe that the input validity check executed by FPayNet,Open (Fig. 3.19, line 2)

filters only messages that would be ignored by the real protocol as well and would not

change its state either (Fig. 3.28, line 2).

We also observe that, upon receiving the message OPENCHANNEL or CHANNELAN-

NOUNCED, FPayNet,Open does not send any messages to parties other than SLN−Reg−Open,

so we don’t have to simulate those.

When E sends (CHECKFORNEW, Alice, Bob, tid) to Alice in the real world, line 2

of Fig. 3.33 will allow execution to continue if there exists an entry with temporary

id tid in pendingOpen marked as “broadcast”. Such an entry can be added either in

Fig. 3.28, line 7 or in Fig. 3.29, line 6. The former event can happen only in case Alice

received a valid OPENCHANNEL message from Bob with temporary id tid, which in

turn can be triggered only by a valid OPENCHANNEL message with the same temporary

id from E to Bob, whereas the latter only in case Alice received a valid OPENCHAN-

NEL message from E with the same temporary id. Furthermore, in the first case the

“broadcast” mark can be added only before Alice sends (FUNDINGSIGNED, pchid, sig)

to Bob (Fig. 3.31, line 12) (which needs a valid Alice-Bob interaction up to that point),

and in the second case the “broadcast” mark can be added only before Alice sends
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(SUBMIT, (sig, F)) to GLedger (Fig. 3.32, line 8) (which also needs a valid Alice-Bob

interaction up to that point)

When E sends (CHECKFORNEW, Alice, Bob, tid) to Alice in the ideal world,

line 10 of Fig. 3.19 will allow execution to continue if there exists an entry with tempo-

rary ID tid and a member Alice marked as “Alice announced” in pendingOpen(fchid)

for some fchid. This can only happen if line 8 of Fig. 3.19 is executed, where tid

is contained in pendingOpen(fchid) as the temporary ID. This line in turn can only

be executed if FPayNet,Open received (CHANNELANNOUNCED, Alice, pAlice,F , pBob,F ,

fchid, pchid, tid) from SLN−Reg−Open such that the entry pendingOpen(fchid) exists

and has temporary ID tid, as mandated by line 7 of Fig. 3.19. Such a message is sent

by SLN−Reg−Open of Fig. 3.50 either in lines 5/8, or in lines 4/12. One of the first pair of

lines is executed only if SLN−Reg−Open receives (OPENCHANNEL, Alice, Bob, x, fchid,

tid) from FPayNet,Open and the simulated A allows a valid Alice-Bob interaction up to

the point where Alice sends (SUBMIT) to GLedger, whereas one of the second pair of

lines is executed only if SLN−Reg−Open receives (OPENCHANNEL, Bob, Alice, x, fchid,

tid) from FPayNet,Open and the simulated A allows a valid Alice-Bob interaction up to

the point where Alice sends (FUNDINGSIGNED) to Bob.

The last two points lead us to deduce that line 10 of Fig. 3.19 in the ideal and line 2

of Fig. 3.33 in the real world will allow execution to continue in the exact same cases

with respect to the messages that E and A send. Given that execution continues, Alice

subsequently sends (READ) to GLedger and performs identical checks in both the ideal

(Fig. 3.19, lines 13-14) and the real world (Fig. 3.33, lines 3-4).

Moving on, in the real world lines 5-9 of Fig. 3.33 are executed by Alice and,

given that A allows it, the code of Fig. 3.34 is executed by Bob. Likewise, in the ideal

world, the functionality executes lines 15-16 of Fig. 3.33 and as a result it (always)

sends (FUNDINGLOCKED, Alice, ΣAlice, fchid) to SLN−Reg−Open. In turn SLN−Reg−Open

simulates lines 5-9 of Fig. 3.33 with Alice’s ITI and, if A allows it, SLN−Reg−Open

simulates the code of Fig. 3.34 with Bob’s ITI. Once more we conclude that both

worlds appear to behave identically to both E and A under the same inputs from them.
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1: For messages REGISTER, REGISTERDONE, TOPPEDUP, OPENCHANNEL,

CHANNELANNOUNCED, CHECKFORNEW, POLL, PAY, PUSHADD, PUSHFULFILL,

FULFILLONCHAIN and COMMIT, act like FPayNet, but skip lines that call

checkClosed().

2: Upon receiving any other message M from Alice:

3: if M is a valid FPayNet message from a player then

4: send (M,Alice) to S
5: end if

6: Upon receiving any other message (M,Alice) from S :

7: if M is a valid FPayNet message from S then

8: send M to Alice

9: end if

Functionality FPayNet,Pay

Figure 3.51

Like S LN−Reg−Open. Differences:

1: Upon receiving (FULFILLONCHAIN, t,Alice) from FPayNet,Pay:

2: execute lines 20-26 of Fig. 3.43 as Alice, using t from message

3: Upon receiving
(

PAY,Alice,Bob,x,
−−→
path,receipt,payid

)
from FPayNet,Pay:

4: add (
−−→
path, payid) to payids

5: strip payid, simulate receiving the message with Alice ITI and further execute the

parts of ΠLN that correspond to honest parties (Fig. 3.37- Fig. 3.39)

6: if any “ensure” in ΠLN fails until Bob processes UPDATEADDHTLC then //

payment failed

7: add (⊥,payid) to charged(Alice)

8: remove (
−−→
path, payid) from payids

9: end if

Simulator S LN−Reg−Open−Pay
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10: Upon receiving (POLL, ΣAlice, Alice) from FPayNet,Pay:

11: simulate Fig. 3.35, lines 3-28 receiving (POLL), using ΣAlice from the message, with

Alice’s ITI

12: Upon receiving (PUSHFULFILL, pchid, Alice) from FPayNet,Pay:

13: simulate Fig. 3.43, lines 1-12 on input (PUSHFULFILL, pchid) with Alice’s ITI and

handle subsequent messages by simulating respective ITIs of honest players or sending

to A the messages for corrupted players

14: Upon receiving (PUSHADD, pchid, Alice) from FPayNet,Pay:

15: simulate Fig. 3.43, lines 13-17 on input (PUSHADD, pchid) with Alice’s ITI and

handle subsequent messages by simulating respective ITIs of honest players or sending

to A the messages for corrupted players

16: Upon receiving (COMMIT, pchid, Alice) from FPayNet,Pay:

17: simulate Fig. 3.40 on input (COMMIT, pchid) with Alice’s ITI and handle

subsequent messages by simulating respective ITIs of honest players or sending to A
the messages for corrupted players

18: if during the simulation above, line 10 of Fig. 3.42 is simulated in Alice’s ITI then

19: send (UPDATE, receipt, Alice) to FPayNet,Pay, where receipt is the receipt

just added to the simulated updatesToReport (Fig. 3.42, line 10)

20: upon receiving (CONTINUE) from FPayNet,Pay, carry on with the simulation

21: end if

22: Upon receiving any message with a concatenated (STATE, Σ) part from FPayNet,Pay: //

PAY, PUSHFULFILL, PUSHADD, COMMIT

23: handle first part of the message normally

24: if at the end of the simulation above, control is still held by S LN−Reg−Open−Pay then

25: for all ΣAlice ∈ Σ do

26: for all (−−→path,payid) ∈ payids : Alice ∈ −−→path do

27: if Alice sent UPDATEFULFILLHTLC to a corrupted player and either

(got the fulfillment of the HTLC irrevocably committed OR fulfilled the HTLC

on-chain (i.e. HTLC-success is in ΣAlice)), AND the next honest player Bob down the

line successfully timed out the HTLC on-chain (i.e. HTLC-timeout is in ΣBob) then //

no or bad communication with Bob’s previous player
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28: add to charged(Alice) a tuple (corrupted, payid) where

corrupted is set to one of the corrupted parties between Alice and Bob

29: remove (
−−→
path, payid) from payids

30: else if ΣAlice contains an old remoteComm of the channel before Alice

(closer to payer) on the
−−→
path that does not contain the relevant HTLC and a tx that

spends the delayed output of remoteComm∨ ((ΣAlice contains the most recent

remoteComn or localComn of the channel before Alice and the HTLC-success of the

relevant HTLC ∨ Alice’s latest irrevocably committed remoteComn for the channel

before Alice does not contain the HTLC) ∧ΣAlice contains the most recent remoteComl

or localComl and (the HTLC-timeout or an HTLC-success that pays the

counterparty) for HTLC of the channel after Alice) then // Alice did not fulfill in time

31: add (Alice, payid) to charged(Alice)

32: remove (
−−→
path, payid) from payids

33: else if Alice is the payer in
−−→
path AND ((she has received

UPDATEFULFILLHTLC AND has subsequently sent COMMIT and REVOKEANDACK)

OR player after Alice has irrevocably fulfilled the HTLC on-chain (i.e. his

HTLC-success is in ΣAlice) then // honest payment completed

34: add (Alice, payid) to charged(Alice)

35: remove (
−−→
path, payid) from payids

36: end if

37: end for

38: end for

39: end if

40: clear charged and send (RESOLVEPAYS,charged) to FPayNet,Pay

Figure 3.52

Lemma 7.

∀k ∈ N, PPT E ,

|Pr[EXEC
FPayNet,Open,GLedger
SLN−Reg−Open,E = 1]−Pr[EXEC

FPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]| ≤

nm ·E-ds(k)+3np ·E-ibs(k)+

nmp ·E-share(k)+E-prf(k)+nm ·E-master(k) .

Proof. Before focusing on individual messages sent by E , we will first prove that

four particular forgery events happen with negligible probability. Let P be the event
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in which at some point during the execution a transaction that has the following two

characteristics appears in ΣAlice, for some honest player Alice: it spends a funding

transaction of a channel that contains Alice (and thus has a pAlice,F public key) and it

was never signed by Alice. Suppose that n is the number of players, m is the maximum

number of channels that a player can open and p is the maximum number of opens and

updates a player can perform in all channels, and ∃ PPT EP : Pr[P] = a. We show in

Proposition 3 that ∀E ,Pr[P]≤ nm ·E-ds(k).

Let Q be the event in which at some point during the execution a transaction that

has the following two characteristics appears in ΣAlice, for some honest player Alice:

it spends a simple output, delayed output or htlc output tied with a public key that

was created by Alice (pAlice,pay,n, pAlice,dpay,n, pAlice,htlc,n respectively) and it was never

signed by Alice. Suppose that p is the maximum total number of opens and updates

that a player can perform across all channels and that ∃ PPT EQ : Pr[Q] = b. We show

in Proposition 4 that ∀E ,Pr[Q]≤ 3np ·E-ibs(k).

Let R be the event in which at some point during the execution a transaction

that has the following characteristic appears in ΣAlice, for some honest player Alice:

it spends the revocation output of a local (for Alice) commitment transaction for a

channel that contains Alice and Bob (and thus has a pBob,rev,n key). Observe that,

since Alice is honest and according to both the real and the ideal execution, if Alice

submits her local commitment transaction localComn to the ledger, under no cir-

cumstances does she subsequently go on to send sAlice,com,n to any party. (This se-

cret information could be used by Bob to efficiently compute sBob,rev,n with COM-

BINEKEY(pbBob,rev,sbBob,rev, pAlice,com,n,sAlice,com,n).) Suppose that p is the maximum

total number of opens and updates that a player can perform across all channels, m is

the maximum number of channels a player can open and ∃ PPT ER : Pr[R] = c. We

show in Proposition 5 that ∀E ,Pr[R]≤ nmp ·E-share(k)+E-prf(k).

Lastly, let S be the event in which at some point during the execution a transac-

tion that has the following two characteristics appears in ΣAlice, for some honest player

Alice: (a) it spends the revocation output of a remote (for Alice) commitment transac-

tion for a channel that contains Alice (and thus has a pAlice,rev,n key) and (b) it was never

signed by Alice. Observe that, since Alice is honest, she has never sent sAlice,rev,n to any

party. Suppose that m is the maximum number of channels a player can open and that

∃ PPT ES : Pr[S] = d. We show in Proposition 6 that ∀E ,Pr[S]≤ nm ·E-master(k).

We can now move on to treating the individual messages sent by E during the

execution. When E sends
(

PAY,Bob,x,
−−→
path,payid

)
to Alice in the ideal world,
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SLN−Reg−Open is always notified (Fig. 3.20, line 4) and simulates the relevant execu-

tion of the real world (Fig. 3.52, line 5). No messages to GLedger or E that differ from

the real world are generated in the process. At the end of this simulation, no further

messages are sent (and the control returns to E). Therefore, when E sends PAY, no

opportunity for distinguishability arises.

When E sends any message among (PUSHADD, pchid), (PUSHFULFILL, pchid),

(COMMIT, pchid) to Alice in the ideal world, it is forwarded to SLN−Reg−Open (Fig. 3.26,

lines 2, 4, 6 respectively), who in turn simulates Alice’s real-world execution with

her simulated ITI and the handling of any subsequent messages sent by Alice’s ITI

(Fig. 3.52, lines 13, 15, 17). Neither FPayNet,Pay nor SLN−Reg−Open alter their state as

a result of these messages, apart from the state of Alice’s simulated ITI and the state

of other simulated ITIs that receive and handle messages that were sent as a result of

Alice’s ITI simulation. The states of these ITIs are modified in the exact same way as

they would in the real world. We deduce that these three messages do not introduce

any opportunity for E to distinguish the real and the ideal world.

When E sends (FULFILLONCHAIN) to Alice in the real world, lines 18-26 of

Fig. 3.43 are executed by Alice. In the ideal world on the other hand, FPayNet,Pay sends

(READ) to GLedger (Fig. 3.26, line 8) as Alice and subsequently instructs SLN−Reg−Open

to simulate the receiving of (FULFILLONCHAIN) with Alice’s ITI (Fig. 3.52, lines 1-

2). Observe that during this simulation a second (READ) message to GLedger (that

would not match any message in the real world) is avoided because SLN−Reg−Open

skips line 19 of Fig. 3.43, using as t the one received from FPayNet,Pay in the message

(FULFILLONCHAIN, t, Alice). Since FPayNet,Pay sends (READ) to GLedger as Alice and

given that after GLedger replies, control is given directly to SLN−Reg−Open, the t used

during the simulation of Alice’s ITI is identical to the one that Alice would obtain in

the real-world execution. The rest of the simulation is thus identical with the real-

world execution, therefore FULFILLONCHAIN does not introduce any opportunity for

distinghuishability.

When E sends (POLL) to Alice, the first action is sending (READ) as Alice to GLedger

both in the ideal (Fig. 3.25, line 4) and the real (Fig. 3.35, line 2) worlds. Subsequently,

in the real world lines 3-28 of Fig. 3.35 are executed by Alice, whereas in the ideal

world, given that the checks of lines 10 and 5 do not lead to a bad event (and thus

given that the functionality does not halt in lines 11 or 6), a (POLL) message is sent to

SLN−Reg−Open. We will prove later that FPayNet,Pay does not halt here. Upon receiving

(POLL), SLN−Reg−Open simulates receiving (POLL) with Alice’s ITI (Fig. 3.52, line 11),

134



but does not READ from GLedger and uses instead the ΣAlice provided along with the

message. A reasoning identical to that found in the previous paragraph shows that this

ΣAlice is exactly the same as that which Alice’s ITI would obtain had it executed line 2

of Fig. 3.35 and thus the simulation of Alice’s ITI is identical to what would happen in

the same case in the real world, up to and including line 28 of Fig. 3.35.

The event E in which FPayNet,Pay executes line 6 of Fig. 3.25 and halts can only

happen if there is a non-commitment transaction that contains a valid signature by

the pAlice,F key that is needed to spend the funding transaction of an open channel.

According to ΠLN , Alice signs with her sAlice,F key only commitment transactions.

Therefore E ⊂ P⇒ Pr[E|¬P] = 0.

Let E ′ the “bad” event in which FPayNet,Pay executes line 11 of Fig. 3.25 and halts.

We will now prove that, during EXEC
FPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E , it is Pr[E|¬P∧¬Q∧¬R∧¬S] =

0. The condition of Fig. 3.25, line 10 is triggered if the delayed output (that of

the malicious party) of tx1 has been spent by the transaction tx2 in ΣAlice (event

E ′1) and polls(Alice) contains an element in [h1,h1 +delay(Alice)−1], where h1

is the block height where tx1 is (event E ′2). Observe that E ′ = E ′1 ∧ E ′2. We note

that the elements in polls(Alice) correspond to the block heights of ΣAlice at the

moments when Alice POLLs (Fig. 3.25, line 3). Consider the following two events:

E ′1,1 : tx2 spends the delayed output with a signature valid by the delayed payment

public key after the locktime expires. E ′1,2 : tx2 spends the delayed output with a sig-

nature valid by the revocation public key pAlice,rev. Note that E ′1 = E ′1,1 ∨ E ′1,2 and

E ′1,1,E
′
1,2 are mutually exclusive (since the same output cannot be spent twice). Ob-

serve that E ′1,2 ⊂ S, thus Pr
[
E ′1,2|¬S

]
= 0. We now concetrate on the event E ′1,1.

Due to the fact that tx2 spends an output locked with a relative timelock of length

delay(Alice) + (2+ r)windowSize, the commitment transaction tx1 can reside in

a block of maximum height h1 ≤ h2 − delay(Alice)− (2+ r)windowSize, where

h2 is the block height where tx2 is. If Alice POLLs on a moment when |ΣAlice| ≥
h1,ΣAlice necessarily contains tx1. Furthermore, if Alice POLLs on a moment when

|ΣAlice| ≤ h1 + delay(Alice)− 1 ≤ h2 − (2+ r)windowSize− 1, she sees tx1 and

directly submits the punishment transaction tx3 (which she has, given that a mali-

ciously closed channel is defined as one where the non-closing party has the punish-

ment transaction) (Fig. 3.36, lines 19-21). Given that tx3 is broadcast when |ΣAlice| ≤
h2− (2+ r)windowSize, it is guaranteed to be on-chain in a block h3 ≤ h2 (accord-

ing to Proposition 1). Since tx3 spends the same funds as tx2, the two cannot be

part of the chain simultaneously. Since E ′1,1 ⇒ ΣAlice contains tx2 and E ′2 ⇒ ΣAlice

135



contains tx3, E ′1,1 and E ′2 are mutually exclusive. Therefore, assuming ¬P∧¬Q∧
¬R ∧¬S, it is Pr [E ′] = Pr

[(
E ′1,1∨E ′1,2

)
∧E ′2

]
= Pr

[(
E ′1,1∧E ′2

)
∨
(

E ′1,2∧E ′2
)]
≤

Pr
[
E ′1,1∧E ′2

]
+ Pr

[
E ′1,2∧E ′2

]
= Pr

[
E ′1,2∧E ′2

]
≤ Pr

[
E ′1,2

]
= 0. We conclude that,

given ¬P∧¬Q∧¬R∧¬S POLL introduces no opportunity for distinghuishability.

We now treat the effects of the (STATE, Σ) message that is sent to SLN−Reg−Open

by FPayNet,Pay, appended to PAY, PUSHFULFILL, PUSHADD and COMMIT messages.

We first observe that the (STATE) message is handled after handling the first message

(which is of one of the four aforementioned types) (Fig. 3.52, line 23). It may be the

case that at the end of the handling of line 23, SLN−Reg−Open does not have control

of the execution. That can happen if a simulated ITI sends a message to a corrupted

player and that player does not respond (e.g. in Fig. 3.37, line 6, when the first message

is
(

PAY,Bob,x,
−−→
path

)
and Bob is corrupted), or if the handling of the message results

in sending (SUBMIT) to GLedger (e.g. in Fig. 3.43, line 11 when the first message is

(PUSHFULFILL, pchid) and counterparty has gone on-chain). In that case, the (STATE)

message is simply ignored (Fig. 3.52, line 24) and does not influence execution in any

way.

In the case when (STATE,Σ) is handled, SLN−Reg−Open attempts to specify who was

charged for each pending payment, based on the information that the potentially paying

party sees in its view of the GLedger state (Fig. 3.52, lines 25-38). The resolution is then

sent to FPayNet,Pay with the message (RESOLVEPAYS, charged). FPayNet,Pay handles

this message in Fig. 3.21 and 3.22, where, if it does not halt (Fig. 3.21, lines 12, 15

and 24 and Fig. 3.22, line 10), it updates the state of each affected channel (Fig. 3.22,

line 4) and does not send any message, thus control returns to E . We will prove that,

under ¬P∧¬Q∧¬R∧¬S, FPayNet,Pay does not halt and thus conclude that the handling

of a (STATE) message does not introduce opportunity for distinguishability.

FPayNet,Pay halts in line 12 of Fig. 3.21 if the honest player Dave was charged for a

payment over a channel that was closed without using a commitment transaction. Like

E, this event is a subset of P, thus cannot happen given ¬P.

FPayNet,Pay halts in line 15 of Fig. 3.21 if the player Dave charged is an honest

member of the payment path, has POLLed in time to catch a malicious closure (event

A) but a malicious closure succeeded (event B). FPayNet,Pay halts in line 24 of Fig. 3.21

if Dave is not the payer, no malicious closure succeeded (¬B) and Dave has POLLed

in time twice to learn the preimage of the HTLC early enough (event C) and has at-

tempted to fulfill on chain at the right moment (event D). FPayNet,Pay also halts if

the two expiries do not have the expected distance (event F) – i.e. halts in the event
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(A∧B)∨ (¬B∧ (F ∨ (C∧D))). SLN−Reg−Open decides that Dave is charged if his pre-

vious counterparty did a malicious closure to a channel version without the HTLC and

spent their (delayed) output (B), or if his next counterparty fulfilled (event G) and his

previous counterparty timed out the HTLC (event H) (Fig. 3.52, line 30), – i.e. Dave

is charged in the event B∨ (G∧H).

We will now show that Pr[A∧ B|¬P∧¬Q∧¬R∧¬S] = 0∧ Pr[(C ∧D)∧ (G∧
H)|¬P∧¬Q∧¬R∧¬S] = 0∧Pr[F ∧ (G∧H)|¬P∧¬Q∧¬R∧¬S] = 0, from which

we can deduce that Pr[(A∧B)∨ ((F ∨ (C∧D))∧ (G∧H))|¬P∧¬Q∧¬R∧¬S] = 0

and thus Pr[((A∧B)∨ (¬B∧ (F ∨ (C∧D))))∧ (B∨ (G∧H))|¬P∧¬Q∧¬R∧¬S] = 0.

This last step holds because (A∧B)∨((F∨(C∧D))∧(G∧H)) = (A∧B)∨((F∨(C∧
D)∧G∧H) and ((A∧B)∨ (¬B∧ (F ∨ (C∧D))))∧ (B∨ (G∧H)) = (A∧B)∨ (¬B∧
(F ∨ (C∧D))∧G∧H) and the latter is a subset of the former.

The analysis of the event A∧B is identical to the one we did previously for the

events E ′1,E
′
2, with A corresponding to E ′2 and B to E ′1. We thus deduce that Pr[A∧

B|¬P∧¬Q∧¬R∧¬S] = 0.

Observe that event F is true only in case it holds that IncomingCltvExpiry−
OutgoingCltvExpiry< relayDelay(Alice)+(2+ r)windowSize. This cannot hap-

pen however for any honest Alice, since S will simulate line 10 of Fig.3.38 with Alice’s

ITI before having her agree to participate as an intermediary in the multi-hop payment.

Therefore Pr[F ∧ (G∧H)|¬P∧¬Q∧¬R∧¬S] = 0.

The only way for event C to be true is if E sends (POLL) to Dave during the pre-

scribed time period (Fig. 3.25, line 3) – note that the addition to polls(Dave) during

registration (Fig. 3.18, line 9) cannot be within the desired range due to the fact that

OutgoingCltvExpiry is not smaller than the chain height when the corresponding

(INVOICE) was received (Fig. 3.37, line 19), registration happens necessarily before

handling (INVOICE) (Fig. 3.18, line 21) and the element added to polls(Dave) at

registration is the chain height at that time (Fig. 3.18, line 9). When Dave receives

(POLL), FPayNet,Pay always sends (GETCLOSEDFUNDS) to SLN−Reg−Open (Fig. 3.25,

line 17) (since, as we saw earlier, FPayNet,Pay never halts).

Event H happens only when the previous counterparty appends HTLC-timeout suc-

cessfully to ΣDave, which is a valid transaction only starting from the block of height

IncomingCltvExpiry+ 1 and on, or if the previous counterparty learns the preim-

age of the HTLC and forges a signature valid by Dave’s public HTLC key, or if the

previous counterparty forges a signature valid by Dave’s public revocation key; the

two latter scenarios can never happen. Thus, given that G happens until a moment
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when |ΣDave| ≤ IncomingCltvExpiry− (2+ r)windowSize, Dave has the time to

successfully fulfill the HTLC. Given C, Dave has POLLed at two moments h1,h2 ∈
[OutgoingCltvExpiry, IncomingCltvExpiry - (2 + r)windowSize], such that h2 ≥
h1 + (2+ r)windowSize. If ΣDave contains the preimage at moment h1 or h2, then

Dave may try to update the previous channel off-chain if he receives a (PUSHFULFILL)

for that channel (Fig. 3.43, lines 1-11), and if the off-chain update is never attempted

(because (PUSHFULFILL) and (COMMIT) are not received) or fails (because the pre-

vious counterparty does not send (REVOKEANDACK)), then the (FULFILLONCHAIN)

that he receives according to D will make him submit HTLC-success (Fig. 3.43, lines 18-

26) and have it on-chain by block of height IncomingCltvExpiry (Proposition 1).

Furthermore, in the case that the HTLC-success is not found at the (POLL) of h1,

Dave immediately submits HTLC-timeout (Fig. 3.36, line 9), which either ends up

in ΣDave by block height h1 + (2+ r)windowSize (Proposition 1) or is rejected be-

cause the counterparty managed to append HTLC-success before it. In the first case,

Dave is not charged for the payment. In the second case, the second (POLL) (at

block height h2) necessarily reveals the HTLC-success to Dave and subsequently the

(FULFILLONCHAIN) causes Dave to fulfill the HTLC with the previous counterparty,

as argued above. Therefore in no case Dave is charged for the payment, i.e. Pr[(C∧
D)∧ (G∧H)|¬P∧¬Q∧¬R∧¬S] = 0.

It remains to be proven that the halt of line 10 in Fig. 3.22 does not occur with non-

negligible probability. Indeed, S only reports the payment as resolved in RESOLVE-

PAYS if a party has been irrevocably charged for it (Fig. 3.52, lines 27, 30, or 33). In

all three cases, all channels that follow the charged party on the
−−→
path have either been

closed or irrevocably updated to a newer version that includes the new balance. Since

FPayNet may only halt for a channel that has not been declared or confirmed as closed

(Fig. 3.22, lines 1 and 9), all channels that can cause a halt are channels that have the

update of this payment irrevocably committed. This only happens when both sides

send a REVOKEANDACK that updates the channel from a version that contains the

relevant HTLC to a version that doesn’t; and when an honest party receives such a RE-

VOKEANDACK message, it logs the update in updatesToReport (Fig. 3.42, line 10)

which causes S to report the update to FPayNet (Fig. 3.52, line 19). We therefore con-

clude that FPayNet never halts on line 10 of Fig. 3.22.

To conclude, given that ¬P∧¬Q∧¬R∧¬S, it holds that EXEC
FPayNet,Open,GLedger
SLN−Reg−Open,E =

EXEC
FPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E . If we allow for forgeries again, i.e. if we allow the event P∨

Q∨R∨ S, we observe that Pr[P∨Q∨R∨ S] ≤ nm ·E-ds(k)+ 3np ·E-ibs(k)+ nmp ·

138



E-share(k)+E-prf(k)+ nm ·E-master(k), where n is the number of players, m is the

maximum channels a player can open and p is the maximum number of updates a

player can perform. We thus deduce that

∀k ∈ N, PPT E ,

|Pr[EXEC
FPayNet,Open,GLedger
SLN−Reg−Open,E = 1]−Pr[EXEC

FPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]| ≤

nm ·E-ds(k)+3np ·E-ibs(k)+

nmp ·E-share(k)+E-prf(k)+nm ·E-master(k) .

Like S LN−Reg−Open−Pay. Differences:

1: Upon receiving (CLOSECHANNEL, receipt, tid, Alice) from FPayNet:

2: simulate Fig. 3.44 receiving (CLOSECHANNEL, receipt, tid) with Alice’s ITI

3: every time closedChannels of Alice is updated with data from a channel (Fig. 3.44,

line 10 and Fig. 3.36, line 23), send (CLOSEDCHANNEL, channel, Alice) to FPayNet

and expect (CONTINUE) from FPayNet to resume simulation

Simulator S

Figure 3.53

Lemma 8.

∀k ∈ N, PPT E ,

|Pr[EXEC
FPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]−Pr[EXEC

FPayNet,GLedger
S ,E = 1]| ≤

nm ·E-ds(k)+3np ·E-ibs(k)+

nmp ·E-share(k)+E-prf(k)+nm ·E-master(k) .

Proof. Like in the previous proof, we here also assume that ¬P∧¬Q∧¬R∧¬S holds.

When E sends (CLOSECHANNEL, receipt, tid) to Alice, in the ideal world, if

it is not the first closing message to Alice the message is ignored (Fig. 3.23, line 5).
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Similarly in the real world, if there has been another such message, Alice ignores it

(Fig.3.44, lines 11 and 2).

In the case that it is indeed the first closing message, in the ideal world FPayNet

takes note that this close is pending (Fig. 3.23, lines 3-4) and stops serving more re-

quests for this channel (line 5), before asking S to carry out channel closing. S then

simulates the response to the original message from E with Alice’s ITI (Fig. 3.53).

Observe that, since FPayNet has ensured that this is the first request for closing this

particular channel, the simulated check of line 2 in Fig. 3.44 always passes and the

rest of Fig. 3.44 is executed. In the real world, the check also passes (since we are in

the case where this is the first closing message) and Fig. 3.44 is executed by the real

Alice in its entirety. Therefore, when E sends CLOSECHANNEL, no opportunity for

distinguishability arises.

When E sends (GETNEWS) to Alice, in the ideal world FPayNet sends (NEWS,

newChannels(Alice), closedChannels(Alice), updatesToReport

(Alice)) to E and empties these fields (Fig. 3.26, lines 15-16). In the real world, Alice

sends (NEWS, newChannels, closedChannels, updatesToReport) to E and empties

these fields as well (Fig. 3.35, lines 29-30). newChannels(Alice) in the ideal world is

populated in two cases: First, when FPayNet receives (CHANNELOPENED) after Alice

has previously received (CHECKFORNEW) (Fig. 3.19, line 30). This happens when

the simulated Alice ITI handles a FUNDINGLOCKED message from Bob (Fig. 3.50,

line 26). In the real world Alice would have modified her new-

Channels while handling Bob’s FUNDINGLOCKED (Fig. 3.34, line 13), thus as far as

this case is concerned, newChannels has the same contents in the real world as does

newChannels(Alice) in the ideal. The other case when newChannels(Alice) is popu-

lated is when FPayNet receives (FUNDINGLOCKED) after Bob has previously received

(CHECKFORNEW) (Fig. 3.19, line 22). This (FUNDINGLOCKED) can only be sent by

S if Alice is honest and right before the receiving of (FUNDINGLOCKED) is simulated

with her ITI (Fig. 3.50, lines 17-22). In the real world, Alice’s newChannels would be

populated upon handling the same (FUNDINGLOCKED). Therefore the newChannels

part of the message is identical in the real and the ideal world at every moment when

E can send (GETNEWS).

Moving on to closedChannels(Alice), we observe that FPayNet adds channel in-

formation when it receives (CLOSEDCHANNEL, channel, Alice) from S (Fig. 3.26,

line 13), which in turn happens exactly when the simulated Alice ITI adds the channel

to her closedChannels (Fig. 3.53, line 3). Therefore it holds that the real and ideal
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closedChannels are always synchronized.

Regarding updatesToReport, in the real world data is added to it exclusively in

line 10 of Fig. 3.42. In the ideal world on the other hand, it is updated in line 6 of

Fig. 3.20, which is triggered only by an (UPDATE) message by S . This message is sent

only when line 10 of Fig. 3.42 is simulated by S (Fig. 3.52, line 19). In the real world,

this happens only after receiving a valid (REVOKEANDACK) message from the chan-

nel counterparty and after first having sent a corresponding (COMMITMENTSIGNED)

message (Fig. 3.42, line 2 and Fig. 3.41, lines 5 and 17), which happens only after

receiving (COMMIT) from E . In the ideal world a simulation of the same events can

only happen in the exact same case, i.e. when E sends an identical (COMMIT) to the

same player. Indeed, FPayNet simply forwards this message to S (Fig. 3.26, line 6),

who in turn simply simulates the response to the message with the simulated ITI that

corresponds to the player that would receive the message in the real world (Fig. 3.52,

line 17). We conclude that the updatesToReport sent to E in either the real or the

ideal world are always identical.

Lastly, in the ideal world, whenever (READ) is sent to GLedger and a reply is re-

ceived, the function checkClosed (Fig.3.24) is called with the reply of the GLedger as

argument. This function does not generate new messages, but may cause the FPayNet

to halt. We will now prove that this never happens.

FPayNet halts in line 15 of Fig. 3.24 in case a channel is closed without using a

commitment transaction. Similarly to event E in the proof of Lemma 7, this event is a

subset of P and thus is impossible to happen given that we assume ¬P.

FPayNet halts in line 18 of Fig. 3.24 in case a malicious closure by the counter-

party was successful, in spite of the fact that Alice polled in time to apply the punish-

ment. A (POLL) message to Alice within the prescribed time frame (line 17) would

cause FPayNet to alert S (Fig. 3.25, line 17), who in turn would submit the punishment

transaction in time to prevent the counterparty from spending the delayed payment

(Fig. 3.36, lines 19-21). Therefore the only way for a malicious counterparty to spend

the delayed output before Alice has the time to punish is by spending the punishment

output themself. This however can never happen, since this event would be a subset of

either R, if remoteComn (i.e. the counterparty closed the channel) is in ΣAlice, or Q, if

localComn is in ΣAlice (i.e. Alice closed the channel).

FPayNet halts in line 25 of Fig. 3.24 in case E has asked for the channel to close,

but too much time has passed since. This event cannot happen, for two reasons.

First, regarding elements in pendingClose(Alice), because FPayNet forwards to S
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a (CLOSECHANNEL) message (Fig. 3.23, line 6) for each element that it adds to

pendingClose (Fig 3.23, line 4) and this causes S to submit the closing transaction

to GLedger (Fig. 3.44, line 12). This transaction is necessarily valid, because there is

no other transaction that spends the funding transaction of the channel, according to

the first check of line 24 of Fig. 3.24. FPayNet halts in this case only if it is sure that

the chain has grown by (2+ r)windowSize blocks, and thus if the closing transaction

had been submitted when (CLOSECHANNEL) was received, it should have been nec-

essarily included (Proposition 1). Second, every element added to closedChannels

(Fig. 3.44, line 10 and Fig. 3.36, line 23) corresponds to a submission of a closing

transaction for the same channel (Fig. 3.44, line 12), or to a channel for which the

closing transaction is already in the ledger state (Fig. 3.36, line 1). In both cases,

the transaction has been submitted at least (2+ r)windowSize blocks earlier, thus

again by Proposition 1 it is impossible for the transaction not to be in the ledger

state. Therefore FPayNet cannot halt in line 25 of Fig. 3.24. We deduce that, given

¬P∧¬Q∧¬R, the execution of checkClosed by FPayNet does not contribute any in-

crease to the probability of distinguishability. Put otherwise, given ¬P∧¬Q∧¬R, it is

EXEC
FPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = EXEC

FPayNet,GLedger
S ,E .

FPayNet halts in line 30 of Fig. 3.24 in case all Alice’s channels are closed on-chain

and either Alice’s off-chain balance is not equal to zero, or if her on-chain balance is

not the expected one, as reported by S . This event can never happen for the following

reasons. Firstly, as we have seen, S reports all updates with an (UPDATE) message

(Fig. 3.52, line 19) and a (RESOLVEPAYS) message; upon receiving the latter and given

that it doesn’t halt, FPayNet updates offChainBalance(Alice) if she is the payer or payee

of one of the resolved payments (Fig. 3.21, lines 9, 31 and 32). Secondly, upon closure

of each channel, FPayNet would have halted if the closing balance were not the expected

one (Fig. 3.24, line 17), an event that cannot happen as we have already proven. Lastly,

upon each channel opening and closing, FPayNet updates offChainBalance(Alice) and

onChainBalance(Alice) to reflect the event (Fig. 3.19, lines 26 and 27 and Fig. 3.24,

lines 6 or 8 respectively). Therefore, it is impossible for FPayNet to halt here.

Similarly to the previous proof, if we allow for forgeries again, i.e. if we allow the

event P∨Q∨R∨S, we observe that Pr[P∨Q∨R∨S]≤ nm ·E-ds(k)+3np ·E-ibs(k)+

nmp ·E-share(k)+E-prf(k)+nm ·E-master(k), where n is the number of players, m is

the maximum channels a player can open and p is the maximum number of updates a
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player can perform. We thus deduce that

∀k ∈ N, PPT E ,

|Pr[EXEC
FPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]−Pr[EXEC

FPayNet,GLedger
S ,E = 1]| ≤

nm ·E-ds(k)+3np ·E-ibs(k)+

nmp ·E-share(k)+E-prf(k)+nm ·E-master(k) .

Proof of Theorem 4. The theorem is a direct result of Lemmas 4-8.

3.11.1 Supporting propositions

Ads(INIT, pk):

• Choose uniformly at random Alice from the set of players P of an execution

EXEC
GLedger
ΠLN,Ad,E

• Choose uniformly at random i from {1, . . . ,m}

• Simulate internally EXEC
GLedger
ΠLN,Ad,E with E = EP // EP defined in proof of Lemma 7

• When Alice opens her i-th channel, replace pF of KEYGEN() in Fig. 3.27, l. 20 with pk

• Whenever SIGNDS(M,sF ) is called, ask challenger for the signature σ with (unknown)

sk on M and use that instead

• If event P takes place and the forged signature is valid by pk, retrieve forged signature

σ∗ and the corresponding transaction m∗ and output (m∗,σ∗)

• If the simulated execution completes and Alice has opened less than i channels, or if no

forgery happened, or if a forgery for another player/channel happened, return FAIL

Algorithm EUF-CMA forgery

Figure 3.54: wins EUF-CMA game

Proposition 3. Let P,n,m be as defined in the proof of Lemma 7. It holds that ∀E ,Pr[P]≤
nm ·E-ds(k).
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Proof. Let Pr[P] = a for an unmodified execution. Ads simulates EXEC
GLedger
ΠLN,Ad,E faith-

fully, since it does the following two changes. The first is to replace one pF public

key with the public key pk given by the challenger. Both keys are generated by KEY-

GEN(), thus their distribution is identical. The second is to replace signatures done by

sF with signatures done by the challenger with sk. Both signatures are generated with

SIGNDS() and thus their distribution is identical. We deduce that, within the simulated

execution, Pr[P] = a.

At the beginning of an execution, Alice and i are chosen uniformly at random,

therefore given P, by Proposition 2 we have that

Pr[Ads chooses correct keypair] =
1

nm
.

Since the selection happens independently from the forgery, we deduce that

Pr[Ads wins EUF-CMA] =
a

nm

Since the Digital Signatures scheme used during the execution is assumed to be

EUF-CMA-secure, it is

Pr[Ads wins EUF-CMA]≤ E-ds(k)⇒∀E ,a≤ nm ·E-ds(k) .

Aibs(INIT, mpk):

• Choose uniformly at random Alice from the set of players P of an execution

EXEC
GLedger
ΠLN,Ad,E

• Choose uniformly at random i from {1, . . . , p}

• Choose uniformly at random j from {pay,dpay,htlc}

• Simulate internally EXEC
GLedger
ΠLN,Ad,E with E = EQ // EQ defined in proof of Lemma 7

• When Alice performs her i-th opening or update, replace the ph j,n output of

KEYDER(phb j,shb j, phcom,n) with pk← PUBKEYDER(mpk, phcom,n)

• Whenever SIGNIBS(M,sh j,n) is called, ask challenger for the signature σ with

(unknown) sk← KEYDER(mpk,msk, phcom,n) on M and use that instead

Algorithm IBS-EUF-CMA forgery
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• If event Q takes place and the forged signature is valid by pk, retrieve forged signature

σ∗ and the corresponding transaction m∗ and output (m∗, phcom,n,σ
∗)

• If the simulated execution completes and Alice has updated or opened a channel less

than i times, or if no forgery happened, or if a forgery for another player/opening/update

happened, return FAIL

Figure 3.55: wins IBS-EUF-CMA game

Proposition 4. Let Q,n, p be as defined in the proof of Lemma 7. It is ∀E ,Pr[Q] ≤
3np ·E-ibs(k).

Proof. Let Pr[Q] = b for an unmodified execution. Aibs simulates EXEC
GLedger
ΠLN,Ad,E faith-

fully, since it does the following two changes. The first is to replace one ph j,n public

key with pk← PUBKEYDER(mpk, phcom,n), where mpk is given by the challenger.

Both mpk and the normally used phb j are generated by KEYDER(), thus their distribu-

tion is identical. The second is to replace signatures done by sh j,n with signatures done

by the challenger with sk← KEYDER(mpk,msk, ph j,n). Both signatures are generated

with SIGNIBS() and thus their distribution is identical. We deduce that, within the

simulated execution, Pr[Q] = b.

At the beginning of an execution, Alice, i and j are chosen uniformly at random,

therefore given Q, by Proposition 2 we have that

Pr[Aibs chooses correct keypair] =
1

3np
.

Since the selection happens independently from the forgery, we deduce that

Pr[Aibs wins IBS-EUF-CMA] =
b

3np

Since the Identity Based Signatures scheme used during the execution is assumed

to be IBS-EUF-CMA-secure, it is

Pr[Aibs wins IBS-EUF-CMA]≤ E-ibs(k)⇒

∀E ,b≤ 3np ·E-ibs(k) .
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Ashare(INIT):

• Choose uniformly at random Alice from the set of players P of an execution

EXEC
GLedger
ΠLN,Ad,E

• Choose uniformly at random i from {1, . . . ,m}

• Choose uniformly at random j from {1, . . . , p}

• Simulate internally EXEC
GLedger
ΠLN,Ad,E with E = ER // ER defined in proof of Lemma 7

• When Alice opens a channel for the i-th time, save (phbrev,shbrev) (generated from

MASTERKEYGEN() in Fig. 3.27, line 25) as (mpk,msk) and send (mpk,1) to

challenger, to receive key pk

• The j-th time Alice calls KEYSHAREGEN() to produce a per commitment pair

(phcom, j,shcom, j) for the chosen channel (either during opening or during an update),

replace its output with the next unused pk

• If Alice attempts to update the chosen channel once more and has to send shcom, j to the

counterparty, stop simulation and return FAIL

• If event R takes place and the forged signature is valid by pk, retrieve forged signature

σ∗ and the corresponding transaction m∗ and output (m∗,σ∗)

• If the simulated execution completes and Alice has opened less than i channels, or if no

forgery happened, or if a forgery for another player/channel happened, return FAIL

Algorithm share-EUF forgery

Figure 3.56: wins share-EUF game

Proposition 5. Let R,n,m, p be as defined in the proof of Lemma 7. It holds that

∀E ,Pr[R]≤ nmp ·E-share(k)+E-prf(k).

Proof. First we observe that the halting of the simulation on an additional update does

not interfere with the probability of the desired forgery taking place because such a

forgery can only occur if Alice has broadcast localCom, which prevents her from

further updating the channel. Therefore such halts happen only after an event that

extinguishes the hope for a successful forgery.
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Let Pr[R] = c for the unmodified execution. While it is doing the simulation of

EXEC
GLedger
ΠLN,Ad,E , Ashare does the following change to the execution. It replaces a single

phcom, j public key with the public key pk which is given by the challenger. pk is

generated by KEYSHAREGEN() with fresh randomness, whereas in an unmodified

execution phcom, j is generated by KEYSHAREGEN(), using as its randomness prand←
PRF(seed, j). Given though that prand is not used anywhere else and the fact that

the computational distance of an output of a PRF from true randomness is at most

E-prf(k), we deduce that the computational distance of an unmodified and the modified

executions are at most E-prf(k), therefore for the modified execution it is Pr[R] ∈ [c−
E-prf(k),c+E-prf(k)].

At the beginning of an execution, Alice, i and j are chosen uniformly at random,

therefore given R, by Proposition 2 we have that

Pr[Ashare chooses correct keypair] =
1

nmp
.

Since the selection happens independently from the forgery, we deduce that

Pr[Ashare wins share-EUF] ∈
[

c−E-prf(k)
nmp

,
c+E-prf(k)

nmp

]
.

Since the Combined Signatures scheme used is assumed to be share-EUF-secure,

it is

Pr[Ashare wins share-EUF]≤ E-share(k)⇒

∀E ,c≤ nmp ·E-share(k)+E-prf(k) .

Amaster(INIT,mpk):

• Choose uniformly at random Alice from the set of players P of an execution

EXEC
GLedger
ΠLN,Ad,E

• Choose uniformly at random i from {1, . . . ,m}

• Simulate internally EXEC
GLedger
ΠLN,Ad,E with E = ES // ES defined in proof of Lemma 7

• When Alice opens a channel for the i-th time, replace phbrev (generated from

MASTERKEYGEN() in Fig. 3.27, line 25) with mpk

Algorithm master-EUF-CMA forgery
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• Ignore calls to COMBINEKEY() that need the missing msk and assume that the resulting

combined secret key is known (to satisfy line 18 of Fig. 3.36 if needed).

• Whenever SIGNCS(M,shrev,n) is called within this channel, ask challenger for the

signature σ with signing key csk← COMBINEKEY(mpk,msk, ptcom,n,stcom,n) on M by

sending them (ptcom,n,stcom,n,M) and use that instead

• If event S takes place and the forged signature is valid by

cpk← COMBINEPUBKEY(mpk, ptcom,n) for some ptcom,n of the channel, retrieve forged

signature σ∗ and the corresponding transaction m∗ and output (m∗,σ∗)

• If the simulated execution completes and Alice has opened less than i channels, or if no

forgery happened, or if a forgery for another player/channel happened, return FAIL

Figure 3.57: wins master-EUF-CMA game

Proposition 6. Let S,n,m be as defined in the proof of Lemma 7. It is ∀E ,Pr[S] ≤
nm ·E-master(k).

Proof. Let Pr[S] = d hold for the unmodified execution. During the simulation of

EXEC
GLedger
ΠLN,Ad,E , Amaster does the following two changes to the execution. Firstly, it

replaces a single phbrev public master key with mpk which is given by the chal-

lenger. Both mpk and phbrev are generated by MASTERKEYGEN() with fresh ran-

domness, thus their distribution is identical. Secondly, it replaces signatures done

by the secret key shrev,n ← COMBINEKEY(phbrev,shbrev, ptcomn,stcom,n) with signa-

tures created by the challenger with the secret key resulting from executing COM-

BINEKEY(mpk,msk, ptcomn,stcom,n), thus the distribution of the two signatures is iden-

tical. We deduce that for the modified execution it is Pr[S] = d.

At the beginning of an execution, Alice and i are chosen uniformly at random,

therefore given S, by Proposition 2 we have that

Pr[Amaster chooses correct keypair] =
1

nm
.

Since the selection happens independently from the forgery, we deduce that

Pr[Amaster wins master-EUF-CMA]≥ d
nm
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Since the Combined Signatures scheme used during the execution is assumed to be

master-EUF-CMA-secure, it is

Pr[Amaster wins master-EUF-CMA]≤ E-master(k)⇒

∀E ,d ≤ nm ·E-master(k) .

3.12 Future Work and Conclusion

In order to remain tractable, the current analysis omits some parts of the lightning

specification. In particular, the specification defines how intermediaries of multi-hop

payments can charge a fee for their service. Furthermore, the per-update secret genera-

tion is not done with a PRF according to the specification: an optimisation that reduces

the storage overhead for the counterparty is used instead. The security of this opti-

misation however has not been yet formally inspected. Additionally, the specification

provisions for a number of failure messages that help in keeping counterparties in-

formed of issues with requested payments and in alleviating the problem of unneeded

precautionary channel closures. Transactions that are added on-chain offer a fee to the

blockchain miners (unrelated to the fee of the off-chain multi-hop payments). When

closing a channel cooperatively, this fee is contributed by both counterparties, there-

fore the closing sequence of the specification includes an iterative negotiation of said

fee where the two parties repeatedly propose a value based on their settings until they

converge to a compromise or fail to agree. Lastly, most Bitcoin nodes do not re-

lay transactions that include outputs with tiny amounts of coins, a.k.a “dust” outputs,

to avoid bloating the blockchain. The lightning specification provides extensive in-

structions as to how to prune any such outputs that may appear in a Lightning-related

transaction.

All aforementioned parts of the protocol were not analysed so that the security of

the core parts of the lightning protocol could be discussed without distractions. In order

for the analysis to cover the entirety of the current version of the lightning specification

however, the aforementioned features should be incorporated and their security should

be proven. This expansion of the analysis is left as future work.

In a different direction, big parts of our main security proof consist of an exhaustive

enumeration of the possible messages that E and A can send to the protocol, the simu-

lator or the functionality and tracking how such messages would change the flow of the
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execution of the ideal and the real world. It is then argued that in all cases the messages

that would be sent to E and A are indistinguishable. These parts of the proof are good

candidates for rewriting in the environment of an automated proof assistant [113] to

instill additional certainty that all possible execution paths are indeed checked and do

not contain subtle sources of distinguishability. Combining our results with the recent

mechanization of UC via Easycrypt [114] would be a natural and interesting direction

for future work.

The lightning specification is not static, but it is continuously undergoing a num-

ber of improvements. The most noteworthy upcoming change is the introduction of

Pointlocked TimeLocked Contracts (PTLCs). This mechanism replaces HTLCs and

promises to combat the “wormhole” attack [106], while increasing privacy. Our work

can be modified to cover the case of PTLCs with relative ease. It also provides a suit-

able framework for future work that aims to shed light on the exact privacy benefit that

PTLCs offer as opposed to HTLCs.

The present analysis constitutes the first comprehensive treatment in the Universal

Composability framework of a deployed layer-2 protocol on top of a functional ledger.

It can be extended and adapted to analyse other similar protocols that achieve different

security goals or use another ledger as base layer.
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Chapter 4

Elmo: Recursive Virtual Payment

Channels for Bitcoin

4.1 At a glance

A dominant approach towards the solution of the scalability problem in blockchain sys-

tems has been the development of layer 2 protocols and specifically payment channel

networks (PCNs) such as the Lightning Network (LN) over Bitcoin. Routing payments

over LN requires the coordination of all path intermediaries in a multi-hop round trip

that encumbers the layer 2 solution both in terms of responsiveness as well as privacy.

The issue is resolved by “virtual channel” protocols that, capitalizing on a suitable

setup operation, enable the two endpoints to engage as if they had a direct payment

channel between them.

Apart from communication efficiency, virtual channel constructions have three nat-

ural desiderata. A virtual channel constructor is recursive if it can also be applied

on pre-existing virtual channels, variadic if it can be applied on any number of pre-

existing channels and symmetric if it encumbers in an egalitarian fashion all channel

participants both in optimistic and pessimistic execution paths. We put forth the first

Bitcoin-suitable recursive variadic virtual channel construction. Furthermore our vir-

tual channel constructor is symmetric and offers optimal round complexity both in the

optimistic and pessimistic execution paths. Our virtual channels can be implemented

over Bitcoin assuming an already proposed extension to its signature rules. We express

and prove the security of our construction in the universal composition setting.
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4.2 Introduction

The popularity of blockchain protocols in recent years has stretched their performance

exposing a number of scalability considerations. In particular, Bitcoin and related

blockchain protocols exhibit very high latency (e.g. Bitcoin has a latency of 1h [1]) and

a very low throughput (e.g., Bitcoin can handle at most 7 transactions per second [24]),

both significant shortcomings that jeopardize wider use and adoption and are to a cer-

tain extent inherent [24]. To address these considerations a prominent approach is to

optimistically handle transactions off-chain via a “Payment Channel Network” (PCN)

(see, e.g., [115] for a survey) and only use the underlying blockchain protocol as an

arbiter in case of dispute.

The key primitive of PCN protocols is a payment (or more generally, state) channel.

Two parties initiate the channel by locking some funds on-chain and subsequently

exchange direct messages to update the state of the channel. The key feature is that

state updates are not posted on-chain and hence they remain unencumbered by the

performance limitations of the underlying blockchain protocol. Given this primitive,

multiple overlapping payment channels can be combined and form the PCN.

Closing a channel is an operation that involves posting the state of the channel on-

chain; it is essential that any party individually can close a channel as otherwise a ma-

licious counterparty (i.e. the other channel participant) could prevent an honest party

from accessing their funds. This functionality however raises an important design con-

sideration: how to prevent malicious parties from posting old states of the channel.

Addressing this issue can be done with some suitable use of transaction “timelocks”,

a feature that prevents a transaction or a specific script from being processed on-chain

prior to a specific time (measured in block height). For instance, diminishing trans-

action timelocks facilitated the Duplex Micropayment Channels (DMC) [30] at the

expense of bounding the overall lifetime of a channel. Using script timelocks, the

Lightning Network (LN) [9] provided a better solution that enabled channels staying

open for an arbitrary duration: the key idea was to duplicate the state of the chan-

nel between the two counterparties, say Alice and Bob, and facilitate a punishment

mechanism that can be triggered by Bob whenever Alice posts an old state update and

vice-versa. The script timelocking is essential to allow an honest counterparty some

time to act.

Interconnecting state channels in LN enables any two parties to transmit funds to

each other as long as they can find a route of payment channels that connects them.
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The downside of this mechanism is that it requires the direct involvement of all the

parties along the path for each payment. Instead, “virtual payment channels”, suggest

the more attractive approach of putting a one-time initialization step to set up a virtual

payment channel, which subsequently can be used for direct payments with complexity

—in the optimistic case— independent of the length of the path. Initial constructions

for virtual channels essentially capitalized on the extended functionality of Ethereum,

e.g., Perun [33] and GSCN [47], while more recent work [43] brought them closer to

Bitcoin-compatibility (by leveraging adaptor signatures [46]).

A virtual channel constructor can be thought of as an operator over the underlying

primitive of a state channel. We can identify three natural desiderata for this operator.

• Recursive. A recursive virtual channel constructor can operate over channels that

themselves could be the results of previous applications of the operator. This is

important in the context of PCNs since it allows building virtual channels on top

of pre-existing virtual channels.

• Variadic. A variadic virtual channel constructor can virtualize any number of

input state channels directly, i.e. without leveraging recursion. This is important

in the context of PCNs since it enables applying the operator to build virtual

channels of arbitrary length without undue overhead.

• Symmetric. A symmetric virtual channel constructor offers setup and closing

operations that are symmetric in terms of cost between the two “endpoints” or

the “intermediaries” (but not a mix of both) for the optimistic and pessimistic

execution paths. This is important in the context of PCNs since it ensures that

no party is worse-off or better-off after an application of the operator in terms of

accessing the basic functionality of the channel.

Endpoints are the two parties that share the virtual channel, intermediaries are the

parties that take part in any of underlying channels.

We note that recursiveness, while identified already as an important design property

(e.g., see [47]) it has not been achieved in the context of Bitcoin-compatible channels

(it was achieved only for DCN-like fixed lifetime channels in [42] and left as an open

question for LN-type channels in [43]). The reason behind this are the severe limita-

tions imposed in the design by the scripting language of Bitcoin-compatible systems.

With respect to the other two properties, observe that successive applications of a re-

cursive binary virtual channel operator to make it variadic will break symmetry (since
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the sequence of operator applications will impact the participants’ functions with re-

spect to the resulting channel). This is of particular concern since all previous virtual

channel constructors proposed are binary, cf. [47, 43, 42].

Our construction relies on the ANYPREVOUT signature type, which does not sign the

hash of the transaction it spends, therefore allowing for a single pre-signed transaction

to spend any output with a suitable script.

4.2.1 Our Contributions

We present the first Bitcoin-suitable recursive virtual channel construction that is recur-

sive and supports channels with an indefinite lifetime. In addition, our construction,

Elmo (named after St. Elmo’s fire), is variadic and symmetric. In our construction,

both optimistic and pessimistic execution paths are optimal in terms of round com-

plexity: issuing payments between the two endpoints requires just three messages of

size independent of the length of the channel while closing the channel requires up

to two on-chain transactions for any involved party (endpoint or intermediary) also

independent of the channel’s length. Our construction is also compatible with the cur-

rent version of any blockchain that supports Turing-complete smart contracts, such as

Ethereum [2].

We achieve the above by leveraging on a sophisticated virtual channel setup pro-

tocol which, on the one hand, enables endpoints to use an interface that is invariant

between on-chain and off-chain (i.e. virtual) channels, while on the other, intermedi-

aries can act following any arbitrary activation sequence when the channel is closed.

The latter is achieved by making it feasible for anyone becoming an initiator towards

closing the channel, while subsequent respondents, following the activation sequence,

can choose the right action to successfully complete the closure process by posting a

single transaction each. Finally, we formally prove the security of the constructor pro-

tocol in the UC [11] setting; our ideal functionality is global, according to the definition

of [12].

4.2.2 Related work

The first proposal for PCNs was due to [29] which only enabled unidirectional payment

channels. As mentioned previously, DMCs [30] with their decrementing timelocks

have the shortcoming of limited channel lifetime. This was ameliorated by LN [9]

which has become the dominant paradigm for designing PCNs for Bitcoin-compatible
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systems. LN is currently implemented and operational for Bitcoin. It has also been

adapted for Ethereum [2], where it is known as the Raiden Network [116].

A number of attacks have been identified against LN. The wormhole attack [106]

against LN allows colluding parties in a multi-hop payment to steal the fees of the in-

termediaries between them and Flood & Loot [117] analyses the feasibility of an attack

in which too many channels are forced to close in a short amount of time, reducing the

blockchain liveness and enabling a malicious party to steal off-chain funds.

Payment routing [102, 118, 40] is another research area that aims to improve the

network efficiency without sacrificing privacy. Actively rebalancing channels [100]

can further increase network efficiency by preventing routes from becoming unavail-

able due to lack of well-balanced funds.

An alternantive payment channel construction that aspires to be the successor of

Lightning is eltoo [31]. It has a conceptually simpler construction, smaller on-chain

footprint and a more forgiving attitude towards submitting an old channel state than

Lightning, but it needs the ANYPREVOUT sighash flag to be added to Bitcoin. Gen-

eralized Bitcoin-Compatible Channels [46] enable the creation of state channels on

Bitcoin, extending channel functionality from simple payments to arbitrary Bitcoin

scripts.

Sprites [32] leverages the scripting language of Ethereum to decrease the time col-

lateral is locked up compared to Lightning. Perun [33] and GSCN [47] exploit the

Turing-complete scripting language of Ethereum to provide virtual state channels, i.e.

channels that can open without an on-chain transaction and that allow for arbitrary

scripts to be executed off-chain. Similar features are provided by Celer [119]. Hy-

dra [34] provides state channels for the Cardano [13] blockchain which combines a

UTXO type of model with general purpose smart contract functionality that are also

isomorphic, i.e. Hydra channels can accommodate any script that is compatible with

the underlying blockchain.

BDW [35] shows how pairwise channels over Bitcoin can be funded with no on-

chain transactions by allowing parties to form groups that can pool their funds together

off-chain and then use those funds to open channels. ACMU [36] allows for multi-path

atomic payments with reduced collateral, enabling new applications such as crowd-

funding conditional on reaching a funding target.

TEE-based [120] solutions [37, 38, 39, 40] improve the throughput and efficiency

of PCNs by an order of magnitude or more, at the cost of having to trust TEEs.

Brick [41] uses a partially trusted committee to extend PCNs to fully asynchronous
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networks.

Solutions alternative to PCNs include sidechains (e.g., [121, 122, 123]), non-custo-

dial chains (e.g., [124, 125, 126, 127]), and partially centralised payment networks that

entirely avoid using a blockchain [128, 129, 130, 131].

Last but not least, a number of works propose virtual channel constructions for

Bitcoin. Lightweight Virtual Payment Channels [42] enables a virtual channel to be

opened on top of two preexisting channels and uses a technique similar to DMC. Let

simple channels be those built directly on-chain, i.e. channels that are not virtual.

Bitcoin-Compatible Virtual Channels [43] also enables virtual channels on top of two

preexisting simple channels and offers two protocols, the first of which guarantees that

the channel will stay off-chain for an agreed period, while the second allows the single

intermediary to turn the virtual into a simple channel. We remark that the above strat-

egy has the shortcoming that even if it is made recursive (a direction left open in [43])

after k applications of the constructor the virtual channel participant will have to pub-

lish on-chain k transactions in order to close the channel if all intermediaries actively

monitor the blockchain.

Furthermore, Donner [44] is the first work to achieve variadic virtual channels

without the need for recursion nor features that are not yet available in Bitcoin. This

is achieved by having the funder use funds that are external to the base channels (i.e.

the channels that the virtual channel is based on), so a party that has all its coins in

channels cannot fund a Donner channel; additionally, we conjecture that using external

coins precludes variadic virtual channel designs that are not encumbered with limited

lifetime. Donner also relies on placeholder outputs which, due to the minimum coins

they need to carry to exceed Bitcoin’s “dust limit”, may skew the incentives of rational

players and adds to the opportunity cost of maintaining a channel. Furthermore, its

design complicates future iterations that lift its current restriction that only one of the

two channel parties can fund the virtual channel. Donner is more efficient than the

present work in terms of storage, computation and communication complexity, and

boasts a simpler design, but has less room for optimisations.

We refer the reader to Table 4.1 for a comparison of the features and limitations of

virtual channel protocols, including the one put forth in the current chapter.
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Table 4.1: Comparison of virtual channel protocols

Unlimited lifetime Recursive Variadic Script requirements

LVPC [42] ✗ G#a ✗ Bitcoin

BCVC [43] ✓ ✗ ✗ Bitcoin

Perun [33] ✓ ✗ ✗ Ethereum

GSCN [47] ✓ ✓ ✗ Ethereum

Donner [44] ✗ ✗ ✓ Bitcoin

this work ✓ ✓ ✓ Bitcoin + ANYPREVOUT

alacks security analysis

4.3 High Level Explanation

Conceptually, Elmo is split into three main actions: channel opening, payments and

closing. A channel (P1,Pn) between parties P1 and Pn may be opened directly on-

chain, in which case the two parties follow an opening procedure similar to that of

LN, or it can be opened on top of a path of preexisting channels (P1,P2), (P2,P3),

. . . , (Pn−2,Pn−1), (Pn−1,Pn). In the latter case all parties Pi on the path follow our

novel protocol, setting aside funds in their channels as collateral for the new virtual

channel that is being opened. Once all intermediaries are done, P1 and Pn finally create

(and keep off-chain) their initial “commitment” transaction, following a logic similar

to Lightning and thus their channel is open.

A payment over an established channel follows a procedure heavily inspired by

LN, but without the use of HTLCs. To be completed, a payment needs three messages

to be exchanged by the two parties.

Finally, the closing procedure of a channel C can be completed unilaterally and

consists of signing and publishing a number of transactions on-chain. As we will dis-

cuss later, the exact transactions that a party will publish vary depending on the actions

of the parties controlling the channels that form the “base” of C and the channels that

are based on C. Our protocol can be augmented with a more efficient optimistic col-

laborative closing procedure, which however is left as future work.

Note that a virtual channel is built on top of two or more so-called “base” chan-

nels, which, due to the recursive property, may themselves be simple or virtual. The

parties that control the base channels are called “base parties”. The fact that more than

two base channels can be used by a single virtual channel is ensured by the variadic
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property.

In more detail, to open a channel (c.f. Figure 4.28) the two counterparties (a.k.a.

“endpoints”) first create new keypairs and exchange the resulting public keys (2 mes-

sages), then prepare the underlying base channels if the new channel is virtual (12 ·(n−
1) total messages, i.e. 6 outgoing messages per endpoint and 12 outgoing messages per

intermediary, for n−2 intermediaries), next they exchange signatures for their respec-

tive initial commitment transactions (2 messages) and lastly, if the channel is to be

opened directly on-chain, the “funder” signs and publishes the “funding” transaction

to the ledger. As we alluded to earlier, a channel with its funding transaction on-chain

is called “simple”. A channel is either simple or virtual, not both. We here note that

like LN, only one of the two parties, the funder, provides coins for a new channel. This

limitation simplifies the execution model and the analysis, but can be lifted at the cost

of additional protocol complexity.

Let us now introduce some notation used in figures with transactions. Reflecting

the UTXO model, each transaction is represented by a cylindrical, named node with

one incoming edge per input and one outgoing edge per output. Each output can be

connected with at most one input of another transaction; cycles are not allowed. Above

an input or an output edge we note the number of coins it carries. In some figures the

coins are omitted. Below an input we place the data carried and below an output its

spending conditions. For a connected input-output pair, we omit the data carried by the

input. σK is a signature on the transaction by skK . An output marked with pkK needs a

signature by skK to be spent. n/{pk1, . . . ,pkm} is an m-of-n multisig (n≤m) that needs

signatures from n distinct keys among sk1, . . . ,skm. If k is a spending condition, k+ t

is the same spending condition but with a relative timelock of t. Spending conditions

or data can be combined with logical “AND” (∧) and “OR” (∨), so an output a∨b can

be spent either by matching the condition a or the condition b, and an input σa ∧σb

carries signatures from ska and skb.

4.3.1 Simple Channels

In a similar vein to earlier UTXO-based PCN proposals, having an open channel es-

sentially means having very specific keys, transactions and signatures at hand, as well

as checking the ledger periodically and being ready to take action if misbehaviour is

detected. Let us first consider a simple channel that has been established between

Alice and Bob where the former owns cA and the latter cB coins. There are three sets
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F CA,i

RB,i2/{pkA,F ,pkB,F}
2/{pkA,R,pkB,R}∨ (pkA,out + t)

pkB,out

pkB,out

Figure 4.1: Funding, commitment and revocation transactions

of transactions at play: A “funding” transaction that is put on-chain, off-chain “com-

mitment” transactions that spend the funding output on channel closure and off-chain

“revocation” transactions that spend commitment outputs in case of misbehaviour (c.f.

Figure 4.1).

In particular, there is a single on-chain funding transaction that spends cA + cB

coins (originally belonging to the funder), with a single output that is encumbered

with a 2/{pkA,F ,pkB,F} multisig and carries cA + cB coins.

Next, there are two commitment transactions, one for each party, each of which

can spend the funding tx and produce two outputs with cA and cB coins each. The two

txs differ in the outputs’ spending conditions: The cA output in Alice’s commitment tx

can be spent either by Alice after it has been on-chain for a pre-agreed period (i.e. it

is encumbered with a “timelock”), or by a “revocation” transaction (discussed below)

via a 2-of-2 multisig between the counterparties, whereas the cB output can be spent

only by Bob without a timelock. Bob’s commitment tx is symmetric: the cA output can

be spent only by Alice without timelock and the cB output can be spent either by Bob

after the timelock expiration or by a revocation tx. When a new pair of commitment

txs are created (either during channel opening or on each update) Alice signs Bob’s

commitment tx and sends him the signature (and vice-versa), therefore Alice can later

unilaterally sign and publish her commitment tx but not Bob’s (and vice-versa).

Last, there are 2m revocation transactions, where m is the total number of updates

of the channel. The jth revocation tx held by an endpoint spends the output carrying

the counterparty’s funds in the counterparty’s jth commitment tx. It has a single output

spendable immediately by the aforementioned endpoint. Each endpoint stores m revo-

cation txs, one for each superseded commitment tx. This creates a disincentive for an

endpoint to cheat by using any other commitment transaction than its most recent one

to close the channel: the timelock on the commitment output permits its counterparty

to use the corresponding revocation transaction and thus claim the cheater’s funds.

Endpoints do not have a revocation tx for the last commitment transaction, therefore

these can be safely published. For a channel update to be completed, the endpoints

must exchange the signatures for the revocation txs that spend the commitment txs that

159



V
cA + cB

σA,F ∧σB,F

cA + cB− cvirt

2/{pkA,F ′,pkB,F ′}

cvirt
n/{pk[1], j} j∈[n]∨ (2/{pkA,V ,pkE,V}+ t)

Figure 4.2: A - E virtual channel: A’s initiator transaction. Spends the funding output of

the A-B channel. Can be used if B has not published a virtual transaction yet.

just became obsolete.

Observe that the above logic is essentially a simplification of LN.

4.3.2 Virtual Channels

In order to gain intuition on how virtual channels function, consider n−1 simple chan-

nels established between n honest parties as before. P1 (the funder) and Pn want to

open a virtual channel over these base channels. Before opening the virtual, each base

channel is entirely independent, having different unique keys, separate on-chain fund-

ing outputs, a possibly different balance and number of updates. After the n parties

follow our novel virtual channel opening protocol, they will all hold off-chain a num-

ber of new, “virtual” transactions that spend their respective funding transactions and

can themselves be spent by new commitment transactions in a manner that ensures fair

funds allocation for all honest parties.

In particular, apart from the transactions of simple channels, each of the two end-

points also has an “initiator” transaction that spends the funding output of its only

base channel and produces two outputs: one new funding output for the base channel

and one “virtual” output (c.f. Figures 4.2, 4.44). If the initiator transaction ends up

on-chain, the latter output carries coins that will directly or indirectly fund the funding

output of the virtual channel. This virtual funding output can in turn be spent by a com-

mitment transaction that is negotiated and updated with direct communication between

the two endpoints in exactly the same manner as the payments of simple channels.

Intermediaries on the other hand store three sets of virtual transactions (Figure 4.43):

“initiator” (Figure 4.3), “extend-interval” (Figure 4.4) and “merge-intervals” (Fig-

ure 4.5). Each intermediary has one initiator tx, which spends the party’s two funding

outputs and produces four: one funding output for each base channel, one output that

directly pays the intermediary coins equal to the total value in the virtual channel, and
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V

cA + cB

σA,F ∧σB,F

cB + cC
σB,F ∧σC,F

cA + cB− cvirt

2/{pkA,F ′,pkBl ,F ′}
cvirt

pkB,out

cvirt
n/{pk{A,B}, j} j∈[n]∨ (2/{pkA,V ,pkE,V}+ t)

cB + cC− cvirt
2/{pkBr,F ′,pkCl ,F ′}

Figure 4.3: A - E virtual channel: B’s initiator transaction. Spends the funding outputs

of the A-B and B-C channels. Can be used if neither A nor C have published a virtual

transaction yet.

V

cvirt∧n
j=1 σ{A}, j

cB + cC
σB,F ∧σC,F

cvirt

pkB,out

cvirt

n/{pk{A,B}, j} j∈[n]∨ (2/{pkA,V ,pkE,V}+ t)

cB + cC− cvirt
2/{pkBr,F ′,pkCl ,F ′}

Figure 4.4: A - E virtual channel: One of B’s extend interval transactions. σ is the

signature. Spends the virtual output of A’s initiator transaction and the funding output

of the B-C channel. Can be used if A has already published its initiator transaction and

C has not published a virtual transaction yet.

one “virtual output”, which carries coins that can potentially fund the virtual channel.

If both funding outputs are still unspent, publishing its initiator tx is the only way for

an intermediary to close either of its channels.

Furthermore, each intermediary has O(n) extend-interval transactions. Being an

intermediary, the party is involved in two base channels, each having its own funding

output. In case exactly one of these two outputs has been spent honestly and the other

is still unspent, publishing an extend-interval transaction is the only way for the party

to close the base channel corresponding to the unspent output. Such a transaction con-

sumes two outputs: the only available funding output and a suitable virtual output, as

discussed below. An extend-interval tx has three outputs: A funding output replacing

the one just spent, one output that directly pays the intermediary coins equal to the
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V

cvirt∧n
j=1 σ{A}, j

cvirt∧n
j=1 σ{C}, j

cvirt

pkB,out

cvirt
n/{pk{A,B,C}, j} j∈[n]∨ (2/{pkA,V ,pkE,V}+ t)

Figure 4.5: A - E virtual channel: One of B’s merge intervals transactions. Spends the

virtual outputs of A’s and C’s virtual transactions. Can be used if both A and C have

already published their initiator transactions. Notice that the interval of C’s virtual output

only contains C, which can only happen if C has published its initiator and not any other

of its virtual transactions.

total value of the virtual channel, and one virtual output.

Last, each intermediary has O(n2) merge-intervals transactions. If both base chan-

nels’ funding outputs of the party have been spent honestly, the only way for the party

to close either base channel is by publishing a merge-intervals transaction. Such a

transaction consumes two suitable virtual outputs, as discussed below. It has two out-

puts: One that directly pays the intermediary coins equal to the total value of the virtual

channel, and one virtual output.

To understand why this multitude of virtual transactions is needed, we now zoom

out from the individual party and discuss the dynamic of the system as a whole. The

first party Pi that wishes to close a base channel observes that its funding output(s)

remain(s) unspent and publishes its initiator transaction. First, this allows Pi to use

its commitment transaction to close the base channel. Second, in case Pi is an inter-

mediary, it directly regains the coins it has locked for the virtual channel. Third, it

produces a virtual output that can only be consumed by Pi−1 and Pi+1, the parties ad-

jacent to Pi (if any) with specific extend-interval transactions. The virtual output of

this extend-interval transaction can in turn be spent by specific extend-interval trans-

actions of Pi−2 or Pi+2 that have not published a virtual transaction yet (if any) and so

on for the next neighbours. The idea is that each party only needs to publish a single

virtual transaction to “collapse” the virtual layer and each virtual output uniquely de-

fines the continuous interval of parties that have already published a virtual transaction

and only allows parties at the edges of this interval to extend it. This prevents mali-

cious parties from indefinitely replacing a virtual output with a new one. As the name

suggests, merge-intervals transactions are published by parties that are adjacent to two
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parties that have already published their virtual transactions and in effect joins the two

intervals into one.

Each virtual output can also be used as the funding output for the virtual channel

after a timelock, to protect from unresponsive parties blocking the virtual channel in-

definitely. This in turn means that if an intermediary observes either of its funding

outputs being spent, it has to publish its suitable virtual transaction before the timelock

expires to avoid losing funds. What is more, all virtual outputs need the signature of

all parties to be spent before the timelock (i.e. they have an n-of-n multisig) in order

to prevent colluding parties from faking the intervals progression. To ensure that par-

ties have an opportunity to react, the timelock of a virtual output is the maximum of

the required timelocks of the intermediaries that can spend it. Let p be a global con-

stant representing the maximum number of blocks a party is allowed to stay offline

between activations without becoming negligent (the latter term is explained in detail

later), and s the maximum number of blocks needed for an honest transaction to enter

the blockchain after being published, as in Proposition 7 of Section 4.9. The required

timelock of a party is p+ s if its channel is simple, or p+
n−1
∑
j=2

(s−1+ t j) if the channel

is virtual, where t j is the required timelock of the jth base channel of the intermedi-

ary’s channel. The only exception are virtual outputs that correspond to an interval that

includes all parties, which can only be used as funding outputs for the virtual channel

as its interval cannot be further extended, therefore the two separate spending methods

and the associated timelock are dropped.

Many extend-interval and merge-intervals transactions have to be able to spend

different outputs, depending on the order other base parties publish their virtual trans-

actions. For example, P3’s extend-interval tx that extends the interval {P1,P2} to

{P1,P2,P3} must be able to spend both the virtual output of P2’s initiator transaction

and P2’s extend-interval transaction which has spent P1’s initiator transaction. The

same issue is faced by commitment transactions of a virtual channel, as any virtual

output can potentially be used as the funding ouput for the channel. In order for the

received signatures for virtual and commitment txs to be valid for multiple previous

outputs, the previously proposed ANYPREVOUT sighash flag [132] is needed to be added

to Bitcoin. We hope this work provides additional motivation for this flag to be in-

cluded in the future.

Note also that the newly established virtual channel can itself act as a base for

further virtual channels, as its funding output can be unilaterally put on-chain in a pre-

agreed maximum number of blocks. This in turn means that, as we discussed above, a
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further virtual channel must take the delay of its virtual base channels into account to

determine the timelocks needed for its own virtual outputs.

As for the actual protocol needed to establish a virtual channel, 6 rounds of com-

munication are needed, each starting from the funder and hop by hop reaching the

fundee and back (c.f. Figure 4.24). The first communicates parties’ identities, their

funding keys and their neighbours’ channel balances, the second creates new commit-

ment transactions, the third communicates keys for virtual transactions (a.k.a virtual

keys), all parties’ coins and desired timelocks, the fourth and the fifth communicate

signatures for the virtual transactions (signatures for virtual outputs and funding out-

puts respectively) and the sixth shares revocation signatures for the old channel states.

In order to better grasp the manner in which the construction described achieves its

intended goals, let us now turn to an example. Consider an established virtual channel

on top of 4 preexisting simple base channels. Let A, B, C, D and E be the relevant

parties, which control the (A,B), (B,C), (C,D) and (D,E) base channels, along with

the (A,E) virtual channel. After carrying out some payments, A decides to close the

virtual channel. It therefore publishes its initiator transaction, thus consuming the

funding output of (A,B) and producing (among others) a virtual output with the interval

{A}. B notices this before the timelock of the virtual output expires and publishes its

extend-interval transaction that consumes the aforementioned virtual output and the

funding output of (B,C), producing a virtual output with the interval {A,B}. C in turn

publishes the corresponding extend-interval transaction, consuming the virtual output

of B and the funding output of (C,D) while producing a virtual output with the interval

{A,B,C}. Finally D publishes the last extend-interval transaction, thus producing an

interval with all players. Instead of a virtual output, it produces the funding output

for the virtual channel (A,E). Now A can spend this funding output with its latest

commitment transaction. The entire process is depicted schematically in Figure 4.6.

Note that if any of B, C or D does not act within the timelock prescribed in their

consumed virtual output, then A or E can spend the virtual output with their latest

commitment transaction, thus eventually A can close its virtual channel in all cases.

4.4 Modelling time

The protocol and functionality defined in this chapter do not use GCLOCK directly. In-

deed, the only notion of time is provided by the blockchain height, as reported by

GLedger. We therefore omit it in the statement of our lemmas and theorems for simplic-
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A

B

C

D

2/{pkA,F ,pkB,F} 2/{pkB,F ,pkC,F} 2/{pkC,F ,pkD,F} 2/{pkD,F ,pkE,F}

2/{pkA,F ′,pkB,F ′}
{A}

2/{pkB,F ′,pkC,F ′}
pkB,out

{A,B}

2/{pkC,F ′,pkD,F ′}pkC,out

{A,B,C}

2/{pkD,F ′,pkE,F ′}
pkD,out

2/{pkA,V ,pkE,V}

Figure 4.6: 4 simple channels supporting a virtual. A initiates the closing procedure

and no party is negligent. Virtual outputs are marked with their interval.
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ity of notation; it should normally appear as a hybrid together with GLedger.

Our protocol is fully asynchronous, i.e., the adversary can delay any network mes-

sage arbitrarily long. The protocol is robust against such delays, as an honest party can

unilaterally prevent loss of funds even if some of its incoming and outgoing network

messages are dropped by A , as long as the party has input-output communication with

the ledger. We also note that, following the conventions of single-threaded UC execu-

tion model, the duration of local computation is not taken into account in any way (as

long as it does not exceed its polynomial bound).

4.5 Model & Construction

4.5.1 Model

In this section we will examine the architecture and the details of our model, along

with possible attacks and their mitigations. We follow the UCGS framework [12] to

formulate the protocol and its security. We list the ideal-world global functionality

GChan in Section 4.7 (Figures 4.7-4.11) and a simulator S (Figures 4.19-4.20), along

with a real-world protocol ΠChan (Figures 4.21-4.55) that UC-realizes GChan (Theo-

rem 6). We give a self-contained description in this section, while pointing to figures

in Sections 4.7 and 4.8, in case the reader is interested in a specification in pseudocode.

As in previous formulations, (e.g., [90]), the role of E corresponds to two distinct

actors in a real world implementation. On the one hand E passes inputs that correspond

to the desires of human users (e.g. open a channel, pay, close), on the other hand E
is responsible with periodically waking up parties to check the ledger and act upon

any detected counterparty misbehaviour, similar to an always-on “daemon” of real-life

software that periodically nudges the implementation to perform these checks.

Since it is possible that E fails to wake up a party often enough, ΠChan explicitly

checks whether it has become “negligent” every time it is activated and all security

guarantees are conditioned on the party not being negligent. A party is deemed negli-

gent if more than p blocks have been added to GLedger between any consecutive pair of

activations. The need for explicit negligence checking stems from the fact that party

activation is entirely controlled by E and no synchrony limitations are imposed (e.g.

via the use of GCLOCK), therefore it can happen that an otherwise honest party is not
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activated in time to prevent a malicious counterparty from successfully using an old

commitment transaction. If a party is marked as negligent, no balance security guar-

antees are given (c.f. Lemma 9).

4.5.2 Ideal world functionality GChan

Our ideal world functionality GChan represents a single channel, either simple or vir-

tual. We could instead contain all the channels in a single, monolithic functionality

(following the approach of Chapter 3) and we believe that we could still carry out the

security proof. Nevertheless, having the functionality correspond to a single chan-

nel has no drawbacks, as all desired security guarantees are provided by our modular

architecture, and instead brings two benefits. Firstly, the functionality is easier to in-

tuitively grasp, as it handles less tasks. Having a simple and intuitive functionality

aids in its reusability and is an informal goal of the simulation-based paradigm. In

the realm of software engineering, simple components with clear boundaries and ex-

plicit interactions are easier to contemplate and reason about and therefore more likely

to be adopted, as well as used securely and correctly; we desire these properties for

our model. Secondly, this approach permits our functionality to be global, as defined

in [12].

GChan acts as a relay between A and E , leaking all messages. This simplifies

the functionality and facilitates the indistinguishability argument by having S simply

running internally the real world protocols of the channel parties ΠChan with no modifi-

cations. Furthermore, the communication of parties with GLedger is handled by GChan:

when a simulated honest party in S needs to send a message to GLedger, S instructs

GChan to send this message to GLedger on this party’s behalf. GChan internally maintains

two state machines, one per channel party (c.f. Figures 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18)

that keep track of which internal parties are corrupted or negligent, whether the channel

has opened, whether a payment is underway, which external parties are to be consid-

ered kindred (as they correspond to other channels owned by the same human user,

discussed below) and whether the channel has closed. The single security check per-

formed is whether the on-chain coins are at least equal to the expected balance once

the channel closes. If this check fails, GChan halts. Since the protocol ΠChan (which

realises GChan, c.f. Theorems 5 and 6) never halts, this ideal world check corresponds

to the security guarantee offered by ΠChan. Note that this check is not performed for

negligent parties, as S notifies GChan if a party becomes negligent and the latter omits
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the check. Thus indistinguishability between the real and the ideal world is not violated

in case of negligence.

Observe that a human user may participate in various channels, therefore it corre-

sponds to more than one ITMs. This is the case for example for the funder of a virtual

channel and the corresponding party of the first base channel. Such parties are called

kindred. They communicate locally (i.e. via inputs and outputs, without using the ad-

versarially controlled network), they get corrupted as a group and balance guarantees

concern their aggregate coins. Formally this communication is modelled by having a

virtual channel using its base channels as global subroutines, as defined in [12].

If we were using plain UC, the above would constitute a violation of the subrou-

tine respecting property that functionalities have to fulfill. We leverage the concept

of global functionalities put forth in [12] to circumvent the issue. More specifically,

we say that a simple channel functionality is of “level” 1, which is written as G1
Chan.

Inductively, a virtual channel functionality that is based on channels of any “level”

up to and including n− 1 has a “level” n, which write as Gn
Chan. Then Gn

Chan is

(GLedger,G1
Chan, . . . ,G

n−1
Chan)-subroutine respecting, according to the definition of [12].

The same structure is used in the real world between protocols as well. This technique

ensures that the necessary conditions for the validity of the functionality and the proto-

col are met and that the realisability proof can go through, as we will see in Section 4.6

in more detail.

4.5.3 Real world protocol ΠChan

Our real world protocol ΠChan, ran by party P, consists of two subprotocols: the

Lightning-inspired part, dubbed LN (Figures 4.21-4.40) and the novel virtual layer

subprotocol, named VIRT (Figures 4.41-4.55). A simple channel that is not the base of

any virtual channel leverages only LN, whereas a channel that is virtual or simple and

base leverages both LN and VIRT.

4.5.3.1 LN subprotocol

The LN subprotocol has two variations depending on whether P is the channel funder

(Alice) or the fundee (Bob). It performs a number of tasks: Initialisation takes a single

step for fundees and two steps for funders. LN first receives a public key pkP,out from

E . This is the public key that should eventually own all P’s coins after the channel is

closed. LN also initialises its internal variables. If P is a funder, LN waits for a second
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activation to generate a keypair and then waits for E to endow it with some coins,

which will be subsequently used to open the channel (Figure 4.21).

After initialisation, the funder Alice is ready to open the channel. Once E gives

to Alice the identity of Bob, the initial channel balance c and, in case it is a virtual,

the identities of the base channel owners (Figure 4.28), Alice generates and sends Bob

her funding and revocation public keys (pkA,F , pkA,R, used for the funding and revo-

cation outputs respectively) along with c, pkA,out, and the base channel identities (if

any). Given that Bob has been initialised, it generates funding and revocation keys and

replies to Alice with pkB,F , pkB,R, and pkB,out (Figure 4.23).

The next step prepares the base channels (Figure 4.24). If our channel is a sim-

ple one, then Alice simply generates the funding tx. If it is a virtual and assuming all

base parties (running LN) cooperate, a chain of messages from Alice to Bob and back

via all base parties is initiated (Figures 4.30 and 4.31). These messages let each suc-

cessive neighbour know the identities of all the base parties. Furthermore each party

instantiates a new “host” party that runs VIRT. It also generates new funding keys and

communicates them, along with its “out” key pkP,out and its leftward and rightward

balances. If this circuit of messages completes, Alice delegates the creation of the

new virtual layer transactions to its new VIRT host, which will be discussed later in

detail. If the virtual layer is successful, each base party is informed by its host accord-

ingly, intermediaries return to the OPEN state (i.e., they have completed their part and

are ready to accept instructions for, e.g., new payments) and Alice and Bob continue

the opening procedure. In particular, Alice and Bob exchange signatures on the ini-

tial commitment transactions, therefore ensuring that the funding output can be spent

(Figure 4.25). After that, in case the channel is simple the funding transaction is put

on-chain (Figure 4.26) and finally E is informed of the successful channel opening.

There are two facts that should be noted: Firstly, in case the opened channel is

virtual, each intermediary necessarily partakes in two channels. However each protocol

instance only represents a party in a single channel, therefore each intermediary is

in practice realised by two kindred ΠChan instances that communicate locally, called

“siblings”. Secondly, our protocol is not designed to gracefully recover if other parties

do not send an expected message at any point in the opening or payment procedure.

Such anti-Denial-of-Service measures would greatly complicate the protocol and are

left as a task for a real world implementation. It should however be stressed that an

honest party with an open channel that has fallen victim to such an attack can still

unilaterally close the channel, therefore no coins are lost in any case.

169



Once the channel is open, Alice and Bob can carry out an unlimited number of

payments in either direction, only needing to exchange 3 direct network messages with

each other per payment, therefore avoiding the slow and costly on-chain validation.

The payment procedure is identical for simple and virtual channels and crucially it

does not implicate the intermediaries (and therefore Alice and Bob do not incur any

delays such an interaction with intermediaries would introduce). For a payment to be

carried out, the payee is first notified by E (Figure 4.35) and subsequently the payer is

instructed by E to commence the payment (Figure 4.34).

If the channel is virtual, each party also checks that its upcoming balance is lower

than the balance of its sibling’s counterparty and that the upcoming balance of the

counterparty is higher than the balance of its own sibling, otherwise it rejects the pay-

ment. This is to mitigate a “griefing” attack (i.e. one that does not lead to financial

gain) where a malicious counterparty uses an old commitment transaction to spend the

base funding output, therefore blocking the honest party from using its initiator virtual

transaction. This check ensures that the coins gained by the punishment are sufficient

to cover the losses from the blocked initiator transaction. If the attack takes place,

other local channels based directly or indirectly on it are informed and are moved to a

failed state. Note that this does not bring a risk of losing any of the total coins of all

local channels. We conjecture that this balance constraint can be lifted if the current

Lightning-inspired payment method is replaced with an eltoo-inspired one [31].

Subsequently each of the two parties builds the new commitment transaction of its

counterparty, signs it and sends over the signature, then the revocation transactions for

the previously valid commitment transactions are generated, signed and the signatures

are exchanged. To reduce the number of messages, the payee sends the two signatures

in one message. This does not put it at risk of losing funds, since the new commitment

transaction (for which it has already received a signature and therefore can spend) gives

it more funds than the previous one.

ΠChan also checks the chain for outdated commitment transactions by the coun-

terparty and publishes the corresponding revocation transaction in case one is found

(Figure 4.37). It also keeps track of whether the party is activated often enough and

marks it as negligent otherwise (Figure 4.21). In particular, at the beginning of every

activation while the channel is open, LN checks if the party has been activated within

the last p blocks (where p is an implementation-dependent global constant) by reading

from GLedger and comparing the current block height with that of the last activation.

When either party is instructed by E to close the channel (Figure 4.39), it first
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asks its host to close (details on the exact steps are discussed later) and once that

is done, the ledger is checked for any transaction spending the funding output. In

case the latest remote commitment tx is on-chain, then the channel is already closed

and no further action is necessary. If an old committment transaction is on-chain, the

corresponding revocation transaction is used for punishment. If the funding output

is still unspent, the party attempts to publish the latest commitment transaction after

waiting for any relevant timelock to expire. Until the funding output is irrevocably

spent, the party still has to periodically check the blockchain and again be ready to use

a revocation transaction if an old commitment transaction spends the funding output

after all (Figure 4.37).

4.5.3.2 VIRT subprotocol

This subprotocol acts as a mediator between the base channels and the Lightning-

based logic. Put otherwise, its responsibility is putting on-chain the funding output

of the channel when needed. When first initialised by a machine that executes the LN

subprotocol (Figure 4.41), it learns and stores the identities, keys, and balances of var-

ious relevant parties, along with the required timelock and other useful data regarding

the base channels. It then generates a number of keys as needed for the rest of the

base preparation. If the initialiser is also the channel funder, then the VIRT machine

initiates 4 “circuits” of messages. Each circuit consists of one message from the funder

P1 to its neighbour P2, one message from each intermediary Pi to the “next” neighbour

Pi+1, one message from the fundee Pn to its neighbour Pn−1 and one more message

from each intermediary Pi to the “previous” neighbour Pi−1, for a total of 2 · (n− 1)

messages per circuit.

The first circuit (Figure 4.42) communicates all “out”, virtual and funding keys

(both old and new), all balances and all timelocks among all parties. In the second

circuit (Figure 4.49) every party receives and verifies all signatures for all inputs of

its virtual transactions that spend a virtual output. It also produces and sends its own

such signatures to the other parties. Each party generates and circulates S =
n−2
∑

i=2
(n−

3+χi=2 +χi=n−1 +2(i−2+χi=2)(n− i−1+χi=n−1)) ∈O(n3) signatures (where χA

is the characteristic function that equals 1 if A is true and 0 else), which is derived

by calculating the total number of virtual outputs of all parties’ virtual transactions –

we remind that each virtual output can be spent by a n-of-n multisig. On a related

note, the number of virtual transactions stored by each party is 1 for the two endpoints
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(Figure 4.44) and n− 2+χi=2 +χi=n−1 +(i− 2+χi=2)(n− i− 1+χi=n−1) ∈ O(n2)

for the i-th intermediary (Figure 4.43). The latter is derived by counting the number of

extend-interval and merge-intervals transactions held by the intermediary, which are

equal to the number of distinct intervals that the party can extend and the number of

distinct pairs of intervals that the party can merge respectively, plus 1 for the unique

initiator transaction of the party. The third circuit concerns sharing signatures for the

funding outputs (Figure 4.50). Each party signs all transactions that spend a funding

output relevant to the party, i.e. the initiator transaction and some of the extend-interval

transactions of its neighbours. The two endpoints send 2 signatures each when n = 3

and n−2 signatures each when n> 3, whereas each intermediary sends 2+χi+1<n(n−
2+χi=n−2)+χi−1>1(n−2+χi=3)∈O(n) signatures each. The last circuit of messages

(Figure 4.51) carries the revocations of the previous states of all base channels. After

this, base parties can only use the newly created virtual transactions to spend their

funding outputs. In this step each party exchanges a single signature with each of its

neighbours.

When VIRT is instructed to close by party R (Figure 4.53), it first notifies its VIRT

host (if any) and waits for it to close. After that, it signs and publishes the unique valid

virtual transaction. It then repeatedly checks the chain to see if the transaction is in-

cluded (Figure 4.54). If it is included, the virtual layer is closed and VIRT informs (i.e.

outputs (CLOSED) to R). The instruction to close has to be received potentially many

times, because a number of virtual transactions (the ones that spend the same output)

are mutually exclusive and therefore if another base party publishes an incompatible

virtual transaction contemporaneously and that remote transaction enters the chain,

then our VIRT party has to try again with another, compatible virtual transaction.

4.6 Security

The first step to formally arguing about the security of Elmo is to clearly delineate the

exact security guarantees it provides. To that end, we first prove two similar claims

regarding the conservation of funds in the real and ideal world, Lemmas 9 and 10

respectively. Informally, the first establishes that an honest, non-negligent party which

was implicated in an already closed channel on which a number of payments took

place will have at least the expected funds on-chain.

Lemma 9 (Real world balance security). Consider a real world execution with P ∈
{Alice,Bob} honest LN ITI and P̄ the counterparty ITI. Assume that all of the following
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are true:

• the internal variable negligent of P has value “False”,

• P has transitioned to the OPEN State for the first time after having received

(OPEN,c, . . .) by either E or P̄,

• P [has received (FUND ME, fi, . . .) as input by another LN ITI while State was

OPEN and subsequently P transitioned to OPEN State] n times,

• P [has received (PAY,di) by E while State was OPEN and P subsequently tran-

sitioned to OPEN State] m times,

• P [has received (GET PAID,ei) by E while State was OPEN and P subsequently

transitioned to OPEN State] l times.

Let φ= 1 if P= Alice, or φ= 0 if P= Bob. If P receives (CLOSE) by E and, if hostP ̸=
“ledger” the output of hostP is (CLOSED), then eventually the state obtained when

P inputs (READ) to GLedger will contain h outputs each of value ci and that has been

spent or is exclusively spendable by pkR,out such that

h

∑
i=1

ci ≥ φ · c−
n

∑
i=1

fi−
m

∑
i=1

di +
l

∑
i=1

ei (4.1)

with overwhelming probability in the security parameter, where R is a local, kindred

machine (i.e. either P, P’s sibling, the party to which P sent FUND ME if such a

message has been sent, or the sibling of one of the transitive closure of hosts of P).

The second lemma states that for an ideal party in a similar situation, the balance

that GChan has stored for it is at least equal to the expected funds.

Lemma 10 (Ideal world balance). Consider an ideal world execution with function-

ality GChan and simulator S . Let P ∈ {Alice,Bob} one of the two parties of GChan.

Assume that all of the following are true:

• StateP ̸= IGNORED,

• P has transitioned to the OPEN State at least once. Additionally, if P = Alice, it

has received (OPEN,c, . . .) by E prior to transitioning to the OPEN State,

• P [has received (FUND ME, fi, . . .) as input by another GChan/ LN ITI while StateP =

OPEN and P subsequently transitioned to OPEN State] n≥ 0 times,
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• P [has received (PAY,di) by E while StateP = OPEN and P subsequently transi-

tioned to OPEN State] m≥ 0 times,

• P [has received (GET PAID,ei) by E while StateP = OPEN and P subsequently

transitioned to OPEN State] l ≥ 0 times.

Let φ = 1 if P = Alice, or φ = 0 if P = Bob. If GChan receives (CLOSE,P) by S , then

the following holds with overwhelming probability on the security parameter:

balanceP = φ · c−
n

∑
i=1

fi−
m

∑
i=1

di +
l

∑
i=1

ei (4.2)

In both cases the expected funds are (initial balance - funds for supported virtuals

- outbound payments + inbound payments). Note that the funds for supported virtuals

only refer to those funds used by the funder of the virtual channel, not the rest of the

base parties.

Both proofs follow the various possible execution paths, keeping track of the re-

sulting balance in each case and coming to the conclusion that balance is secure in all

cases, except if signatures are forged.

It is important to note that in fact ΠChan provides a stronger guarantee, namely

that an honest, non-negligent party with an open channel can unilaterally close it and

obtain the expected funds on-chain within a known number of blocks, given that E
sends the necessary “daemon” messages. This stronger guarantee is sufficient to make

this construction reliable enough for real-world applications. However a corresponding

ideal world functionality with such guarantees would have to be aware of the specific

transactions and signatures, therefore it would be essentially as complicated as the

protocol, thus violating the spirit of the simulation-based security paradigm.

Subsequently we prove Lemma 11, which informally states that if an ideal party

and all its kindred parties are honest, then GChan does not halt with overwhelming

probability.

Lemma 11 (No halt). In an ideal execution with GChan and S , if the kindred par-

ties of the honest parties of GChan are themselves honest, then the functionality halts

with negligible probability in the security parameter (i.e. l. 21 of Fig. 4.11 is executed

negligibly often).

This is proven by first arguing that if the conditions of Lemma 10 for the ideal

world hold, then the conditions of Lemma 9 also hold for the equivalent real world

execution, therefore in this case GChan does not halt. We then argue that also in case
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the conditions of Lemma 10 do not hold, GChan may never halt as well, therefore

concluding the proof.

A salient observation regarding an instance s of ΠChan is that, in order to open a

virtual channel, it passes inputs to another ΠChan instance s′ that belongs to a different

extended session. This means that s (and therefore ΠChan) is not subroutine respecting,

as defined in [11]. To address this issue, we first annotate ΠChan with a numeric su-

perscript, i.e. Πn
Chan. Π1

Chan is always a simple (i.e. on-chain) channel. To achieve this,

ΠChan undergoes a modification under which it ignores all (OPEN, x, hops ̸= “ledger”,

. . . ) messages. Likewise we define G1
Chan as a version of GChan that ignores (OPEN, x,

hops ̸= “ledger”, . . . ) messages. As for the rest of the superscripts, ∀n ∈ N∗,Πn+1
Chan

is a virtual channel protocol ΠChan of which the base channels have a maximum su-

perscript n. It then holds that ∀n ∈ N∗,Πn
Chan is (GLedger,Π

1
Chan, . . . ,Π

n−1
Chan)-subroutine

respecting, as defined in [12]; this is straightforward to verify by inspection. Likewise,

Gn+1
Chan is a virtual channel functionality GChan of which the base channels have a max-

imum superscript n. It then holds that ∀n ∈ N∗,Gn
Chan is (GLedger,G1

Chan, . . . ,G
n−1
Chan)-

subroutine respecting, again easily verifiable by inspection.

We now formulate and prove Theorem 5, which states that Π1
Chan UC-realises

G1
Chan.

Theorem 5 (Simple Payment Channel Security). Protocol Π1
Chan UC-realises G1

Chan

in the presence of a global functionality GLedger and assuming the security of the un-

derlying digital signature. Specifically,

∀ PPT A ,∃ PPT S : ∀ PPT E it is EXEC
GLedger

Π1
Chan,A ,E ≈ EXEC

G1
Chan,GLedger

S ,E

The corresponding proof is a simple application of Lemma 11, the fact that GChan

is a simple relay and that S faithfully simulates ΠChan internally.

Proof of Theorem 5. By inspection of Figures 4.7 and 4.19 we can deduce that for a

particular E , in the ideal world execution EXEC
G1

Chan,GLedger
SA ,E , SA simulates internally

the two Π1
Chan parties exactly as they would execute in EXEC

GLedger

Π1
Chan,A ,E , the real world

execution, in case G1
Chan does not halt. Indeed, G1

Chan only halts with negligible proba-

bility according to Lemma 11, therefore the two executions are computationally indis-

tinguishable.

Lastly we prove that ∀ integers n ≥ 2,Πn
Chan UC-realises Gn

Chan in the presence of

G1
Chan, . . . ,G

n−1
Chan (leveraging the relevant definition from [12]).
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Theorem 6 (Recursive Virtual Payment Channel Security). ∀n∈N∗\{1}, the protocol

Πn
Chan UC-realises Gn

Chan in the presence of G1
Chan, . . . ,G

n−1
Chan and GLedger, assuming

the security of the underlying digital signature. Specifically,

∀n ∈ N∗ \{1},∀ PPT A ,∃ PPT S : ∀ PPT E it is

EXEC
GLedger,G1

Chan,...,G
n−1
Chan

Πn
Chan,A ,E ≈ EXEC

Gn
Chan,GLedger

S ,E

Proof of Theorem 6. The proof is exactly the same as that of Theorem 5, replacing

superscripts 1 for n.

Formal proofs for the three lemmas can be found in Section 4.10.

4.7 Functionality & Simulator

• On receiving (msg) by party R addressed to P ∈ {Alice,Bob} by means of

mode ∈ {input,output,network}, handle it according to the corresponding rule in

Fig. 4.8, 4.9, 4.11, or 4.10 (if any) and subsequently send (RELAY, msg, P, E , input) A .

// all messages are relayed to A

• On receiving (RELAY, msg, P, R, mode) by A (mode ∈ {input,output,network},
P ∈ {Alice,Bob}), relay msg to R as P by means of mode. // A fully controls outgoing

messages by GChan

• On receiving (INFO, msg) by A , handle (msg) according to the corresponding rule in

Fig. 4.8, 4.9, 4.11, or 4.10 (if any). After handling the message or after an “ensure” fails,

send (HANDLED, msg) to A . // (INFO, msg) messages by S always return control to S
without any side-effect to any other ITI, except if GChan halts

• GChan keeps track of two state machines, one for each of Alice, Bob. If there are more

than one suitable rules for a particular message, or if a rule matches the message for

both parties, then both rule versions are executed. // the two rules act on different state

machines, so the order of execution does not matter

Functionality GChan – general message handling rules

Figure 4.7
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1: On first activation: // before handing the message

2: pkP←⊥; hostP←⊥; enablerP←⊥; balanceP← 0;

3: StateP← UNINIT

4: On (BECAME CORRUPTED OR NEGLIGENT, P) by A or on output (ENABLER USED

REVOCATION) by hostP when in any state:

5: StateP← IGNORED

6: On (INIT, pk) by P when StateP = UNINIT:

7: pkP← pk

8: StateP← INIT

9: On (OPEN, x, “ledger”, . . . ) by Alice when StateA = INIT:

10: store x

11: StateA← TENTATIVE BASE OPEN

12: On (BASE OPEN) by A when StateA = TENTATIVE BASE OPEN:

13: balanceA← x

14: StateA← OPEN

15: On (BASE OPEN) by A when StateB = INIT:

16: StateB← OPEN

17: On (OPEN, x, hops ̸= “ledger”, . . . ) by Alice when StateA = INIT:

18: store x

19: enablerA← hops[0].left

20: add enablerA to Alice’s kindred parties

21: StateA← PENDING VIRTUAL OPEN

22: On output (FUNDED, host, . . . ) to Alice by enablerA when

Functionality GChan – open state machine, P ∈ {Alice,Bob}
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StateA = PENDING VIRTUAL OPEN:

23: hostA← host[0].left

24: StateA← TENTATIVE VIRTUAL OPEN

25: On output (FUNDED, host, . . . ) to Bob by ITI R ∈ {GChan,LN} when StateB = INIT:

26: enablerB← R

27: add enablerB to Bob’s kindred parties

28: hostB← host

29: StateB← TENTATIVE VIRTUAL OPEN

30: On (VIRTUAL OPEN) by A when StateP = TENTATIVE VIRTUAL OPEN:

31: if P = Alice then balanceP← x

32: StateP← OPEN

Figure 4.8

1: On (PAY, x) by P when StateP = OPEN: // P pays P̄

2: store x

3: StateP← TENTATIVE PAY

4: On (PAY) by A when StateP = TENTATIVE PAY: // P pays P̄

5: StateP← (SYNC PAY,x)

6: On (GET PAID, y) by P when StateP = OPEN: // P̄ pays P

7: store y

8: StateP← TENTATIVE GET PAID

9: On (PAY) by A when StateP = TENTATIVE GET PAID: // P̄ pays P

10: StateP← (SYNC GET PAID,x)

11: When StateP = (SYNC PAY,x):

Functionality GChan – payment state machine, P ∈ {Alice,Bob}
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12: if StateP̄ ∈ {IGNORED,(SYNC GET PAID,x)} then

13: balanceP← balanceP− x

14: // if P̄ honest, this state transition happens simultaneously with l. 21

15: StateP← OPEN

16: end if

17: When StateP = (SYNC GET PAID,x):

18: if StateP̄ ∈ {IGNORED,(SYNC PAY,x)} then

19: balanceP← balanceP + x

20: // if P̄ honest, this state transition happens simultaneously with l. 15

21: StateP← OPEN

22: end if

Figure 4.9

1: On input (FUND ME, x, . . . ) by ITI R ∈ {GChan,LN} when StateP = OPEN:

2: store x

3: add R to P’s kindred parties

4: StateP← PENDING FUND

5: When StateP = PENDING FUND:

6: if we intercept the command “define new VIRT ITI host” by A , routed through P

then

7: store host

8: StateP← TENTATIVE FUND

9: continue executing A’s command

10: end if

11: On (FUND) by A when StateP = TENTATIVE FUND:

12: StateP← SYNC FUND

13: When StateP = OPEN:

Functionality GChan – funding state machine, P ∈ {Alice,Bob}
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14: if we intercept the command “define new VIRT ITI host” by A , routed through P

then

15: store host

16: StateP← TENTATIVE HELP FUND

17: continue executing A’s command

18: end if

19: if we receive a RELAY message with msg = (INIT, . . . , fundee) addressed from P

by A then

20: add fundee to P’s kindred parties

21: continue executing A’s command

22: end if

23: On (FUND) by A when StateP = TENTATIVE HELP FUND:

24: StateP← SYNC HELP FUND

25: When StateP = SYNC FUND:

26: if StateP̄ ∈ {IGNORED, SYNC HELP FUND} then

27: balanceP← balanceP− x

28: hostP← host

29: // if P̄ honest, this state transition happens simultaneously with l. 36

30: StateP← OPEN

31: end if

32: When StateP = SYNC HELP FUND:

33: if StateP̄ ∈ {IGNORED, SYNC FUND} then

34: hostP← host

35: // if P̄ honest, this state transition happens simultaneously with l. 30

36: StateP← OPEN

37: end if

Figure 4.10
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1: On (CLOSE) by P when StateP = OPEN:

2: StateP← CLOSING

3: On input (BALANCE) by R addressed to P where R is kindred with P:

4: if StateP /∈ {UNINIT, INIT, PENDING VIRTUAL OPEN, TENTATIVE VIRTUAL OPEN,

TENTATIVE BASE OPEN, IGNORED, CLOSED} then

5: reply (MY BALANCE, balanceP, pkP, balanceP̄, pkP̄)

6: else

7: reply (MY BALANCE, 0, pkP, 0, pkP̄)

8: end if

9: On (CLOSE, P) by A when StateP /∈ {UNINIT, INIT, PENDING VIRTUAL OPEN,

TENTATIVE VIRTUAL OPEN, TENTATIVE BASE OPEN, IGNORED}:

10: input (READ) to GLedger as P and assign ouput to Σ

11: coins← sum of values of outputs exclusively spendable or spent by pkP in Σ

12: balance← balanceP

13: for all P’s kindred parties R do

14: input (BALANCE) to R as P and extract balanceR, pkR from response

15: balance← balance+balanceR

16: coins← coins+ sum of values of outputs exclusively spendable or spent by

pkR in Σ

17: end for

18: if coins ≥ balance then

19: StateP← CLOSED

20: else // balance security is broken

21: halt

22: end if

Functionality GChan – close state machine, P ∈ {Alice,Bob}

Figure 4.11

• On receiving (RELAY, in_msg, P, R, in_mode) by GChan (in_mode ∈ {input, output,

network}, P ∈ {Alice,Bob}), handle (in_msg) with the simulated party P as if it was

Simulator S – general message handling rules
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1st activation

UNINIT

INIT

E

(INIT,pk)

Figure 4.12: GChan state machine up to INIT (both parties)

INIT

PENDING VIRTUAL OPEN

TENTATIVE BASE OPEN

TENTATIVE VIRTUAL OPEN

OPEN

E : (OPEN,balA,enablerA) E : (OPEN, balA, “ledger”)

enablerA : (FUNDED,hostA)

S : (BASE OPEN)

S : (VIRTUAL OPEN)

Figure 4.13: GChan state machine from INIT up to OPEN (funder)
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INIT

TENTATIVE VIRTUAL OPEN

OPEN

enablerB : (FUNDED,hostB)

S : (BASE OPEN),balB← 0

S : (VIRTUAL OPEN),balB← 0

Figure 4.14: GChan state machine from INIT up to OPEN (fundee)

OPEN

TENTATIVE HELP FUND PENDING FUND

SYNC HELP FUND

StateP̄
?
∈ {IGNORE, SYNC FUND}

TENTATIVE FUND

SYNC FUND

StateP̄
?
∈ {IGNORE, SYNC HELP FUND}

intercept “define VIRT ITI ‘hostP’” R : (FUND ME, f )

S : (FUND)

E

True

False

intercept “define VIRT ITI ‘hostP’”

S : (FUND)

E

True; balP← balP− f

False

Figure 4.15: GChan state machine for funding new virtuals (both parties)
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OPEN

TENTATIVE PAY TENTATIVE GET PAID

SYNC PAY

StateP̄
?
∈ {IGNORE, SYNC GET PAID}

SYNC GET PAID, d

StateP̄
?
∈ {IGNORE,(SYNC PAY,d)}

E : (PAY,d) E : (GET PAID,d)

S : (PAY)

E

True; balP← balP−d

False

S : (PAY)

E

True; balP← balP + f

False

Figure 4.16: GChan state machine for payments (both parties)
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OPEN

CLOSING

balP
?
≥ coins

GLedger
P

CLOSED halt

E : CLOSE

S : (CLOSE,P)

S : (CLOSE,P)

True False

Figure 4.17: GChan state machine for channel closure (both parties)

<any state>

IGNORED

S : IGNORE or hostP : (ENABLER PUNISHED)

Figure 4.18: GChan state machine for corruption, negligence or punishment of the coun-

terparty of a lower layer (both parties)
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received from R by means of in_mode. In case simulated P does not exist yet, initialise

it as an LN ITI. If there is a resulting message out_msg that is to be sent by simulated P

to R′ by means of out_mode ∈ {input, output, network}, send (RELAY, out_msg, P, R′,

out_mode) to GChan.

• On receiving by GChan a message to be sent by P to R via the network, carry on with this

action (i.e. send this message via the internal A).

• Relay any other incoming message to the internal A unmodified.

• On receiving a message (msg) by the internal A , if it is addressed to one of the parties

that correspond to GChan, handle the message internally with the corresponding

simulated party. Otherwise relay the message to its intended recipient unmodified. //

Other recipients are E , GLedger or parties unrelated to GChan

Given that GChan relays all messages and that we simulate the real-world machines that

correspond to GChan, the simulation is perfectly indistinguishable from the real world.

Figure 4.19

• “P” refers one of the parties that correspond to GChan.

• When an action in this Figure interrupts an ITI simulation, continue simulating from the

interruption location once action is over/GChan hands control back.

1: On (CORRUPT) by A , addresed to P:

2: // After executing this code and getting control back from GChan (which always

happens, c.f. Fig. 4.7), deliver (CORRUPT) to simulated P (c.f. Fig. 4.19.

3: send (INFO, BECAME CORRUPTED OR NEGLIGENT, P) to GChan

4: When simulated P sets variable negligent to True (Fig. 4.21, l. 7/Fig. 4.22, l. 26):

5: send (INFO, BECAME CORRUPTED OR NEGLIGENT, P) to GChan

6: When simulated honest Alice receives (OPEN, x, hops, . . . ) by E :

7: store hops // will be used to inform GChan once the channel is open

Simulator S – notifications to GChan
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8: When simulated honest Bob receives (OPEN, x, hops, . . . ) by Alice:

9: if Alice is corrupted then store hops // if Alice is honest, we already have hops. If

Alice became corrupted after receiving (OPEN, . . . ), overwrite hops

10: When the last of the honest simulated GChan’s parties moves to the OPEN State for the

first time (Fig. 4.25, l. 19/Fig. 4.27, l. 5/Fig. 4.28, l. 18):

11: if hops = “ledger” then

12: send (INFO, BASE OPEN) to GChan

13: else

14: send (INFO, VIRTUAL OPEN) to GChan

15: end if

16: When (both GChan’s simulated parties are honest and complete sending and receiving a

payment (Fig. 4.33, ll. 6 and 21 respectively), or (when only one party is honest and

(completes either receiving or sending a payment)): // also send this message if both

parties are honest when Fig. 4.33, l. 6 is executed by one party, but its counterparty is

corrupted before executing Fig. 4.33, l. 21

17: send (INFO, PAY) to GChan

18: When honest P executes Fig. 4.30, l. 20 or (when honest P executes Fig. 4.30, l. 18 and

P̄ is corrupted): // in the first case if P̄ is honest, it has already moved to the new host,

(Fig 4.51, ll. 7, 23): lifting to next layer is done

19: send (INFO, FUND) to GChan

20: When one of the honest simulated GChan’s parties P moves to the CLOSED state

(Fig. 4.37, l. 8 or l. 11):

21: send (INFO, CLOSE, P) to GChan

Figure 4.20
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4.8 Protocol

1: // When not specified, input comes from and output goes to E .

2: // The ITI knows whether it is Alice (funder) or Bob (fundee). The activated party is P

and the counterparty is P̄.

3: On every activation, before handling the message:

4: if last_poll ̸=⊥∧State ̸= CLOSED then // channel is open

5: input (READ) to GLedger and assign ouput to Σ

6: if last_poll+ p < |Σ| then // p is a global parameter

7: negligent← True

8: end if

9: end if

10: On (INIT, pkP,out):

11: ensure State =⊥
12: State← INIT

13: store pkP,out

14: (cA,cB,lockedA,lockedB)← (0,0,0,0)

15: (paid_out,paid_in)← ( /0, /0)

16: negligent← False

17: last_poll←⊥
18: output (INIT OK)

19: On (TOP UP):

20: ensure P = Alice // activated party is the funder

21: ensure State = INIT

22: (skP,chain,pkP,chain)← KEYGEN()

23: input (READ) to GLedger and assign ouput to Σ

24: output (TOP UP TO, pkP,chain)

25: while ¬∃tx ∈ Σ,cP,chain : (cP,chain,pkP,chain) ∈ tx.outputs do

26: // while waiting, all other messages by P are ignored

27: wait for input (CHECK TOP UP)

28: input (READ) to GLedger and assign ouput to Σ

Process LN – init
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29: end while

30: State← TOPPED UP

31: output (TOP UP OK, cP,chain)

32: On (BALANCE):

33: ensure StateP ∈ {OPEN,CLOSED}
34: output (BALANCE, cA,pkA,out,cB,pkB,out,lockedA,lockedB)

Figure 4.21

1: REVOKEPREVIOUS():

2: ensure State ∈ WAITING FOR (OUTBOUND) REVOCATION

3: RP̄,i← TX {input: CP,i.outputs.P, output: (CP,i.outputs.P.value, pkP̄,out)}

4: sigA,R,i← SIGN(RP̄,i,skP,R)

5: if State = WAITING FOR REVOCATION then

6: State← WAITING FOR INBOUND REVOCATION

7: else // State = WAITING FOR OUTBOUND REVOCATION

8: i← i+1

9: State← WAITING FOR HOSTS READY

10: end if

11: hostP← host′P // forget old host, use new host instead

12: layer← layer+1

13: return sigP,R,i

14: PROCESSREMOTEREVOCATION(sigP̄,R,i):

15: ensure State = WAITING FOR (INBOUND) REVOCATION

16: RP,i← TX {input: CP̄,i.outputs.P, output: (CP̄,i.outputs.P̄.value, pkP,out)}

17: ensure VERIFY(RP,i, sigP̄,R,i, pkP̄,R) = True

18: if State = WAITING FOR REVOCATION then

19: State← WAITING FOR OUTBOUND REVOCATION

20: else // State = WAITING FOR INBOUND REVOCATION

21: i← i+1

22: State← WAITING FOR HOSTS READY

Process LN – methods used by VIRT
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23: end if

24: return (OK)

25: NEGLIGENT():

26: negligent← True

27: return (OK)

Figure 4.22

1: (skA,F ,pkA,F)← KEYGEN(); (skA,R,pkA,R)← KEYGEN()

2: State← WAITING FOR OPENING KEYS

3: send (OPEN, c, hops, pkA,F , pkA,R, pkA,out) to fundee

4: // colored code is run by honest fundee. Validation is implicit

5: ensure we run the code of Bob

6: ensure State = INIT

7: store pkA,F , pkA,R, pkA,out

8: (skB,F ,pkB,F)← KEYGEN(); (skB,R,pkB,R)← KEYGEN()

9: if hops = “ledger” then // opening base channel

10: layer← 0

11: tP← s+ p // s is the upper bound of η from Lemma 7.19 of [26]

12: State← WAITING FOR COMM SIG

13: else // opening virtual channel

14: State← WAITING FOR CHECK KEYS

15: end if

16: reply (ACCEPT CHANNEL, pkB,F , pkB,R, pkB,out)

17: ensure State = WAITING FOR OPENING KEYS

18: store pkB,F , pkB,R, pkB,out

19: State← OPENING KEYS OK

Process LN.EXCHANGEOPENKEYS()

Figure 4.23
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1: if hops = “ledger” then // opening base channel

2: F ← TX {input: (c,pkA,chain), output: (c,2/{pkA,F ,pkB,F})}
3: hostP← “ledger”

4: layer← 0

5: tP← s+ p

6: else // opening virtual channel

7: input (FUND ME, Alice, Bob, hops, c, pkA,F , pkB,F ) to hops[0].left and expect

output (FUNDED, hostP, funder_layer, tP) // ignore any other message

8: layer← funder_layer

9: end if

Process LN.PREPAREBASE()

Figure 4.24

1: // s = (2+q)windowSize, where q and windowSize are defined in Proposition 7

2: CA,0← TX {input: (c,2/{pkA,F ,pkB,F}), outputs: (c, (pkA,out +(p+ s)) ∨
2/{pkA,R,pkB,R}), (0, pkB,out)}

3: CB,0← TX {input: (c,2/{pkA,F ,pkB,F}), outputs: (c, pkA,out), (0, (pkB,out +(p+ s)) ∨
2/{pkA,R,pkB,R})}

4: sigA,C,0← SIGN(CB,0,skA,F)

5: State← WAITING FOR COMM SIG

6: send (FUNDING CREATED, (c,pkA,chain), sigA,C,0) to fundee

7: ensure State = WAITING FOR COMM SIG // if opening virtual channel, we have

received (FUNDED, host_fundee) by hops[-1].right (Fig 4.27, l. 10)

8: if hops = “ledger” then // opening base channel

9: F ← TX {input: (c,pkA,chain), output: (c,2/{pkA,F ,pkB,F})}
10: end if

11: CB,0← TX {input: (c,2/{pkA,F ,pkB,F}), outputs: (c, pkA,out), (0, (pkB,out +(p+ s)) ∨
2/{pkA,R,pkB,R})}

12: ensure VERIFY(CB,0, sigA,C,0, pkA,F ) = True

13: CA,0← TX {input: (c,2/{pkA,F ,pkB,F}), outputs: (c, (pkA,out +(p+ s)) ∨
2/{pkA,R,pkB,R}), (0, pkB,out)}

14: sigB,C,0← SIGN(CA,0,skB,F)

Process LN.EXCHANGEOPENSIGS()

191



15: if hops = “ledger” then // opening base channel

16: State← WAITING TO CHECK FUNDING

17: else // opening virtual channel

18: cA← c; cB← 0; i← 0

19: State← OPEN

20: end if

21: reply (FUNDING SIGNED, sigB,C,0)

22: ensure State = WAITING FOR COMM SIG

23: ensure VERIFY(CA,0, sigB,C,0, pkB,F ) = True

Figure 4.25

1: sigF ← SIGN(F,skA,chain)

2: input (SUBMIT,(F,sigF)) to GLedger // enter “while” below before sending

3: while F /∈ Σ do

4: wait for input (CHECK FUNDING) // ignore all other messages

5: input (READ) to GLedger and assign output to Σ

6: end while

Process LN.COMMITBASE()

Figure 4.26

1: On input (CHECK FUNDING):

2: ensure State = WAITING TO CHECK FUNDING

3: input (READ) to GLedger and assign output to Σ

4: if F ∈ Σ then

5: State← OPEN

6: reply (OPEN OK)

7: end if

8: On output (FUNDED, hostP, funder_layer, tP) by hops[-1].right:

9: ensure State = WAITING FOR FUNDED

Process LN – external open messages for Bob
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10: store hostP // we will talk directly to hostP

11: layer← funder_layer

12: State← WAITING FOR COMM SIG

13: reply (FUND ACK)

14: On output (CHECK KEYS, (pk1, pk2)) by hops[-1].right:

15: ensure State = WAITING FOR CHECK KEYS

16: ensure pk1 = pkA,F ∧pk2 = pkB,F

17: State← WAITING FOR FUDNED

18: reply (KEYS OK)

Figure 4.27

1: // fundee is Bob

2: ensure we run the code of Alice // activated party is the funder

3: if hops = “ledger” then // opening base channel

4: ensure State = TOPPED UP

5: ensure c = cA,chain

6: else // opening virtual channel

7: ensure len(hops)≥ 2 // cannot open a virtual over 1 channel

8: end if

9: LN.EXCHANGEOPENKEYS()

10: LN.PREPAREBASE()

11: LN.EXCHANGEOPENSIGS()

12: if hops = “ledger” then

13: LN.COMMITBASE()

14: end if

15: input (READ) to GLedger and assign output to Σ

16: last_poll← |Σ|
17: cA← c; cB← 0; i← 0

18: State← OPEN

19: output (OPEN OK, c, fundee, hops)

Process LN – On (OPEN, c, hops, fundee):

Figure 4.28
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1: CP̄,i+1←CP̄,i with pk′P,F and pk′P̄,F instead of pkP,F and pkP̄,F respectively, reducing the

input and P’s output by cvirt

2: sigP,C,i+1← SIGN(CP̄,i+1) // kept by P̄

3: send (UPDATE FORWARD, sigP,C,i+1) to P̄

4: // P refers to payer and P̄ to payee both in local and remote code

5: CP̄,i+1←CP̄,i with pk′P,F and pk′P̄,F instead of pkP,F and pkP̄,F respectively, reducing the

input and P’s output by cvirt

6: ensure VERIFY(CP̄,i+1, sigP,C,i+1, pk′P,F ) = True

7: CP,i+1←CP,i with pk′P̄,F and pk′P,F instead of pkP̄,F and pkP,F respectively, reducing the

input and P’s output by cvirt

8: sigP̄,C,i+1← SIGN(CP,i+1,sk′P̄,F) // kept by P

9: reply (UPDATE BACK, sigP̄,C,i+1)

10: CP,i+1←CP,i with pk′P̄,F and pk′P,F instead of pkP̄,F and pkP,F respectively, reducing the

input and P’s output by cvirt

11: ensure VERIFY(CP,i+1, sigP̄,C,i+1, pk′P̄,F ) = True

Process LN.UPDATEFORVIRTUAL()

Figure 4.29

1: On input (FUND ME, cvirt, fundee, hops, pkA,V , pkB,V ) by funder:

2: ensure State = OPEN

3: ensure cP−lockedP ≥ cvirt

4: State← VIRTUALISING

5: (sk′P,F ,pk′P,F)← KEYGEN()

6: define new VIRT ITI host′P
7: send (VIRTUALISING, host′P, pk′P,F , hops, fundee, cvirt, 2, len(hops)) to P̄ and

expect reply (VIRTUALISING ACK, host′P̄, pk′P̄,F )

8: ensure pk′P̄,F is different from pkP̄,F and all older P̄’s funding public keys

9: LN.UPDATEFORVIRTUAL()

10: State← WAITING FOR REVOCATION

11: input (HOST ME, funder, fundee, host′P̄, hostP, cP, cP̄, cvirt, pkA,V , pkB,V , (sk′P,F ,

Process LN – virtualise start and end
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pk′P,F ), (skP,F , pkP,F ), pkP̄,F , pk′P̄,F , pkP,out, len(hops)) to host′P

12: On output (HOSTS READY, tP) by hostP: // hostP is the new host, renamed in

Fig. 4.22, l. 12

13: ensure State = WAITING FOR HOSTS READY

14: State← OPEN

15: move pkP,F , pkP̄,F to list of old funding keys

16: (skP,F ,pkP,F)← (sk′P,F ,pk′P,F); pkP̄,F ← pk′P̄,F
17: if len(hops) = 1 then // we are the last hop

18: output (FUNDED, hostP, layer, tP) to fundee and expect reply (FUND ACK)

19: else if we have received input FUND ME just before we moved to the

VIRTUALISING state then // we are the first hop

20: cP← cP− cvirt

21: output (FUNDED, hostP, layer, tP) to funder // do not expect reply by

funder

22: end if

23: reply (HOST ACK)

Figure 4.30

1: On (VIRTUALISING, host′P̄, pk′P̄,F , hops, fundee, cvirt, i, n) by P̄:

2: ensure State = OPEN

3: ensure cP̄−lockedP̄ ≥ c; 1≤ i≤ n

4: ensure pk′P̄,F is different from pkP̄,F and all older P̄’s funding public keys

5: State← VIRTUALISING

6: lockedP̄← lockedP̄ + c // if P̄ is hosting the funder, P̄ will transfer cvirt coins

instead of locking them, but the end result is the same

7: (sk′P,F ,pk′P,F)← KEYGEN()

8: if len(hops)> 1 then // we are not the last hop

9: define new VIRT ITI host′P
10: input (VIRTUALISING, host′P, (sk′P,F , pk′P,F ), pk′P̄,F , pkP,out, hops[1:], fundee,

cvirt, cP̄, cP, i, n) to hops[1].left and expect reply (VIRTUALISING ACK,

host_sibling, pksib,P̄,F )

Process LN – virtualise hops

195



11: input (INIT, hostP, host′P̄, host_sibling, (sk′P,F , pk′P,F ), pk′P̄,F , pksib,P̄,F ,

(skP,F , pkP,F ), pkP̄,F , pkP,out, cP, cP̄, cvirt, i, tP, “left”, n) to host′P and expect reply

(HOST INIT OK)

12: else // we are the last hop

13: input (INIT, hostP, host′P̄, fundee=fundee, (sk′P,F , pk′P,F ), pk′P̄,F , (skP,F ,

pkP,F ), pkP̄,F , pkP,out, cP, cP̄, cvirt, tP, i, “left”, n) to new VIRT ITI host′P and expect

reply (HOST INIT OK)

14: end if

15: State← WAITING FOR REVOCATION

16: send (VIRTUALISING ACK, host′P, pk′P,F ) to P̄

17: On input (VIRTUALISING, host_sibling, (sk′P,F , pk′P,F ), pksib,P̄,F , pksib,out, hops,

fundee, cvirt, csib,rem, csib, i, n) by sibling:

18: ensure State = OPEN

19: ensure cP−lockedP ≥ c

20: ensure csib,rem ≥ cP∧ cP̄ ≥ csib // avoid value loss by griefing attack: one

counterparty closes with old version, the other stays idle forever

21: State← VIRTUALISING

22: lockedP← lockedP + c

23: define new VIRT ITI host′P
24: send (VIRTUALISING, host′P, pk′P,F , hops, fundee, cvirt, i+1, n) to

hops[0].right and expect reply (VIRTUALISING ACK, host′P̄, pk′P̄,F )

25: ensure pk′P̄,F is different from pkP̄,F and all older P̄’s funding public keys

26: LN.UPDATEFORVIRTUAL()

27: input (INIT, hostP, host′P̄, host_sibling, (sk′P,F , pk′P,F ), pk′P̄,F , pksib,P̄,F , (skP,F ,

pkP,F ), pkP̄,F , pksib,out, cP, cP̄, cvirt, i, “right”, n) to host′P and expect reply (HOST INIT

OK)

28: State← WAITING FOR REVOCATION

29: output (VIRTUALISING ACK, host′P, pk′P̄,F ) to sibling

Figure 4.31
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1: CP̄,i+1←CP̄,i with x coins moved from P’s to P̄’s output

2: sigP,C,i+1← SIGN(CP̄,i+1,skP,F) // kept by P̄

3: State← WAITING FOR COMMITMENT SIGNED

4: send (PAY, x, sigP,C,i+1) to P̄

5: // P refers to payer and P̄ to payee both in local and remote code

6: ensure State = WAITING TO GET PAID∧ x = y

7: CP̄,i+1←CP̄,i with x coins moved from P’s to P̄’s output

8: ensure VERIFY(CP̄,i+1, sigP,C,i+1, pkP,F ) = True

9: CP,i+1←CP,i with x coins moved from P’s to P̄’s output

10: sigP̄,C,i+1← SIGN(CP,i+1,skP̄,F) // kept by P

11: RP,i← TX {input: CP̄,i.outputs.P, output: (cP̄, pkP,out)}

12: sigP̄,R,i← SIGN(RP,i,skP̄,R)

13: State← WAITING FOR PAY REVOCATION

14: reply (COMMITMENT SIGNED, sigP̄,C,i+1, sigP̄,R,i)

15: ensure State = WAITING FOR COMMITMENT SIGNED

16: CP,i+1←CP,i with x coins moved from P’s to P̄’s output

Process LN.SIGNATURESROUNDTRIP()

Figure 4.32

1: ensure VERIFY(CP,i+1, sigP̄,C,i+1, pkP̄,F ) = True

2: RP,i← TX {input: CP̄,i.outputs.P̄, output: (cP̄, pkP,out)}

3: ensure VERIFY(RP,i, sigP̄,R,i, pkP̄,R) = True

4: RP̄,i← TX {input: CP,i.outputs.P, output: (cP, pkP̄,out)}

5: sigP,R,i← SIGN(RP̄,i,skP,R)

6: add x to paid_out

7: cP← cP− x;cP̄← cP̄ + x; i← i+1

8: State← OPEN

9: if hostP ̸= “ledger” ∧ we have a host_sibling then // we are intermediary channel

10: input (NEW BALANCE, cP, cP̄) to hostP

11: relay message as input to sibling // run by VIRT

12: relay message as output to guest // run by VIRT

13: store new sibling balance and reply (NEW BALANCE OK)

Process LN.REVOCATIONSTRIP()
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14: output (NEW BALANCE OK) to sibling // run by VIRT

15: output (NEW BALANCE OK) to guest // run by VIRT

16: end if

17: send (REVOKE AND ACK, sigP,R,i) to P̄

18: ensure State = WAITING FOR PAY REVOCATION

19: RP̄,i← TX {input: CP,i.outputs.P̄, output: (cP, pkP̄,out)}

20: ensure VERIFY(RP̄,i, sigP,R,i, pkP,R) = True

21: add x to paid_in

22: cP← cP− x;cP̄← cP̄ + x; i← i+1

23: State← OPEN

24: if hostP ̸= “ledger” ∧P̄ has a host_sibling then // we are intermediary channel

25: input (NEW BALANCE, cP̄, cP) to hostP̄

26: relay message as input to sibling // run by VIRT

27: relay message as output to guest // run by VIRT

28: store new sibling balance and reply (NEW BALANCE OK)

29: output (NEW BALANCE OK) to sibling // run by VIRT

30: output (NEW BALANCE OK) to guest // run by VIRT

31: end if

Figure 4.33

1: ensure State = OPEN∧ cP ≥ x

2: if hostP ̸= “ledger” ∧P has a host_sibling then // we are intermediary channel

3: ensure csib,rem ≥ cP− x∧ cP̄ + x≥ csib // avoid value loss by griefing attack: one

counterparty closes with old version, the other stays idle forever

4: end if

5: LN.SIGNATURESROUNDTRIP()

6: LN.REVOCATIONSTRIP()

7: // No output is given to the caller, this is intentional

Process LN – On (PAY, x):

Figure 4.34
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1: ensure State = OPEN∧ cP̄ ≥ y

2: if hostP ̸= “ledger” ∧P has a host_sibling then // we are intermediary channel

3: ensure cP + y≤ csib,rem∧ csib ≤ cP̄− y // avoid value loss by griefing attack

4: end if

5: store y

6: State← WAITING TO GET PAID

Process LN – On (GET PAID, y):

Figure 4.35

1: if hostP ̸= “ledger” then

2: input (CHECK FOR LATERAL CLOSE) to hostP

3: end if

Process LN – On (CHECK FOR LATERAL CLOSE):

Figure 4.36

1: ensure State /∈ {⊥, INIT,TOPPED UP} // channel open

2: // even virtual channels check GLedger directly. This is intentional

3: input (READ) to GLedger and assign reply to Σ

4: last_poll← |Σ|
5: if ∃0≤ j < i : CP̄, j ∈ Σ then // counterparty has closed maliciously

6: State← CLOSING

7: LN.SUBMITANDCHECKREVOCATION( j)

8: State← CLOSED

9: output (CLOSED)

10: else if CP,i ∈ Σ∨CP̄,i ∈ Σ then

11: State← CLOSED

12: output (CLOSED)

13: end if

Process LN – On (CHECK CHAIN FOR CLOSED):

Figure 4.37
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1: sigP,R, j← SIGN(RP, j,skP,R)

2: input (SUBMIT, (RP, j, sigP,R, j, sigP̄,R, j)) to GLedger

3: while ¬∃RP, j ∈ Σ do

4: wait for input (CHECK REVOCATION) // ignore other messages

5: input (READ) to GLedger and assign output to Σ

6: end while

7: cP← cP + cP̄

8: if hostP ̸= “ledger” then

9: input (USED REVOCATION) to hostP

10: end if

Process LN.SUBMITANDCHECKREVOCATION( j)

Figure 4.38

1: ensure State /∈ {⊥, INIT,TOPPED UP,CLOSED,BASE PUNISHED} // channel open

2: if hostP ̸= “ledger” then // we have a virtual channel

3: State← HOST CLOSING

4: input (CLOSE) to hostP and keep relaying any (CHECK IF CLOSING) or (CLOSE)

input to hostP until receiving output (CLOSED) by hostP

5: hostP← “ledger”

6: end if

7: State← CLOSING

8: input (READ) to GLedger and assign output to Σ

9: if CP̄,i ∈ Σ then // counterparty has closed honestly

10: no-op // do nothing

11: else if ∃0≤ j < i : CP̄, j ∈ Σ then // counterparty has closed maliciously

12: LN.SUBMITANDCHECKREVOCATION( j)

13: else // counterparty is idle

14: while ̸ ∃ unspent output ∈ Σ that CP,i can spend do // possibly due to an active

timelock

15: wait for input (CHECK VIRTUAL) // ignore other messages

Process LN – On (CLOSE):

200



16: input (READ) to GLedger and assign output to Σ

17: end while

18: sig′P,C,i← SIGN(CP,i,skP,F)

19: input (SUBMIT, (CP,i,sigP,C,i,sig′P,C,i)) to GLedger

20: end if

Figure 4.39

1: State← BASE PUNISHED

Process LN – On output (ENABLER USED REVOCATION) by hostP:

Figure 4.40

1: On every activation, before handling the message:

2: if last_poll ̸=⊥ then // virtual layer is ready

3: input (READ) to GLedger and assign ouput to Σ

4: if last_poll+ p < |Σ| then

5: for P ∈ {guest,funder,fundee} do // at most 1 of funder, fundee is

defined

6: ensure P.NEGLIGENT() returns (OK)

7: end for

8: end if

9: end if

10: // guest is trusted to give sane inputs, therefore a state machine and input verification

are redundant

11: On input (INIT, hostP, P̄, sibling, fundee, (skloc,fund,new, pkloc,fund,new),

pkrem,fund,new, pksib,rem,fund,new, (skloc,fund,old, pkloc,fund,old), pkrem,fund,old, pkloc,out, cP, cP̄,

cvirt, tP, i, side, n) by guest:

12: ensure 1 < i≤ n // host_funder (i = 1) is initialised with HOST ME

13: ensure side ∈ {“left”,“right”}
14: store message contents and guest // sibling, pksib,P̄,F are missing for endpoints,

Process VIRT
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fundee is present only in last node

15: (ski,fund,new,pki,fund,new)← (skloc,fund,new,pkloc,fund,new)

16: pkmyRem,fund,new← pkrem,fund,new

17: if i < n then // we are not last hop

18: pksibRem,fund,new← pksib,rem,fund,new

19: end if

20: if side= “left” then

21: side′← “right”; myRem← i−1; sibRem← i+1

22: else // side= “right”

23: side′← “left”; myRem← i+1; sibRem← i−1

24: end if

25: (ski,side,fund,old,pki,side,fund,old)← (skloc,fund,old,pkloc,fund,old)

26: pkmyRem,side′,fund,old← pkrem,fund,old

27: if side = “left” then

28: pki,out← pkloc,out

29: end if // otherwise sibling will send pki,out in KEYS AND COINS FORWARD

30: (ci,side,cmyRem,side′ , ti,side)← (cP,cP̄, tP)

31: last_poll←⊥
32: if side= “left”∧ i ̸= n then

33: (ski, j,k,pki, j,k) j∈{2,...,n−1},k∈[n]\{ j}← KEYGEN()(n−2)(n−1)

34: end if

35: output (HOST INIT OK) to guest

36: On input (HOST ME, funder, fundee, P̄, hostP, cP, cP̄, cvirt, pkleft,virt, pkright,virt,

(sk1,fund,new, pk1,fund,new), (sk1,right,fund,old, pk1,right,fund,old), pk2,left,fund,old, pk2,left,fund,new,

pk1,out, n) by guest:

37: last_poll←⊥
38: i← 1

39: c1,right← cP; c2,left← cP̄

40: (sk1, j,k,pk1, j,k) j∈{2,...,n−1},k∈[n]\{ j}← KEYGEN()(n−2)(n−1)

41: ensure VIRT.CIRCULATEKEYSCOINSTIMES() returns (OK)

42: ensure VIRT.CIRCULATEVIRTUALSIGS() returns (OK)

43: ensure VIRT.CIRCULATEFUNDINGSIGS() returns (OK)

44: ensure VIRT.CIRCULATEREVOCATIONS() returns (OK)

45: output (HOSTS READY, p+
n−1
∑
j=2

(s−1+ t j)) to guest // p is every how many blocks

we have to check the chain
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Figure 4.41

1: if left_data is given as argument then // we are not host_funder

2: parse left_data as ((pk j,fund,new) j∈[i−1], (pk j,left,fund,old) j∈{2,...,i−1},

(pk j,right,fund,old) j∈[i−1], (pk j,out) j∈[i−1], (c j,left) j∈{2,...,i−1}, (c j,right) j∈[i−1], (t j) j∈[i−1],

pkleft,virt, pkright,virt, (pkh, j,k)h∈[i−1], j∈{2,...,n−1},k∈[n]\{ j})

3: if we have a sibling then // we are not host_fundee

4: input (KEYS AND COINS FORWARD, (left_data, (ski,left,fund,old, pki,left,fund,old),

pki,out, ci,left, ti,left, (ski, j,k,pki, j,k) j∈{2,...,n−1},k∈[n]\{ j}) to sibling

5: store input as left_data and parse it as ((pk j,fund,new) j∈[i−1],

(pk j,left,fund,old) j∈{2,...,i}, (pk j,right,fund,old) j∈[i−1], (pk j,out) j∈[i], (c j,left) j∈{2,...,i},

(c j,right) j∈[i−1], (t j) j∈[i−1], ski,left,fund,old, ti,left, pkleft,virt, pkright,virt,

(pkh, j,k)h∈[i], j∈{2,...,n−1},k∈[n]\{ j}, (ski, j,k) j∈{2,...,n−1},k∈[n]\{ j}

6: ti←max(ti,left, ti,right)

7: replace ti,left in left_data with ti

8: remove ski,left,fund,old and (ski, j,k) j∈{2,...,n−1},k∈[n]\{ j} from left_data

9: call VIRT.CIRCULATEKEYSCOINSTIMES(left_data) of P̄ and assign

returned value to right_data

10: parse right_data as ((pk j,fund,new) j∈{i+1,...,n}, (pk j,left,fund,old) j∈{i+1,...,n},

(pk j,right,fund,old) j∈{i+1,...,n−1}, (pk j,out) j∈{i+1,...,n}, (c j,left) j∈{i+1,...,n},

(c j,right) j∈{i+1,...,n−1}, (t j) j∈{i+1,...,n}, (pkh, j,k)h∈{i+1,...,n}, j∈{2,...,n−1},k∈[n]\{ j}

11: output (KEYS AND COINS BACK, right_data, (ski,right,fund,old, pki,right,fund,old),

ci,right, ti)

12: store output as right_data and parse it as ((pk j,fund,new) j∈{i+1,...,n},

(pk j,left,fund,old) j∈{i+1,...,n}, (pk j,right,fund,old) j∈{i,...,n−1}, (pk j,out) j∈{i+1,...,n},

(c j,left) j∈{i+1,...,n}, (c j,right) j∈{i,...,n−1}, (t j) j∈{i,...,n},

(pkh, j,k)h∈{i+1,...,n}, j∈{2,...,n−1},k∈[n]\{ j}, ski,right,fund,old)

13: remove ski,right,fund,old from right_data

14: return (right_data, pki,fund,new, pki,left,fund,old, pki,out, ci,left)

15: else // we are host_fundee

16: output (CHECK KEYS, (pkleft,virt, pkright,virt)) to fundee and expect reply (KEYS

OK)

17: return (pkn,fund,new, pkn,left,fund,old, pkn,out, cn,left, tn)

18: end if

Process VIRT.CIRCULATEKEYSCOINSTIMES(left_data):
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19: else // we are host_funder

20: call VIRT.CIRCULATEKEYSCOINSTIMES(pk1,fund,new, pk1,right,fund,old, pk1,out,

c1,right, t1, pkleft,virt, pkright,virt, (pk1, j,k) j∈{2,...,n−1},k∈[n]\{ j}) of P̄ and assign returned

value to right_data

21: parse right_data as ((pk j,fund,new) j∈{2,...,n}, (pk j,left,fund,old) j∈{2,...,n},

(pk j,right,fund,old) j∈{2,...,n−1}, (pk j,out) j∈{2,...,n}, (c j,left) j∈{2,...,n}, (c j,right) j∈{2,...,n−1},

(t j) j∈{2,...,n}, (pkh, j,k)h∈{2,...,n}, j∈{2,...,n−1},k∈[n]\{ j})

22: return (OK)

23: end if

Figure 4.42

1: GETMIDTXS(i, n, cvirt, crem,left, cloc,left, cloc,right, crem,right, pkrem,left,fund,old,

pkloc,left,fund,old, pkloc,right,fund,old, pkrem,right,fund,old, pkrem,left,fund,new, pkloc,left,fund,new,

pkloc,right,fund,new, pkrem,right,fund,new, pkleft,virt, pkright,virt, pkloc,out,

(pkp, j,k)p∈[n], j∈[n−1]\{1},k∈[n−1]\{1, j}, (pkp,2,1)p∈[n], (pkp,n−1,n)p∈[n], (t j) j∈[n−1]\{1}):

2: ensure 1 < i < n

3: ensure crem,left ≥ cvirt∧ cloc,left ≥ cvirt // left parties fund virtual channel

4: ensure crem,left ≥ cloc,right∧ crem,right ≥ cloc,left // avoid griefing attack

5: cleft← crem,left + cloc,left; cright← cloc,right + crem,right

6: left_old_fund← 2/{pkrem,left,fund,old,pkloc,left,fund,old}
7: right_old_fund← 2/{pkloc,right,fund,old,pkrem,right,fund,old}
8: left_new_fund← 2/{pkrem,left,fund,new,pkloc,left,fund,new}
9: right_new_fund← 2/{pkloc,right,fund,new,pkrem,right,fund,new}

10: virt_fund← 2/{pkleft,virt,pkright,virt}
11: for all j ∈ [n−1]\{1},k ∈ [n−1]\{1, j} do

12: all j,k← n/{pk1, j,k, . . . ,pkn, j,k}∧ ”k”

13: end for

14: if i = 2 then

15: all2,1← n/{pk1,2,1, . . . ,pkn,2,1}∧ ”1”

16: end if

17: if i = n−1 then

18: alln−1,n← n/{pk1,n−1,n, . . . ,pkn,n−1,n}∧ ”n”

19: end if

Process VIRT
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20: // After funding is complete, A j has the signature of all other parties for all all j,k

inputs, but other parties do not have A j’s signature for this input, therefore only A j can

publish it.

21: // TXi, j,k := i-th move, j,k input interval start and end. j,k unneeded for i = 1, k

unneeded for i = 2.

22: TX1← TX:

23: inputs:

24: (cleft, left_old_fund),

25: (cright, right_old_fund)

26: outputs:

27: (cleft− cvirt, left_new_fund),

28: (cright− cvirt, right_new_fund),

29: (cvirt, pkloc,out),

30: (cvirt,

31: (if (i−1 > 1) then alli−1,i else False)

32: ∨ (if (i+1 < n) then alli+1,i else False)

33: ∨ (

34: if (i−1 = 1∧ i+1 = n) then virt_fund

35: else if (i−1 > 1∧ i+1 = n) then virt_fund+ ti−1

36: else if (i−1 = 1∧ i+1 < n) then virt_fund+ ti+1

37: else /*i−1 > 1∧ i+1 < n*/ virt_fund+max(ti−1, ti+1)

38: )

39: )

40: if i = 2 then

41: TX2,1← TX:

42: inputs:

43: (cvirt, all2,1),

44: (cright, right_old_fund)

45: outputs:

46: (cright− cvirt, right_new_fund),

47: (cvirt, pkloc,out),

48: (cvirt,

49: if (n > 3) then (all3,2∨ (virt_fund+ t3))

50: else virt_fund
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51: )

52: end if

53: if i = n−1 then

54: TX2,n← TX:

55: inputs:

56: (cleft, left_old_fund),

57: (cvirt, alln−1,n)

58: outputs:

59: (cleft− cvirt, left_new_fund),

60: (cvirt, pkloc,out),

61: (cvirt,

62: if (n−2 > 1) then (alln−2,n−1∨ (virt_fund+ tn−2))

63: else virt_fund

64: )

65: end if

66: for all k ∈ {2, . . . , i−1} do // i−2 txs

67: TX2,k← TX:

68: inputs:

69: (cvirt, alli,k),

70: (cright, right_old_fund)

71: outputs:

72: (cright− cvirt, right_new_fund),

73: (cvirt, pkloc,out),

74: (cvirt,

75: (if (k−1 > 1) then allk−1,i else False)

76: ∨ (if (i+1 < n) then alli+1,k else False)

77: ∨ (

78: if (k−1 = 1∧ i+1 = n) then virt_fund

79: else if (k−1 > 1∧ i+1 = n) then virt_fund+ tk−1

80: else if (k−1 = 1∧ i+1 < n) then virt_fund+ ti+1

81: else /*k−1 > 1∧ i+1 < n*/ virt_fund+max(tk−1, ti+1)

82: )

83: )

84: end for
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85: for all k ∈ {i+1, . . . ,n−1} do // n− i−1 txs

86: TX2,k← TX:

87: inputs:

88: (cleft, left_old_fund)

89: (cvirt, alli,k),

90: outputs:

91: (cleft− cvirt, left_new_fund),

92: (cvirt, pkloc,out),

93: (cvirt,

94: (if (i−1 > 1) then alli−1,k else False)

95: ∨ (if (k+1 < n) then allk+1,i else False)

96: ∨ (

97: if (i−1 = 1∧ k+1 = n) then virt_fund

98: else if (i−1 > 1∧ k+1 = n) then virt_fund+ ti−1

99: else if (i−1 = 1∧ k+1 < n) then virt_fund+ tk+1

100: else /*i−1 > 1∧ k+1 < n*/ virt_fund+max(ti−1, tk+1)

101: )

102: )

103: end for

104: if i = 2 then m← 1 else m← 2

105: if i = n−1 then l← n else l← n−1

106: for all (k1,k2) ∈ {m, . . . , i−1}×{i+1, . . . , l} do // (i−m) · (l− i) txs

107: TX3,k1,k2 ← TX:

108: inputs:

109: (cvirt, alli,k1),

110: (cvirt, alli,k2)

111: outputs:

112: (cvirt, pkloc,out),

113: (cvirt,

114: (if (k1−1 > 1) then allk1−1,min(k2,n−1) else False)

115: ∨ (if (k2 +1 < n) then allk2+1,max(k1,2) else False)

116: ∨ (

117: if (k1−1≤ 1∧ k2 +1≥ n) then virt_fund

118: else if (k1−1 > 1∧ k2 +1≥ n) then virt_fund+ tk1−1
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119: else if (k1−1≤ 1∧ k2 +1 < n) then virt_fund+ tk2+1

120: else /*k1−1 > 1∧ k2 +1 < n*/

121: virt_fund+max(tk1−1, tk2+1)

122: )

123: )

124: end for

125: return (

126: TX1,

127: (TX2,k)k∈{m,...,l}\{i},

128: (TX3,k1,k2)(k1,k2)∈{m,...,i−1}×{i+1,...,l}

129: )

Figure 4.43

1: // left and right refer to the two counterparties, with left being the one closer to the

funder. Note difference with left/right meaning in VIRT.GETMIDTXS.

2: GETENDPOINTTX(i, n, cvirt, cleft, cright, pkleft,fund,old, pkright,fund,old, pkleft,fund,new,

pkright,fund,new pkleft,virt, pkright,virt, (pkall, j) j∈[n], t):

3: ensure i ∈ {1,n}
4: ensure cleft ≥ cvirt // left party funds virtual channel

5: ctot← cleft + cright

6: old_fund← 2/{pkleft,fund,old,pkright,fund,old}
7: new_fund← 2/{pkleft,fund,new,pkright,fund,new}
8: virt_fund← 2/{pkleft,virt,pkright,virt}
9: if i = 1 then // funder’s tx

10: all← n/{pkall,1, . . . ,pkall,n}∧ ”1”

11: else // fundee’s tx

12: all← n/{pkall,1, . . . ,pkall,n}∧ ”n”

13: end if

14: TX1← TX: // endpoints only have an “initiator” tx

15: inputs:

16: (ctot,old_fund)

Process VIRT
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17: outputs:

18: (ctot− cvirt,new_fund),

19: (cvirt,all∨ (virt_fund+ t))

20: return TX1

Figure 4.44

1: parse input as sigsbyLeft

2: if i = 2 then m← 1 else m← 2

3: if i = n−1 then l← n else l← n−1

4: (TXi,1, (TXi,2,k)k∈{m,...,l}\{i}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l})←
VIRT.GETMIDTXS(i, n, cvirt, ci−1,right, ci,left, ci,right, ci+1,left, pki−1,right,fund,old,

pki,left,fund,old, pki,right,fund,old, pki+1,left,fund,old, pki−1,fund,new, pki,fund,new, pki,fund,new,

pki+1,fund,new, pkleft,virt, pkright,virt, pki,out, (pki, j,k)i∈[n], j∈[n−1]\{1},k∈[n−1]\{1, j},

(pki,2,1)i∈[n], (pki,n−1,n)i∈[n], (ti)i∈[n−1]\{1})

5: // notation: sig(TX,pk) := sig with ANYPREVOUT flag such that VERIFY(TX,sig,pk) =

True

6: ensure that the following signatures are present in sigsbyLeft and store them:

• // (l−m) · (i−1) signatures

7: ∀k ∈ {m, . . . , l}\{i},∀ j ∈ [i−1] :

8: sig(TXi,2,k,pk j,i,k)

• // 2 · (i−m) · (l− i) · (i−1) signatures

9: ∀k1 ∈ {m, . . . , i−1},∀k2 ∈ {i+1, . . . , l},∀ j ∈ [i−1] :

10: sig(TXi,3,k1,k2 ,pk j,i,k1
), sig(TXi,3,k1,k2 ,pk j,i,k2

)

11: sigstoRight← sigsbyLeft

12: for all j ∈ {2, . . . ,n−1}\{i} do

13: if j = 2 then m′← 1 else m′← 2

14: if j = n−1 then l′← n else l′← n−1

15: (TX j,1, (TX j,2,k)k∈{m′,...,l′}\{i}, (TX j,3,k1,k2)(k1,k2)∈{m′,...,i−1}{i+1,...,l′})←

Process VIRT.SIBLINGSIGS()
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GETMIDTXS( j, n, cvirt, c j−1,right, c j,left, c j,right, c j+1,left, pk j−1,right,fund,old, pk j,left,fund,old,

pk j,right,fund,old, pk j+1,left,fund,old, pk j−1,fund,new, pk j,fund,new, pk j,fund,new, pk j+1,fund,new,

pkleft,virt, pkright,virt, pk j,out, (pkk,p,s)k∈[n],p∈[n−1]\{1},s∈[n−1]\{1,p}, (pkk,2,1)k∈[n],

(pkk,n−1,n)k∈[n], (tk)k∈[n−1]\{1})

16: if j < i then sigs← sigstoLeft else sigs← sigstoRight

17: for all k ∈ {m′, . . . , l′}\{ j} do

18: add SIGN(TX j,2,k, ski, j,k, ANYPREVOUT) to sigs

19: end for

20: for all k1 ∈ {m′, . . . , j−1},k2 ∈ { j+1, . . . , l′} do

21: add SIGN(TX j,3,k1,k2 , ski, j,k1 , ANYPREVOUT) to sigs

22: add SIGN(TX j,3,k1,k2 , ski, j,k2 , ANYPREVOUT) to sigs

23: end for

24: end for

25: if i+1 = n then // next hop is host_fundee

26: TXn,1← VIRT.GETENDPOINTTX(n, n, cvirt, cn−1,right, cn,left, pkn−1,right,fund,old,

pkn,left,fund,old, pkn−1,fund,new, pkn,fund,new, pkleft,virt, pkright,virt, (pk j,n−1,n) j∈[n], tn−1)

27: end if

28: call P̄.CIRCULATEVIRTUALSIGS(sigstoRight) and assign returned value to sigsbyRight

29: ensure that the following signatures are present in sigsbyRight and store them:

• // (l−m) · (n− i) signatures

30: ∀k ∈ {m, . . . , l}\{i},∀ j ∈ {i+1, . . . ,n} :

31: sig(TXi,2,k,pk j,i,k)

• // 2 · (i−m) · (l− i) · (n− i) signatures

32: ∀k1 ∈ {m, . . . , i−1},∀k2 ∈ {i+1, . . . , l},∀ j ∈ {i+1, . . . ,n} :

33: sig(TXi,3,k1,k2 ,pk j,i,k1
), sig(TXi,3,k1,k2 ,pk j,i,k2

)

34: output (VIRTUALSIGSBACK, sigstoLeft, sigsbyRight)

Figure 4.45
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1: if i = 2 then m← 1 else m← 2

2: if i = n−1 then l← n else l← n−1

3: (TXi,1, (TXi,2,k)k∈{m,...,l}\{i}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l})←
VIRT.GETMIDTXS(i, n, cvirt, ci−1,right, ci,left, ci,right, ci+1,left, pki−1,right,fund,old,

pki,left,fund,old, pki,right,fund,old, pki+1,left,fund,old, pki−1,fund,new, pki,fund,new, pki,fund,new,

pki+1,fund,new, pkleft,virt, pkright,virt, pki,out, (pki, j,k)i∈[n], j∈[n−1]\{1},k∈[n−1]\{1, j},

(pki,2,1)i∈[n], (pki,n−1,n)i∈[n], (ti)i∈[n−1]\{1})

4: // not verifying our signatures in sigsbyLeft, our (trusted) sibling will do that

5: input (VIRTUAL SIGS FORWARD, sigsbyLeft) to sibling

6: VIRT.SIBLINGSIGS()

7: sigstoLeft← sigsbyRight + sigstoLeft

8: if i = 2 then // previous hop is host_funder

9: TX1,1 ← VIRT.GETENDPOINTTX(1, n, cvirt, c1,right, c2,left, pk1,right,fund,old,

pk2,left,fund,old, pk1,fund,new, pk2,fund,new, pkleft,virt, pkright,virt, (pk j,2,1) j∈[n], t2)

10: end if

11: return sigstoLeft

Process VIRT.INTERMEDIARYSIGS()

Figure 4.46

1: TXn,1← VIRT.GETENDPOINTTX(n, n, cvirt, cn−1,right, cn,left, pkn−1,right,fund,old,

pkn,right,fund,old, pkn−1,fund,new, pkn,fund,new, pkleft,virt, pkright,virt, (pk j,n−1,n) j∈[n], tn−1)

2: for all j ∈ [n−1]\{1} do

3: if j = 2 then m← 1 else m← 2

4: if j = n−1 then l← n else l← n−1

5: (TX j,1, (TX j,2,k)k∈{m,...,l}\{ j}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l})←
VIRT.GETMIDTXS( j, n, cvirt, c j−1,right, c j,left, c j,right, c j+1,left, pk j−1,right,fund,old,

pk j,left,fund,old, pk j,right,fund,old, pk j+1,left,fund,old, pk j−1,fund,new, pk j,fund,new, pk j,fund,new,

pk j+1,fund,new, pkleft,virt, pkright,virt, pk j,out, (pk j,s,k) j∈[n],s∈[n−1]\{1},k∈[n−1]\{1,s},

(pk j,2,1) j∈[n], (pk j,n−1,n) j∈[n], (t j) j∈[n−1]\{1})

6: sigstoLeft← /0

7: for all k ∈ {m, . . . , l}\{ j} do

8: add SIGN(TX j,2,k, skn, j,k, ANYPREVOUT) to sigstoLeft

Process VIRT.HOSTFUNDEESIGS()
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9: end for

10: for all k1 ∈ {m, . . . , j−1},k2 ∈ { j+1, . . . , l} do

11: add SIGN(TX j,3,k1,k2 , skn, j,k1 , ANYPREVOUT) to sigstoLeft

12: add SIGN(TX j,3,k1,k2 , skn, j,k2 , ANYPREVOUT) to sigstoLeft

13: end for

14: end for

15: return sigstoLeft

Figure 4.47

1: for all j ∈ [n−1]\{1} do

2: if j = 2 then m← 1 else m← 2

3: if j = n−1 then l← n else l← n−1

4: (TX j,1, (TX j,2,k)k∈{m,...,l}\{ j}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l})←
VIRT.GETMIDTXS( j, n, cvirt, c j−1,right, c j,left, c j,right, c j+1,left, pk j−1,right,fund,old,

pk j,left,fund,old, pk j,right,fund,old, pk j+1,left,fund,old, pk j−1,fund,new, pk j,fund,new, pk j,fund,new,

pk j+1,fund,new, pkleft,virt, pkright,virt, pk j,out, (pk j,s,k) j∈[n],s∈[n−1]\{1},k∈[n−1]\{1,s},

(pk j,2,1) j∈[n], (pk j,n−1,n) j∈[n], (t j) j∈[n−1]\{1})

5: sigstoRight← /0

6: for all k ∈ {m, . . . , l}\{ j} do

7: add SIGN(TX j,2,k, sk1, j,k, ANYPREVOUT) to sigstoRight

8: end for

9: for all k1 ∈ {m, . . . , j−1},k2 ∈ { j+1, . . . , l} do

10: add SIGN(TX j,3,k1,k2 , sk1, j,k1 , ANYPREVOUT) to sigstoRight

11: add SIGN(TX j,3,k1,k2 , sk1, j,k2 , ANYPREVOUT) to sigstoRight

12: end for

13: end for

14: call VIRT.CIRCULATEVIRTUALSIGS(sigstoRight) of P̄ and assign output to sigsbyRight

15: TX1,1← VIRT.GETENDPOINTTX(1, n, cvirt, c1,right, c2,left, pk1,right,fund,old,

pk2,left,fund,old, pk1,fund,new, pk2,fund,new, pkleft,virt, pkright,virt, (pk j,2,1) j∈[n], t2)

16: return (OK)

Process VIRT.HOSTFUNDERSIGS()

Figure 4.48
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1: if 1 < i < n then // we are not host_funder nor host_fundee

2: return VIRT.INTERMEDIARYSIGS()

3: else if i = 1 then // we are host_funder

4: return VIRT.HOSTFUNDERSIGS()

5: else if i = n then // we are host_fundee

6: return VIRT.HOSTFUNDEESIGS()

7: end if // it is always 1≤ i≤ n – c.f. Fig. 4.41, l. 12 and l. 39

Process VIRT.CIRCULATEVIRTUALSIGS(sigsbyLeft)

Figure 4.49

1: if 1 < i < n then // we are not endpoint

2: if i = 2 then m← 1 else m← 2

3: if i = n−1 then l← n else l← n−1

4: ensure that the following signatures are present in sigsbyLeft and store them:

• // 1 signature

5: sig(TXi,1,pki−1,right,fund,old)

• // n−3+χi=2 +χi=n−1 signatures

6: ∀k ∈ {m, . . . , l}\{i}

7: sig(TXi,2,k,pki−1,right,fund,old)

8: input (VIRTUAL BASE SIG FORWARD, sigsbyLeft) to sibling

9: extract and store sig(TXi,1,pki−1,right,fund,old) and ∀k ∈ {m, . . . , l}\{i}
sig(TXi,2,k,pki−1,right,fund,old) from sigsbyLeft // same signatures as sibling

10: sigstoRight←{SIGN(TXi+1,1,ski,right,fund,old,ANYPREVOUT)}
11: if i+1 < n then

12: if i+1 = n−1 then l′← n else l′← n−1

13: for all k ∈ {2, . . . , l′} do

14: add SIGN(TXi+1,2,k, ski,right,fund,old, ANYPREVOUT) to sigstoRight

15: end for

Process VIRT.CIRCULATEFUNDINGSIGS(sigsbyLeft)
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16: end if

17: call VIRT.CIRCULATEFUNDINGSIGS(sigstoRight) of P̄ and assign returned values to

sigsbyRight

18: ensure that the following signatures are present in sigsbyRight and store them:

• // 1 signature

19: sig(TXi,1,pki+1,left,fund,old)

• // n−3+χi=2 +χi=n−1 signatures

20: ∀k ∈ {m, . . . , l}\{i}

21: sig(TXi,2,k,pki+1,right,fund,old)

22: output (VIRTUAL BASE SIG BACK, sigsbyRight)

23: extract and store sig(TXi,1,pki+1,right,fund,old) and ∀k ∈ {m, . . . , l}\{i}
sig(TXi,2,k,pki+1,right,fund,old) from sigsbyRight // same signatures as sibling

24: sigtoLeft←{SIGN(TXi−1,1,ski,left,fund,old,ANYPREVOUT)}
25: if i−1 > 1 then

26: if i−1 = 2 then m′← 1 else m′← 2

27: for all k ∈ {m′, . . . ,n−1} do

28: add SIGN(TXi−1,2,k, ski,left,fund,old, ANYPREVOUT) to sigstoLeft

29: end for

30: end if

31: return sigstoLeft

32: else if i = 1 then // we are host_funder

33: sigstoRight←{SIGN(TX2,1,sk1,right,fund,old,ANYPREVOUT)}
34: if 2 = n−1 then l′← n else l′← n−1

35: for all k ∈ {3, . . . , l′} do

36: add SIGN(TX2,2,k, sk1,right,fund,old, ANYPREVOUT) to sigstoRight

37: end for

38: call VIRT.CIRCULATEFUNDINGSIGS(sigstoRight) of P̄ and assign returned value to

sigsbyRight

39: ensure that sig(TX1,1, pk2,left,fund,old) is present in sigsbyRight and store it

40: return (OK)

41: else if i = n then // we are host_fundee

42: ensure sig(TXn,1, pkn−1,right,fund,old) is present in sigsbyLeft and store it

43: sigstoLeft←{SIGN(TXn−1,1,skn,left,fund,old,ANYPREVOUT)}
44: if n−1 = 2 then m′← 1 else m′← 2
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45: for all k ∈ {m′, . . . ,n−2} do

46: add SIGN(TXn−1,2,k, skn,left,fund,old, ANYPREVOUT) to sigstoLeft

47: end for

48: return sigstoLeft

49: end if // it is always 1≤ i≤ n – c.f. Fig. 4.41, l. 12 and l. 39

Figure 4.50

1: if revoc_by_prev is given as argument then // we are not host_funder

2: ensure guest.PROCESSREMOTEREVOCATION(revoc_by_prev) returns (OK)

3: else // we are host_funder

4: revoc_for_next← guest.REVOKEPREVIOUS()

5: input (READ) to GLedger and assign ouput to Σ

6: last_poll← |Σ|
7: call VIRT.CIRCULATEREVOCATIONS(revoc_for_next) of P̄ and assign returned

value to revoc_by_next

8: ensure guest.PROCESSREMOTEREVOCATION(revoc_by_next) returns (OK) // If

the “ensure” fails, the opening process freezes, this is intentional. The channel can still

close via (CLOSE)

9: return (OK)

10: end if

11: if we have a sibling then // we are not host_fundee nor host_funder

12: input (VIRTUAL REVOCATION FORWARD) to sibling

13: revoc_for_next← guest.REVOKEPREVIOUS()

14: input (READ) to GLedger and assign ouput to Σ

15: last_poll← |Σ|
16: call VIRT.CIRCULATEREVOCATIONS(revoc_for_next) of P̄ and assign output to

revoc_by_next

17: ensure guest.PROCESSREMOTEREVOCATION(revoc_by_next) returns (OK)

18: output (HOSTS READY, ti) to guest and expect reply (HOST ACK)

19: output (VIRTUAL REVOCATION BACK)

20: end if

21: revoc_for_prev← guest.REVOKEPREVIOUS()

22: if 1 < i < n then // we are intermediary

Process VIRT.CIRCULATEREVOCATIONS(revoc_by_prev)

215



23: output (HOSTS READY, ti) to guest and expect reply (HOST ACK) // p is every how

many blocks we have to check the chain

24: else // we are host_fundee, case of host_funder covered earlier

25: output (HOSTS READY, p+
n−1
∑
j=2

(s−1+ t j)) to guest and expect reply (HOST ACK)

26: end if

27: return revoc_for_prev

Figure 4.51

1: On input (CHECK FOR LATERAL CLOSE) by R ∈ {guest, funder, fundee}:

2: input (READ) to GLedger and assign output to Σ

3: k1← 0

4: if TXi−1,1 is defined and TXi−1,1 ∈ Σ then

5: k1← i−1

6: end if

7: for all k ∈ [i−2] do

8: if TXi−1,2,k is defined and TXi−1,2,k ∈ Σ then

9: k1← k

10: end if

11: end for

12: k2← 0

13: if TXi+1,1 is defined and TXi+1,1 ∈ Σ then

14: k2← i+1

15: end if

16: for all k ∈ {i+2, . . . ,n} do

17: if TXi+1,2,k is defined and TXi+1,2,k ∈ Σ then

18: k2← k

19: end if

20: end for

21: last_poll← |Σ|
22: if k1 > 0∨ k2 > 0 then // at least one neighbour has published its TX

23: ignore all messages except for (CHECK IF CLOSING) by R

24: State← CLOSING

Process VIRT – poll
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25: sigs← /0

26: end if

27: if k1 > 0∧ k2 > 0 then // both neighbours have published their TXs

28: add (sig(TXi,3,k1,k2 ,pkp,i,k1
))p∈[n]\{i} to sigs

29: add (sig(TXi,3,k1,k2 ,pkp,i,k2
))p∈[n]\{i} to sigs

30: add SIGN(TXi,3,k1,k2 , ski,i,k1 , ANYPREVOUT) to sigs

31: add SIGN(TXi,3,k1,k2 , ski,i,k2 , ANYPREVOUT) to sigs

32: input (SUBMIT, TXi,3,k1,k2 , sigs) to GLedger

33: else if k1 > 0 then // only left neighbour has published its TX

34: add (sig(TXi,2,k1 ,pkp,i,k1
))p∈[n]\{i} to sigs

35: add SIGN(TXi,2,k1 , ski,i,k1 , ANYPREVOUT) to sigs

36: add SIGN(TXi,2,k1 , ski,left,fund,old, ANYPREVOUT) to sigs

37: input (SUBMIT, TXi,2,k1 , sigs) to GLedger

38: else if k2 > 0 then // only right neighbour has published its TX

39: add (sig(TXi,2,k2 ,pkp,i,k2
))p∈[n]\{i} to sigs

40: add SIGN(TXi,2,k2 , ski,i,k2 , ANYPREVOUT) to sigs

41: add SIGN(TXi,2,k2 , ski,right,fund,old, ANYPREVOUT) to sigs

42: input (SUBMIT, TXi,2,k2 , sigs) to GLedger

43: end if

Figure 4.52

1: // At most one of funder, fundee is defined

2: ensure R ∈ {guest,funder,fundee}
3: if State = CLOSED then output (CLOSED) to R

4: if State = GUEST PUNISHED then output (GUEST PUNISHED) to R

5: ensure State ∈ {OPEN,CLOSING}
6: if hostP ̸= GLedger then // hostP is a VIRT

7: ignore all messages except for output (CLOSED) by hostP. Also relay to hostP

any (CHECK IF CLOSING) or (CLOSE) input received

8: input (CLOSE) to hostP

9: end if

10: // if we have a hostP, continue from here on output (CLOSED) by it

11: send (READ) to GLedger as R and assign reply to Σ

Process VIRT – On input (CLOSE) by R:
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12: if i ∈ {1,n}∧ (TX(i−1)+ 2
n−1 (n−i),1 ∈ Σ∨∃k ∈ [n] : TX(i−1)+ 2

n−1 (n−i),2,k ∈ Σ) then // we

are an endpoint and our counterparty has closed – 1st subscript of TX is 2 if i = 1 and

n−1 if i = n

13: ignore all messages except for (CHECK IF CLOSING) and (CLOSE) by R

14: State← CLOSING

15: give up execution token // control goes to E
16: end if

17: let tx be the unique TX among TXi,1, (TXi,2,k)k∈[n], (TXi,3,k1,k2)k1,k2∈[n] that can be

appended to Σ in a valid way // ignore invalid subscript combinations

18: let sigs be the set of stored signatures that sign tx

19: add SIGN(tx, ski,left,fund,old, ANYPREVOUT), SIGN(tx, ski,right,fund,old, ANYPREVOUT),

(SIGN(tx,ski, j,k,ANYPREVOUT)) j,k∈[n] to sigs // ignore invalid signatures

20: ignore all messages except for (CHECK IF CLOSING) by R

21: State← CLOSING

22: send (SUBMIT, tx, sigs) to GLedger

Figure 4.53

1: ensure State = CLOSING

2: ensure R ∈ {guest,funder,fundee}
3: send (READ) to GLedger as R and assign reply to Σ

4: if i = 1 then // we are host_funder

5: ensure that there exists an output with cP + cP̄− cvirt coins and a

2/{pk1,fund,new,pk2,fund,new} spending method with expired/non-existent timelock in Σ

// new base funding output

6: ensure that there exists an output with cvirt coins and a 2/{pkleft,virt,pkright,virt}
spending method with expired/non-existent timelock in Σ // virtual funding output

7: else if i = n then // we are host_fundee

8: ensure that there exists an output with cP + cP̄− cvirt coins and a

2/{pkn−1,fund,new,pkn,fund,new} spending method with expired/non-existent timelock in

Σ // new base funding output

9: ensure that there exists an output with cvirt coins and a 2/{pkleft,virt,pkright,virt}
spending method with expired/non-existent timelock in Σ // virtual funding output

10: else // we are intermediary

Process VIRT – On input (CHECK IF CLOSING) by R:
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11: if side= “left” then j← i−1 else j← i+1 // side is defined for all

intermediaries – c.f. Fig. 4.41, l. 11

12: ensure that there exists an output with cP + cP̄− cvirt coins and a

2/{pki,fund,new,pk j,fund,new} spending method with expired/non-existent timelock and

an output with cvirt coins and a pki,out spending method with expired/non-existent

timelock in Σ

13: end if

14: State← CLOSED

15: output (CLOSED) to R

Figure 4.54

1: On input (USED REVOCATION) by guest: // (USED REVOCATION) by funder/fundee

is ignored

2: State← GUEST PUNISHED

3: input (USED REVOCATION) to hostP, expect reply (USED REVOCATION OK)

4: if funder or fundee is defined then

5: output (ENABLER USED REVOCATION) to it

6: else // sibling is defined

7: output (ENABLER USED REVOCATION) to sibling

8: end if

9: On input (ENABLER USED REVOCATION) by sibling:

10: State← GUEST PUNISHED

11: output (ENABLER USED REVOCATION) to guest

12: On output (USED REVOCATION) by hostP:

13: State← GUEST PUNISHED

14: if funder or fundee is defined then

15: output (ENABLER USED REVOCATION) to it

16: else // sibling is defined

17: output (ENABLER USED REVOCATION) to sibling

18: end if

Process VIRT – punishment handling
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Figure 4.55

4.9 Liveness

Proposition 7. Consider a synchronised honest party that submits a transaction tx to

the ledger functionality [27] by the time the block indexed by h is added to state in

its view. Then tx is guaranteed to be included in the block range [h+1,h+ s], where

s = (2+q)windowSize and q = ⌈(maxTimewindow+ Delay
2 )/minTimewindow⌉.

The proof can be found in [90].

4.10 Omitted Proofs

Proof of Lemma 9. We first note that, as signature forgeries only happen with negli-

gible probability and only a polynomial number of signatures are verified by honest

parties throughout an execution, the event in which any forged signature passes the

verification of an honest party or of GLedger happens only with negligible probability.

We can therefore ignore this event throughout this proof and simply add a computa-

tionally negligible distance between E’s outputs in the real and the ideal world at the

end.

We also note that pkP,out has been provided by E , therefore it can freely use coins

spendable by this key. This is why we allow for any of the pkP,out outputs to have been

spent.

Define the history of a channel as H = (F,C), where each of F,C is a list of lists of

integers. A party P which satisfies the Lemma conditions has a unique, unambiguously

and recursively defined history: If the value hops in the (OPEN, c, hops, . . . ) message

was equal to GLedger, then F is the empty list, otherwise F is the concatenation of the

F and C lists of the party that sent (FUNDED, . . . ) to P, as they were at the moment

the latter message was sent. After initialised, F remains immutable. Observe that,
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if hops ̸= GLedger, both aforementioned messages must have been received before P

transitions to the OPEN state.

The list C of party P is initialised to [[g]] when P’s State transitions for the first

time to OPEN, where g = c if P = Alice, or g = 0 if P = Bob; this represents the

initial channel balance. The value x or −x is appended to the last list in C when a

payment is received (Fig. 4.33, l. 21) or sent (Fig. 4.33, l. 6) respectively by P. Moving

on to the funding of new virtual channels, whenever P funds a new virtual channel

(Fig. 4.30, l. 20), [−cvirt] is appended to C and whenever P helps with the opening

of a new virutal channel, but does not fund it (Fig. 4.30, l. 23), [0] is appended to C.

Therefore C consists of one list of integers for each sequence of inbound and outbound

payments that have not been interrupted by a virtualisation step and a new list is added

for every new virtual layer. We also observe that a non-negligent party with history

(F,C) satisfies the Lemma conditions and that the value of the right hand side of the

inequality (4.1) is equal to ∑
s∈C

∑
x∈s

x, as all inbound and outbound payment values and

new channel funding values that appear in the Lemma conditions are recorded in C.

Let party P with a particular history. We will inductively prove that P satisfies the

Lemma. The base case is when a channel is opened with hops= GLedger and is closed

right away, therefore H = ([], [g]), where g = c if P = Alice and g = 0 if P = Bob. P

can transition to the OPEN State for the first time only if all of the following have taken

place:

• It has received (OPEN, c, . . . ) while in the INIT State. In case P = Alice, this

message must have been received as input by E (Fig. 4.28, l. 1), or in case

P = Bob, this message must have been received via the network by P̄ (Fig. 4.23,

l. 3).

• It has received pkP̄,F . In case P = Bob, pkP̄,F must have been contained in the

(OPEN, . . . ) message by P̄ (Fig. 4.23, l. 3), otherwise if P = Alice pkP̄,F must

have been contained in the (ACCEPT CHANNEL, . . . ) message by P̄ (Fig. 4.23,

l. 16).

• It internally holds a signature on the commitment transaction CP,0 that is valid

when verified with public key pkP̄,F (Fig. 4.25, ll. 12 and 23).

• It has the transaction F in the GLedger state (Fig. 4.26, l. 3 or Fig. 4.27, l. 5).

We observe that P satisfies the Lemma conditions with m = n = l = 0. Before

transitioning to the OPEN State, P has produced only one valid signature for the “fund-
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ing” output (c,2/{pkP,F ,pkP̄,F}) of F with skP,F , namely for CP̄,0 (Fig. 4.25, ll. 4

or 14), and sent it to P̄ (Fig. 4.25, ll. 6 or 21), therefore the only two ways to spend

(c,2/{pkP,F ,pkP̄,F}) are by either publishing CP,0 or CP̄,0. We observe that CP,0 has

a (g, (pkP,out +(t + s)) ∨ 2/{pkP,R,pkP̄,R}) output (Fig. 4.25, l. 2 or 3). The spending

method 2/{pkP,R,pkP̄,R} cannot be used since P has not produced a signature for it with

skP,R, therefore the alternative spending method, pkP,out +(t + s), is the only one that

will be spendable if CP,0 is included in GLedger, thus contributing g to the sum of out-

puts that contribute to inequality (4.1). Likewise, if CP̄,0 is included in GLedger, it will

contribute at least one (g, pkP,out) output to this inequality, as CP̄,0 has a (g, pkP,out) out-

put (Fig. 4.25, l. 2 or 3). Additionally, if P receives (CLOSE) by E while H = ([], [g]),

it attempts to publish CP,0 (Fig. 4.39, l. 19), and will either succeed or CP̄,0 will be pub-

lished instead. We therefore conclude that in every case GLedger will eventually have

a state Σ that contains at least one (g,pkP,out) output, therefore satisfying the Lemma

consequence.

Let P with history H = (F,C). The induction hypothesis is that the Lemma holds

for P. Let cP the sum in the right hand side of inequality (4.1). In order to perform the

induction step, assume that P is in the OPEN state. We will prove all the following (the

facts to be proven are shown with emphasis for clarity):

• If P receives (FUND ME, f , . . . ) by a (local, kindred) LN ITI R, subsequently tran-

sitions back to the OPEN state (therefore moving to history (F,C′) where C′ =

C + [− f ]) and finally receives (CLOSE) by E and (CLOSED) by hostP before

any further change to its history, then eventually P’s GLedger state will contain h

transaction outputs each of value ci exclusively spendable or already spent by

pkP,out) that are descendants of an output with spending method 2/{pkP,F ,pkP̄,F}

such that
h
∑

i=1
ci ≥ ∑

s∈C′
∑

x∈s
x. Furthermore, given that P moves to the OPEN state

after the (FUND ME, . . . ) message, it also sends (FUNDED, . . . ) to R (Fig. 4.30,

l. 21). If subsequently the state of R transitions to OPEN (therefore obtaining his-

tory (FR,CR) where FR = F +C and CR = [[ f ]]), and finally receives (CLOSE) by

E and (CLOSED) by hostR (hostR = hostP – Fig. 4.27, l. 10) before any further

change to its history, then eventually R’s GLedger state will contain k transaction

outputs each of value cR
i exclusively spendable or already spent by pkR,out) that

are descendants of an output with spending method 2/{pkR,F ,pkR̄,F} such that
k
∑

i=1
cR

i ≥ ∑
s∈CR

∑
x∈s

x.
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• If P receives (VIRTUALISING, . . . ) by P̄, subsequently transitions back to OPEN

(therefore moving to history (F,C′) where C′ = C + [0]) and finally receives

CLOSE by E and (CLOSED) by hostP before any further change to its his-

tory, then eventually P’s GLedger state will contain h transaction outputs each of

value ci exclusively spendable or already spent by pkP,out) that are descendants

of an output with spending method 2/{pkP,F ,pkP̄,F} such that
h
∑

i=1
ci ≥ ∑

s∈C
∑

x∈s
x.

Furthermore, given that P moves to the OPEN state after the (VIRTUALISING,

. . . ) message and in case it sends (FUNDED, . . . ) to some party R (Fig. 4.30,

l. 18), the latter party is the (local, kindred) fundee of a new virtual channel.

If subsequently the state of R transitions to OPEN (therefore obtaining history

(FR,CR) where FR = F +C and CR = [[0]]), and finally receives (CLOSE) by E
and (CLOSED) by hostR (hostR = hostP – Fig. 4.27, l. 10) before any further

change to its history, then eventually R’s GLedger state will contain an output with

a 2/{pkR,F ,pkR̄,F} spending method.

• If P receives (PAY, d) by E , subsequently transitions back to OPEN (therefore

moving to history (F,C′) where C′ is C with −d appended to the last list of

C) and finally receives CLOSE by E and (CLOSED) by hostP (the latter only if

hostP ̸= GLedger or equivalently F ̸= []) before any further change to its history,

then eventually P’s GLedger state will contain h transaction outputs each of value

ci exclusively spendable or already spent by pkP,out) that are descendants of an

output with a 2/{pkP,F ,pkP̄,F} spending method such that
h
∑

i=1
ci ≥ ∑

s∈C′
∑

x∈s
x.

• If P receives (GET PAID, e) by E , subsequently transitions back to OPEN (there-

fore moving to history (F,C′) where C′ is C with e appended to the last list of

C) and finally receives CLOSE by E and (CLOSED) by hostP (the latter only if

hostP ̸= GLedger or equivalently F = []) before any further change to its history,

then eventually P’s GLedger state will contain h transaction outputs each of value

ci exclusively spendable or already spent by pkP,out) that are descendants of an

output with a 2/{pkP,F ,pkP̄,F} spending method such that
h
∑

i=1
ci ≥ ∑

s∈C′
∑

x∈s
x.

By the induction hypothesis, before the funding procedure started P could close the

channel and end up with on-chain transaction outputs exclusively spendable or already

spent by pkP,out with a sum value of cP. When P is in the OPEN state and receives

(FUND ME, f , . . . ), it can only move again to the OPEN state after doing the following

state transitions: OPEN → VIRTUALISING → WAITING FOR REVOCATION → WAIT-
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ING FOR INBOUND REVOCATION→ WAITING FOR HOSTS READY→ OPEN. During

this sequence of events, a new hostP is defined (Fig. 4.30, l. 6), new commitment

transactions are negotiated with P̄ (Fig. 4.30, l. 9), control of the old funding output

is handed over to hostP (Fig. 4.30, l. 11), hostP negotiates with its counterparty a

new set of transactions and signatures that spend the aforementioned funding output

and make available a new funding output with the keys pk′P,F ,pk′P̄,F as P instructed

(Fig. 4.48 and 4.50) and the previous valid commitment transactions of both P and

P̄ are invalidated (Fig. 4.22, l. 1 and l. 14 respectively). We note that the use of the

ANYPREVOUT flag in all signatures that correspond to transaction inputs that may spend

various different transaction outputs ensures that this is possible, as it avoids tying

each input to a specific, predefined output. When P receives (CLOSE) by E , it inputs

(CLOSE) to hostP (Fig. 4.39, l. 4). As per the Lemma conditions, hostP will output

(CLOSED). This can happen only when GLedger contains a suitable output for both P’s

and R’s channel (Fig. 4.54, and 5 ll. 6 respectively).

If the host of hostP is the ledger functionality, then the funding output o1,2 =

(cP + cP̄,2/{pkP,F ,pkP̄,F}) for the P, P̄ channel is already on-chain. Regarding the

case in which hostP ̸=GLedger, after the funding procedure is complete, the new hostP

will have as its host the old hostP of P. If the (CLOSE) sequence is initiated, the new

hostP will follow the same steps that will be described below once the old hostP suc-

ceeds in closing the lower layer (Fig. 4.53, l. 6). The old hostP however will see no

difference in its interface compared to what would happen if P had received (CLOSE)

before the funding procedure, therefore it will successfully close by the induction hy-

pothesis. Thereafter the process is identical to the one when the old hostP = GLedger.

Moving on, hostP is either able to publish its TX1,1 (it has necessarily received a

valid signature sig(TX1,1,pkP̄,F) (Fig. 4.50, l. 39) by its counterparty before it moved

to the OPEN state for the first time), or the output (cP + cP̄,2/{pkP,F ,pkP̄,F}) needed

to spend TX1,1 has already been spent. The only other transactions that can spend

it are TX2,1 and any of (TX2,2,k)k>2, since these are the only transactions that spend

the aforementioned output and that hostP has signed with skP,F (Fig. 4.50, ll. 33-

37). The output can be also spent by old, revoked commitment transactions, but in

that case hostP would not have output (CLOSED); P would have instead detected this

triggered by a (CHECK CHAIN FOR CLOSED) message by E (Fig. 4.37) and would have

moved to the CLOSED state on its own accord (lack of such a message by E would

lead P to become negligent, something that cannot happen according to the Lemma

conditions). Every transaction among TX1,1, TX2,1, (TX2,2,k)k>2 has a (cP + cP̄− f ,
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2/{pk′P,F ,pk′P̄,F}) output (Fig. 4.44, l. 18 and Fig. 4.43, ll. 27 and 91) which will end

up in GLedger – call this output oP. We will prove that at most
n−1
∑

i=2
(ti+ p+ s−1) blocks

after (CLOSE) is received by P, an output oR with cvirt coins and a 2/{pkR,F ,pkR̄,F}
spending condition without or with an expired timelock will be included in GLedger.

In case party P̄ is idle, then o1,2 is consumed by TX1,1 and the timelock on its virtual

output expires, therefore the required output oR is on-chain. In case P̄ is active, exactly

one of TX2,1, (TX2,2,k)k>2 or (TX2,3,1,k)k>2 is a descendant of o1,2; if the transaction

belongs to one of the two last transaction groups then necessarily TX1,1 is on-chain

in some block height h and given the timelock on the virtual output of TX1,1, P̄’s

transaction can be at most at block height h+ t2+ p+ s−1. If n = 3 or k = n−1, then

P̄’s unique transaction has the required output oR (without a timelock). The rest of the

cases are covered by the following sequence of events:

1: maxDel← t2 + p+ s−1 // A2 is active and the virtual output of TX1,1 has a timelock of

t2

2: i← 3

3: loop

4: if Ai is idle then

5: The timelock on the virtual output of the transaction published by Ai−1 expires

and therefore the required oR is on-chain

6: else // Ai publishes a transaction that is a descendant of o1,2

7: maxDel← maxDel+ ti + p+ s−1

8: The published transaction can be of the form TXi,2,2 or (TXi,3,2,k)k>i as it

spends the virtual output which is encumbered with a public key controlled by R and R

has only signed these transactions

9: if i = n−1 or k ≥ n−1 then // The interval contains all intermediaries

10: The virtual output of the transaction is not timelocked and has only a

2/{pkR,F ,pkR̄,F} spending method, therefore it is the required oR

11: else // At least one intermediary is not in the interval

12: if the transaction is TXi,3,2,k then i← k else i← i+1

13: end if

14: end if

15: end loop

Closing sequence
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16: // maxDel≤
n−1
∑

i=2
(ti + p+ s−1)

Figure 4.56

In every case oP and oR end up on-chain in at most s and
n−1
∑

i=2
(ti + p+ s−1) blocks

respectively from the moment (CLOSE) is received. The output oP an be spent either by

CP,i or CP̄,i. Both these transactions have a (cP− f ,pkP,out) output. This output of CP,i

is timelocked, but the alternative spending method cannot be used as P never signed a

transaction that uses it (as it is reserved for revocation, which has not taken place yet in

this virtualisation layer). We have now proven that if P completes the funding of a new

channel then it can close its channel for a (cP− f , pkP,out) output that is a descendant of

an output with spending method 2/{pkP,F ,pkP̄,F} and that lower bound of value holds

for the duration of the funding procedure, i.e. we have proven the first claim of the first

bullet.

We will now prove that the newly funded party R can close its channel securely.

After R receives (FUNDED, hostP, . . . ) by P and before moving to the OPEN state, it

receives sigR̄,C,0 = sig(CR,0, pkR̄,F ) and sends sigR,C,0 = sig(CR̄,0, pkR,F ). Both these

transactions spend oR. As we showed before, if R receives (CLOSE) by E then oR

eventually ends up on-chain. After receiving (CLOSED) from hostP, R attempts to

add CR,0 to GLedger, which may only fail if CR̄,0 ends up on-chain instead. Similar to

the case of P, both these transactions have an ( f ,pkR,out) output. This output of CR,0

is timelocked, but the alternative spending method cannot be used as R never signed

a transaction that uses it (as it is reserved for revocation, which has not taken place

yet) so the timelock will expire and the desired spending method will be available. We

have now proven that if R’s channel is funded to completion (i.e. R moves to the OPEN

state for the first time) then it can close its channel for a ( f , pkR,out) output that is a

descendant of oR. We have therefore proven the first bullet.

We now move on to the second bullet. In case P is the funder (i.e. i = n), then

the same arguments as in the previous bullet hold here with “WAITING FOR INBOUND

REVOCATION” replaced with “WAITING FOR OUTBOUND REVOCATION”, o1,2 with

on−1,n, TX1,1 with TXn,1, TX2,1 with TXn−1,1, (TX2,2,k)k>2 with (TXn−1,2,k)k<n−1,

(TX2,3,1,k)k>2 with (TXn−1,3,n,k)k<n−1, t2 with tn−1, TXi,3,2,k with TXi,3,n−1,k, i is ini-

tialized to n− 2 in l. 2 of Fig. 4.56, i is decremented instead of incremented in l. 12
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of the same Figure and f is replaced with 0. This is so because these two cases are

symmetric.

In case P is not the funder (1 < i < n), then we only need to prove the first state-

ment of the second bullet. By the induction hypothesis and since sibling is kindred,

we know that both P’s and sibling’s funding outputs either are or can be eventually

put on-chain and that P’s funding output has at least cP = ∑
s∈C

∑
x∈s

x coins. If P is on

the “left” of its sibling (i.e. there is an untrusted party that sent the (VIRTUALISING,

. . . ) message to P which triggered the latter to move to the VIRTUALISING state and to

send a (VIRTUALISING, . . . ) message to its own sibling), the “left” funding output

oleft (the one held with the untrusted party to the left) can be spent by one of TXi,1,

(TXi,2,k)k>i, TXi−1,1, or (TXi−1,2,k)k<i−1, as these are the only transactions that P has

signed with skP,F . All these transactions have a (cP+cP̄− f , 2/{pkP,F ′,pkP̄,F ′}) output

that can in turn be spent by either CP,0 or CP̄,0, both of which have an output of value

cP and a pkP,out spending method and no other spending method can be used (as P has

not signed the “revocation” spending method of CP,0).

In the case that P is to the right of its sibling (i.e. P receives by sibling the

(VIRTUALISING, . . . ) message that causes P’s transition to the VIRUTALISING state),

the “right” funding output oright (the one held with the untrusted party to the right)

can be spent by one of TXi,1, (TXi,2,k)k<i, TXi+1,1, or (TXi+1,2,k)k>i+1, as these are

the only transactions that P has signed with skP,F . All these transactions have a (cP +

cP̄− f , 2/{pkP,F ′,pkP̄,F ′}) output that can in turn be spent by either CP,0 or CP̄,0, both

of which have an output of value cP− f and a pkP,out spending method and no other

spending method can be used (as P has not signed the “revocation” spending method of

CP,0). P can get the remaining f coins as follows: TXi,1 and all of (TXi,2,k)k<i already

have an ( f , pkP,out) output. If instead TXi+1,1 or one of (TXi+1,2,k2)k2>i+1 spends

oright, then P will publish TXi,2,i+1 or TXi,2,k2 respectively if oleft is unspent, otherwise

oleft is spent by one of TXi−1,1 or (TXi−1,2,k1)k1<i−1 in which case P will publish

one of TXi,3,k1,i+1, TXi,3,i−1,k2 , TXi,3,i−1,i+1 or TXi,3,k1,k2 . In particular, TXi,3,k1,i+1 is

published if TXi−1,2,k1 and TXi+1,1 are on-chain, TXi,3,i−1,k2 is published if TXi−1,1

and TXi+1,2,k2 are on-chain, TXi,3,i−1,i+1 is published if TXi−1,1 and TXi+1,1 are on-

chain, or TXi,3,k1,k2 is published if TXi−1,2,k1 and TXi+1,2,k2 are on-chain. All these

transactions include an ( f , pkP,out) output. We have therefore covered all cases and

proven the second bullet.

Regarding now the third bullet, once again the induction hypothesis guarantees

that before (PAY, d) was received, P could close the channel resulting in on-chain
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outputs exclusively spendable or already spent by pkP,out that are descendants of an

output with a 2/{pkP,F ,pkP̄,F} spending method that have a sum value of cP = ∑
s∈C

∑
x∈s

x.

(Note that ∑
s∈C′

∑
x∈s

x = d+ ∑
s∈C

∑
x∈s

x.) When P receives (PAY, d) while in the OPEN state,

it moves to the WAITING FOR COMMITMENT SIGNED state before returning to the

OPEN state. It signs (Fig. 4.32, l. 2) the new commitment transaction CP̄,i+1 in which

the counterparty owns d more coins than before that moment (Fig. 4.32, l. 1), sends

the signature to the counterparty (Fig. 4.32, l. 4) and expects valid signatures on its

own updated commitment transaction (Fig. 4.33, l. 1) and the revocation transaction

for the old commitment transaction of the counterparty (Fig. 4.33, l. 3). Note that if

the counterparty does not respond or if it responds with missing/invalid signatures,

either P can close the channel with the old commitment transaction CP,i exactly like

before the update started (as it has not yet sent the signature for the old revocation

transaction), or the counterparty will close the channel either with the new or with

the old commitment transaction. In all cases in which validation fails and the channel

closes, there is an output with a pkP,out spending method and no other useable spending

method that carries at least cP−d coins. Only if the verification succeeds does P sign

(Fig. 4.33, l. 5) and send (Fig. 4.33, l. 17) the counterparty’s revocation transaction for

P’s previous commitment transaction.

Similarly to previous bullets, if hostP ̸= GLedger the funding output can be put on-

chain, otherwise the funding output is already on-chain. In both cases, since the closing

procedure continues, one of CP,i+1 (CP̄, j)0≤ j≤i+1 will end up on-chain. If CP̄, j for some

j < i+ 1 is on-chain, then P submits RP, j (we discussed how P obtained RP,i and the

rest of the cases are covered by induction) and takes the entire value of the channel

which is at least cP−d. If CP̄,i+1 is on-chain, it has a (cP−d, pkP,out) output. If CP,i+1

is on-chain, it has an output of value cP−d, a timelocked pkP,out spending method and

a non-timelocked spending method that needs the signature made with skP,R on RP̄,i+1.

P however has not generated that signature, therefore this spending method cannot be

used and the timelock will expire, therefore in all cases outputs that descend from the

funding output, can be spent exclusively by pkP,out and carry at least cP− d coins are

put on-chain. We have proven the third bullet.

For the fourth and last bullet, again by the induction hypothesis, before (GET PAID,

e) was received P could close the channel resulting in on-chain outputs exclusively

spendable or already spent by pkP,out that are descendants of an output oF with a

2/{pkP,F ,pkP̄,F} spending method and have a sum value of cP = ∑
s∈C

∑
x∈s

x. (Note that
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e+ ∑
s∈C′

∑
x∈s

x = ∑
s∈C

∑
x∈s

x and that oF either is already on-chain or can be eventually put

on-chain as we have argued in the previous bullets by the induction hypothesis.) When

P receives (GET PAID, e) while in the OPEN state, if the balance of the counterparty is

enough it moves to the WAITING TO GET PAID state (Fig. 4.35, l. 6). If subsequently

it receives a valid signature for CP,i+1 (Fig. 4.32, l. 8) which is a commitment trans-

action that can spend the oF output and gives to P an additional e coins compared to

CP,i. Subsequently P’s state transitions to WAITING FOR PAY REVOCATION and sends

signatures for CP̄,i+1 and RP̄,i to P̄. If the oF output is spent while P is in the latter state,

it can be spent by one of CP,i+1 or (CP̄, j)0≤ j≤i+1. If it is spent by CP,i+1 or CP̄,i+1, then

these two transactions have a (cP + e, pkP,out) output. (Note that the former is encum-

bered with a timelock, but the alternative spending method cannot be used as P has

not signed RP̄,i+1.) If it is spent by CP̄,i then a (cP, pkP,out) output becomes available

instead, therefore P can still get the cP coins that correspond to the previous state. If

any of (CP̄, j)0≤ j<i spends oF then it makes available a pkP,out output with the coins that

P had at state j and additionally P can publish RP, j that spends P̄’s output of CP̄, j and

obtain the entirety of P̄’s coins at state j for a total of cP+cP̄ coins. Therefore in every

case P can claim at least cP coins. In the case that P instead subsequently receives a

valid signature to RP,i (Fig. 4.33, l. 20) it finally moves to the OPEN state once again.

In this state the above analysis of what can happen when oF holds similarly, with the

difference that if P̄ spends oF with CP̄,i now P can publish RP,i which gives P the coins

of P̄. Therefore with this difference P is now guaranteed to gain at least cP + e coins

upon channel closure. We have therefore proven the fourth bullet.

Proof of Lemma 10. We will prove the Lemma by following the evolution of the vari-

able balanceP.

• When GChan is activated for the first time, it sets balanceP← 0 (Fig. 4.8, l. 1).

• If P = Alice and it receives (OPEN, c, . . . ) by E , it stores c (Fig. 4.8, l. 10). If

later StateP becomes OPEN, GChan sets balanceP← c (Fig. 4.8, ll. 13 or 31). In

contrast, if P = Bob, it is balanceP = 0 until at least the first transition of StateP

to OPEN (Fig. 4.8).

• Every time that P receives input (FUND ME, fi, . . .) by another party while StateP

is OPEN, P stores fi (Fig. 4.10, l. 1). The next time StateP transitions to OPEN

(if such a transition happens), balanceP is decremented by fi (Fig. 4.10, l. 27).
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Therefore, if this cycle happens n≥ 0 times, balanceP will be decremented by
n
∑

i=1
fi in total.

• Every time P receives input (PAY,di) by E while StateP = OPEN, di is stored

(Fig. 4.9, l. 2). The next time StateP transitions to OPEN (if such a transition

happens), balanceP is decremented by di (Fig. 4.9, l. 13). Therefore, if this

cycle happens m≥ 0 times, balanceP will be decremented by
m
∑

i=1
di in total.

• Every time P receives input (GET PAID,ei) by E while StateP = OPEN, ei is

stored (Fig. 4.9, l. 7). The next time StateP transitions to OPEN (if such a transi-

tion happens) balanceP is incremented by ei (Fig. 4.9, l. 19). Therefore, if this

cycle happens l ≥ 0 times, balanceP will be incremented by
l
∑

i=1
ei in total.

On aggregate, after the above are completed and then GChan receives (CLOSE, P) by S ,

it is balanceP = c−
n
∑

i=1
fi−

m
∑

i=1
di+

l
∑

i=1
ei if P = Alice, or else if P = Bob, balanceP =

−
n
∑

i=1
fi−

m
∑

i=1
di +

l
∑

i=1
ei.

Proof of Lemma 11. We prove the Lemma in two steps. We first show that if the con-

ditions of Lemma 10 hold, then the conditions of Lemma 9 for the real world execution

with protocol LN and the same E and A hold as well for the same m,n and l values.

For StateP to become IGNORED, either S has to send (BECAME CORRUPTED OR

NEGLIGENT, P) or hostP must output (ENABLER USED REVOCATION) to GChan (c.f.

Fig. 4.8, l. 4). The first case only happens when either P receives (CORRUPT) by A
(Fig. 4.20, l. 1), which means that the simulated P is not honest anymore, or when P

becomes negligent (Fig. 4.20, l. 4), which means that the first condition of Lemma 9

is violated. In the second case, it is hostP ̸= GLedger and the state of hostP is GUEST

PUNISHED (Fig. 4.55, ll. 1 or 12), so in case P receives (CLOSE) by E the output of

hostP will be (GUEST PUNISHED) (Fig. 4.53, l. 4). In all cases, some condition of

Lemma 9 is violated.

For StateP to become OPEN at least once, the following sequence of events must

take place (Fig. 4.8): If P = Alice, it must receive (INIT, pk) by E when StateP =

UNINIT, then either receive (OPEN, c, GLedger, . . . ) by E and (BASE OPEN) by S or

(OPEN, c, hops (̸= GLedger), . . . ) by E , (FUNDED, HOST, . . . ) by hops[0].left and

(VIRTUAL OPEN) by S . In either case, S only sends its message only if all its simu-

lated honest parties move to the OPEN state (Fig. 4.20, l. 10), therefore if the second

condition of Lemma 10 holds and P = Alice, then the second condition of Lemma 9
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holds as well. The same line of reasoning can be used to deduce that if P = Bob, then

StateP will become OPEN for the first time only if all honest simulated parties move to

the OPEN state, therefore once more the second condition of Lemma 10 holds only if

the second condition of Lemma 9 holds as well. We also observe that, if both parties

are honest, they will transition to the OPEN state simultaneously.

Regarding the third Lemma 10 condition, we assume (and will later show) that if

both parties are honest and the state of one is OPEN, then the state of the other is also

OPEN. Each time P receives input (FUND ME, f , . . . ) by R ∈ {GChan,LN}, StateP tran-

sitions to PENDING FUND, subsequently when a command to define a new VIRT ITI

through P is intercepted by GChan, StateP transitions to TENTATIVE FUND and after-

wards when S sends (FUND) to GChan, StateP transitions to SYNC FUND. In parallel, if

StateP̄ = IGNORED, then StateP transitions directly back to OPEN. If on the other hand

StateP̄ = OPEN and GChan intercepts a similar VIRT ITI definition command through

P̄, StateP̄ transitions to TENTATIVE HELP FUND. On receiving the aforementioned

(FUND) message by S and given that StateP̄ = TENTATIVE HELP FUND, GChan also

sets StateP̄ to SYNC HELP FUND. Then both StateP̄ and StateP transition simultane-

ously to OPEN (Fig. 4.10). This sequence of events may repeat any n ≥ 0 times. We

observe that throughout these steps, honest simulated P has received (FUND ME, f , . . . )

and that S only sends (FUND) when all honest simulated parties have transitioned to

the OPEN state (Fig. 4.20, l. 18 and Fig. 4.30, l. 12), so the third condition of Lemma 9

holds with the same n as that of Lemma 10.

Regarding the fourth Lemma 10 condition, we again assume that if both parties are

honest and the state of one is OPEN, then the state of the other is also OPEN. Each time

P receives input (PAY, d) by E , StateP tranisitions to TENTATIVE PAY and subsequently

when S sends (PAY) to GChan, StateP transitions to (SYNC PAY, d). In parallel, if

StateP̄ = IGNORED, then StateP transitions directly back to OPEN. If on the other

hand StateP̄ = OPEN and GChan receives (GET PAID, d) by E addressed to P̄, StateP̄

transitions to TENTATIVE GET PAID. On receiving the aforementioned (PAY) message

by S and given that StateP̄ = TENTATIVE GET PAID, GChan also sets StateP̄ to SYNC

GET PAID. Then both StateP and StateP̄ transition simultaneously to OPEN (Fig. 4.9).

This sequence of events may repeat any m≥ 0 times. We observe that throughout these

steps, honest simulated P has received (PAY, d) and that S only sends (PAY) when all

honest simulated parties have completed sending or receiving the payment (Fig. 4.20,

l. 16), so the fourth condition of Lemma 9 holds with the same m as that of Lemma 10.

As far as the fifth condition of Lemma 10 goes, we observe that this case is symmetric
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to the one discussed for its fourth condition above if we swap P and P̄, therefore we

deduce that if Lemma 10 holds with some l, then Lemma 9 holds with the same l.

As promised, we here argue that if both parties are honest and one party moves to

the OPEN state, then the other party will move to the OPEN state as well. We already

saw that the first time one party moves to the OPEN state, it will happen simultaneously

with the same transition for the other party. We also saw that, when a party transitions

from the SYNC HELP FUND or the SYNC FUND state to the OPEN state, then the other

party will also transition to the OPEN state simultaneously. Furthermore, we saw that if

one party transitions from the SYNC PAY or the SYNC GET PAID state to the OPEN state,

the other party will also transition to the OPEN state simultaneously. Lastly we notice

that we have exhausted all manners in which a party can transition to the OPEN state,

therefore we have proven that transitions of honest parties to the OPEN state happen

simultaneously.

Now, given that S internally simulates faithfully both LN parties and that GChan

relinquishes to S complete control of the external communication of the parties as long

as it does not halt, we deduce that S replicates the behaviour of the aforementioned

real world. By combining these facts with the consequences of the two Lemmas and

the check that leads GChan to halt if it fails (Fig. 4.11, l. 18), we deduce that if the

conditions of Lemma 10 hold for the honest parties of GChan and their kindred parties,

then the functionality halts only with negligible probability.

In the second proof step, we show that if the conditions of Lemma 10 do not hold,

then the check of Fig. 4.11, l. 18 never takes place. We first discuss the StateP =

IGNORED case. We observe that the IGNORED State is a sink state, as there is no way

to leave it once in. Additionally, for the balance check to happen, GChan must receive

(CLOSED, P) by S when StateP ̸= IGNORED (Fig. 4.11, l. 9). We deduce that, once

StateP = IGNORED, the balance check will not happen. Moving to the case where

StateP has never been OPEN, we observe that it is impossible to move to any of the

states required by l. 9 of Fig. 4.11 without first having been in the OPEN state. Moreover

if P = Alice, it is impossible to reach the OPEN state without receiving input (OPEN, c,

. . . ) by E . Lastly, as we have observed already, the three last conditions of Lemma 10

are always satisfied. We conclude that if the conditions to Lemma 10 do not hold, then

the check of Fig. 4.11, l. 18 does not happen and therefore GChan does not halt.

On aggregate, GChan may only halt with negligible probability in the security pa-

rameter.
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4.11 Discussion and Future work

A number of features can be added to our protocol for additional efficiency, usabil-

ity and flexibility. First of all, a new subprotocol for cooperatively closing a virtual

channel can be created. In the optimistic case, a virtual channel would then be closed

with no on-chain transactions and its base channels would become independent once

again. To achieve this goal, cooperation is needed between all base parties of the vir-

tual channel and possibly parties implicated in other virtual channels that use the same

base channels.

In our current construction, each time a particular channel C acts as a base channel

for a new virtual channel, one more “virtualisation layer” is added. When one of its

owners wants to close C, it has to put on-chain as many transactions as there are virtu-

alisation layers. Also the timelocks associated with closing a virtual channel increase

with the number of virtualisation layers of its base channels. Both these issues can be

alleviated by extending the opening subprotocol with the ability to cooperatively open

multiple virtual channels in the same layer, either simultaneously or as an amendment

to an existing virtualisation layer.

Due to the possibility of the griefing attack discussed in Subsubection 4.5.3.1, the

range of balances a virtual channel can support is limited by the balances of neigh-

bouring channels. We believe that this limitation can be lifted if instead of using

a Lightning-based construction for the payment layer, we instead replace it with an

eltoo-based [31] construction. Since in eltoo a maliciously published old state can

be simply re-spent by the honest latest state, the griefing attack is completely avoided.

What is more, our protocol shares with eltoo the need for the ANYPREVOUT sighash flag,

therefore no additional requirements from the Bitcoin protocol would be added by this

change. Lastly, due to the separation of intermediate layers with the payment layer in

our pseudocode implementation as found in Section 4.8 (i.e. the distinction between

the LN and the VIRT protocols), this change should in principle not need extensive

changes in all parts of the protocol.

As it currently stands, the timelocks calculated for the virtual channels are based on

p (Figure 4.21) and s (Figure 4.25), which are global constants that are immutable and

common to all parties. The parameter s stems from the liveness guarantees of Bitcoin,

as discussed in Proposition 7 and therefore cannot be tweaked. However, p represents

the maximum time (in blocks) between two activations of a non-negligent party, so in

principle it is possible for the parties to explicitly negotiate this value when opening a
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new channel and even renegotiate it after the channel has been opened if need be. We

leave this usability-augmenting protocol feature as future work.

As we mentioned earlier, our protocol is not designed to “gracefully” recover from

a situation in which halfway through a subprotocol, one of the counterparties starts

misbehaving. Currently the only solution is to unilaterally close the channel. This

however means that DoS attacks (that still do not lead to financial losses) are possible.

A practical implementation of our protocol would need to expand the available ac-

tions and states to be able to transparently and gracefully recover from such problems,

avoiding closing the channel where possible, especially when the problem stems from

network issues and not from malicious behaviour.

Furthermore, any deployment of the protocol has to explicitly handle the issue of

transaction fees. These include miner fees for on-chain transactions and intermediary

fees for the parties that own base channels and facilitate opening virtual channels. Our

protocol is compatible with any such fee parameterization and we leave for future work

the incentive analyses that can determine concrete values for such intermediary fees.

In order to increase readability and to keep focus on the salient points of the con-

struction, our protocol does not exploit a number of possible optimisations. These

include a number of techniques employed in Lightning that drastically reduce storage

requirements, along with a variety of possible improvements to our novel virtual sub-

protocol. Most notably, the Taproot [133] update that is planned for Bitcoin will allow

for a drastic reduction in the size of transactions, as in the optimistic case only the hash

of the Script has to be added to the blockchain and the n signatures needed to spend a

virtual output can be replaced with their aggregate, resulting in constant size storage.

As this work is mainly a proof of feasibility, we leave these optimisations as future

work.

Additionally, our protocol does not feature one-off multi-hop payments like those

possible in Lightning. This however is a useful feature in case two parties know that

they will only transact once, as opening a virtual channel needs substantially more

network communication than performing an one-off multi-hop payment. It would be

therefore fruitful to also enable the multi-hop payment technique used in Lightning

and allow human users to choose which method to use in each case.

Last but not least, the current analysis gives no privacy guarantees for the protocol,

as it does not employ onion packets [107] like Lightning. Furthermore, GChan leaks all

messages to the ideal adversary therefore theoretically no privacy is offered at all. Nev-

ertheless, onion packets can be incorporated in the current construction and intuitively
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our construction leaks less data than Lightning for the same multi-hop payments, as

intermediaries in our case do not learn the new balance after every payment, contrary

to Lightning. Therefore a future extension can improve the privacy of the construction

and formally demonstrate exact privacy guarantees.

4.12 Conclusion

In this chapter we presented Recursive Virtual Payment Channels for Bitcoin, a con-

struction which enables the establishment of pairwise payment channels without the

need for posting on-chain transactions. Such a channel can be opened over a path of

consecutive base channels of arbitrary length, i.e., the virtual channel constructor is

variadic.

The base channels themselves can be virtual, therefore the novel recursive nature

of the construction. A key performance characteristic of our construction is that it has

optimal round complexity for channel closing: a single transaction is required by any

participant to turn the virtual channel into a simple one and one more transaction is

needed to close it, be it an end-point or an intermediary.

We formally described the protocol in the UC setting, provided a corresponding

ideal functionality and simulator and finally proved the indistinguishability of the pro-

tocol and functionality, along with the balance security property that ensures no loss

of funds for honest, non-negligent parties. This is achieved through the use of the

ANYPREVOUT sighash flag, which is a proposed feature for Bitcoin, also required by the

eltoo improvement to lightning, [31].
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Chapter 5

Privacy Preserving Opinion

Aggregation

5.1 At a glance

There are numerous settings in which people’s preferences are aggregated outside of

formal elections, and where privacy and verification are important but the stringent

authentication and coercion-resistant properties of government elections do not apply.

These systems are often iterative and have no trusted authority, in contrast to the cen-

trally organised, single-shot elections on which most of the literature is focused.

In this work, we explore preference aggregation in a decentralised, iterative setting

by proposing a novel protocol in which randomly-chosen participants take turns to

act as decryption authorities. Our simple construction provides public verifiability,

robust vote privacy and liveness guarantees, while striving to minimise the computing

resources each participant needs to contribute.

5.2 Introduction

In this work we construct and analyse a protocol that enables a group of non-hierarchical

participants to aggregate their opinions on a predefined topic in a privacy-preserving

and timely manner. Each party may vote once, choosing among up/down/abstain, rep-

resented by +1, -1 and 0 respectively. Contrary to existing e-voting protocols, our

construction is not single-shot, i.e. it does not forbid revealing the results until after all

votes have been cast, but instead can reveal votes dynamically. This makes our scheme

suitable for aggregating user preferences on social media content on platforms such as
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Reddit [65], Steemit [4], Slido [134] and BitClout [135] in an online fashion.

At a high level, our construction is as follows. Votes are decrypted in batches of

(predetermined) size B. Each party can choose to vote at any time. Voting is done in

a number of steps: first an n-sized subset of the parties, called decryptors, is chosen

in a verifiably random fashion. Then the voter secret-shares its vote using t-out-of-

n Shamir’s Secret Sharing [136], creating one share per decryptor. Next, the voter

encrypts each share with the identity of the corresponding decryptor, using an identity-

based encryption scheme that is homomorphic for at least B additions (e.g. [137]).

Once done, the voter publishes the encrypted shares on the Bulletin Board. An honest

party also periodically checks whether it is the decryptor of a batch of votes. A batch

is formed when B votes contain at least t decryptors in common. If there is more than

one available batch, ties are broken in a deterministic manner. If a party concludes that

it is a decryptor of a batch, it sums its B share ciphertexts, decrypts and publishes the

resulting aggregate share. If at least another t−1 decryptors of the batch do the same,

then anyone can reconstruct the aggregate of said B votes. As discussed later in more

detail, the parameters t,n and B can be tuned to achieve different tradeoffs.

5.2.1 Related Work

The field of content curation studies how opinions can be combined to produce an ag-

gregated outcome, generally with expressive preferences, ongoing interaction, and not

much focus on privacy or the possibility of manipulation [60, 61, 66, 59, 52, 4, 49, 81,

82, 84, 80, 48, 67, 54, 62, 63, 64, 138, 139]. Content curation consists of algorithms

and protocols that ensure users of a system, commonly a social media platform, access

the most relevant and useful content. The constant inflow of content in such platforms

precludes manual classification and ranking, and crowdsourcing the procedure by tak-

ing into account users’ explicit or implicit judgement of content can vastly improve

the quality of curation. Therefore our voting protocol, which is suitable for aggregat-

ing the opinions of participants in an online fashion (as opposed to single-shot voting

protocols), stands at the intersection of voting and content curation.

E-voting refers to techniques and methodologies of aggregating the votes of a group

of voters for candidates or proposals and publishing this aggregate in a timely, privacy-

preserving, incoercible, yet accountable manner (or at least with some combination

of these properties). Academic schemes generally provide some form of verifiabil-

ity [140]: public verifiability means, informally, that anyone can check that all in-
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cluded votes have been properly tallied, while individual verifiability means that each

voter can check whether their vote has been properly included.

Internet voting schemes designed for public elections typically have a designated

set of election administrators who are, at least, trusted for privacy [141, 142, 143].

These schemes can scale to a very large number of voters and a modest number of

authorities, often with some redundancy in case some of them fail or are corrupted.

Among those with publicly verifiable tallies, some focus on strong coercion resistance

properties [144], while others focus on allowing the voter to verify that their vote is

cast as they intended from an untrusted device [145, 146, 147, 148, 149, 150, 151]. In

this work, we do not distinguish the intentions of a human voter from the intentions of

their device. We therefore do not consider schemes based on code voting [149, 152]

which are mainly focused on easy verification by human users, generally in return for

requiring some non-collusion assumptions among the authorities.

Boardroom voting schemes [153, 154, 155] are designed for a relatively small

group of voters to act as equals: all voters participate in both voting and tallying. These

schemes can be publicly verifiable (i.e. including for those who did not participate in

the protocol), but suffer from problems of robustness and may fail if any participant

refuses to participate in decryption. They are therefore not suitable for large groups.

Zhang et al. [156] show how to use a distributed protocol to select a verifiably-

random subset (weighted by stake) to act as a decryption committee. Other participants

can either vote directly or delegate their votes to experts, a choice that is protected with

privacy guarantees. Voting occurs in epochs, after which a new decryption committee

is chosen. Their scheme achieves slightly different goals from ours, as it incorporates

a vote weighting mechanism based on each voter’s stake along with a stake delegation

mechanism. Furthermore it does not provide a method that overcomes the single-

shot limitation when revealing the aggregate votes on any particular topic; it instead

provides a governance system with sequential epochs, where each topic is proposed,

voted for and potentially funded in a single epoch. A single epoch may handle multiple

independent topics.

5.2.2 Our setting and contribution

In this work, we randomly select a subset of participants to act as authorities. Every-

one can vote whenever they wish, but the authorities’ responsibilities are allocated to a

constantly-refreshed subset of participants. Thus voting can happen whenever a partic-
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ipant wishes to, while decryption happens whenever there is a large enough anonymity

set, therefore providing privacy. In this respect, we improve upon boardroom voting in

that the need for separate authorities is avoided while robustness against misbehaving

parties is guaranteed. Our scheme provides verifiability, in the sense that each (elec-

tronic) voter can verify the inclusion of their vote and the overall correctness of the

tally. We also achieve liveness, meaning that (under reasonable assumptions), every

vote will be promptly included, as defined in Section 5.7. Unfortunately our protocol

is not receipt-free. Furthermore honest participants need to interact with the system

beyond their own voting phase, which however we deem an acceptable tradeoff in the

era of always-on mobile applications.

5.3 Preliminaries

Our protocol builds upon a number of preexisting cryptographic constructions:

• An additive-homomorphic identity-based encryption scheme that makes available

the algorithms ⟨SETUP, KEYGEN, ENC, DEC⟩, realisable by, e.g., [137]. SETUP

is run by an entity abstracted via F P
CRS, discussed below.

• An additive-homomorphic secret sharing scheme with algorithms ⟨SHARE, RE-

CONSTRUCT⟩, realisable by, e.g., Shamir’s scheme [136, 157].

• A zero-knowledge proof system for proving vote and share validity, abstracted

via FNIZK, that can be instantiated, e.g., with one of Groth’s schemes [158].

• A decentralised protocol for provably handling valid votes in a publicly-verifiable

way abstracted via GP
VoteBox, that can be realised through a multi-party compu-

tation (MPC) protocol, e.g. [159], or by a smart contract in a Turing-complete

blockchain, e.g. Ethereum [2] or Cardano [13].

In an identity-based encryption scheme, there is an “operator” that generates the

master keypair. The operator can use the master secret key to generate the decryption

key (a.k.a. secret key) of each party, which is handed over to said party. When a party

wants to encrypt a message for another party, it uses the master public key together

with the receiver’s identifier to produce a ciphertext. The receiver can in turn decrypt

the ciphertext using its secret key. An additive-homomorphic identity-based encryption

scheme (HIBE) additionally enables the combination of two ciphertexts without using
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the secret key so that the resulting ciphertext decrypts to the sum of the two original

plaintexts. We exploit this property to achieve voter privacy: multiple encrypted votes

are added together so, when decrypted, only the aggregate result, and not individual

votes, are published. Note that, to avoid having a trusted operator, the master keypair

can be generated through an MPC, as discussed below in more detail, which ensures

that no-one learns the master secret key.

A t-out-of-n secret sharing scheme enables a party to generate n different shares

from a secret. These shares may then be distributed to different parties. If any t of

those combine their shares, they can reconstruct the original secret. If a secret sharing

scheme is also additive-homomorphic, then the following is possible: B parties inde-

pendently share B distinct secrets. Then t sums of shares are created, where each is the

result of adding B shares, each coming from a distinct secret and with no share reuse

across the t sums. The reconstruction of the t sums reveals the sum of the B secrets. We

leverage such a scheme to ensure that no party can individually decrypt votes before

a protocol-wide constant number of voters B has voted. Honest behaviour prescribes

decrypting and publishing only the sum of B encrypted shares. The system parameters

are chosen so that it is exceedingly unlikely for any single vote to be secret-shared to t

malicious players or more.

A non-interactive zero-knowledge proof system allows a party P to prove to any

other party V knowledge of a witness (i.e. a solution) to a specific instance of an NP

problem, without disclosing any additional information beyond the fact that it knows

a witness, and with a single message from P to V . Such a proof can also be published

once and consumed by any number of parties after its publication at any point in time.

This work leverages an idealised zero-knowledge proof system, FNIZK, to ensure that

every vote has a value among−1, 0, 1 and that it has been secret-shared and encrypted

correctly, and additionally to ensure that every aggregate share is the result of the

correct decryption of a correct sum of valid ciphertexts.

An MPC protocol [160] allows a known set of p (possibly malicious) participants

to execute a function with p inputs and p outputs such that each party learns only its

own output; the inputs and outputs of all other parties remain private (at least to the

extent that its own output doesn’t leak such information).

To abstract the role of the HIBE trusted operator, we use F P
CRS. The name of the

functionality alludes to the fact that the master public key can be thought of as a com-

mon reference string (CRS) and the master secret key that F P
CRS guards corresponds to

the secret of the CRS (c.f. [161]). Looking forward, the security proof has the simu-
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lator S take over the role of F P
CRS and exploit knowledge of the master secret key to

decrypt the votes of malicious players, which is needed for the security proof. F P
CRS

generates the master keypair of the aforementioned HIBE and distributes the secret

keys. It can be realised either with a trusted third party, or preferably by having all par-

ties run once (as part of the protocol initialisation) an MPC which does the following:

It first executes SETUP and then it uses the resulting master secret key to generate one

decryption (secret) key for each party using KEYGEN. Each party receives as output

the master public key and its own secret key. In case a party does not receive its output,

it aborts the protocol.

GP
VoteBox, which is a stateful functionality, can be compiled into a series of MPC

functions. Public verifiability that extends beyond the parties actively implicated in the

MPC protocol can be achieved with verifiable MPC [162]. Alternatively, GP
VoteBox can

be implemented as a smart contract in a Turing-complete blockchain. Smart contracts

are stateful scripts that are executed with massive redundancy and their results are

secured via the consensus mechanism [163] of the underlying blockchain, therefore

ensuring trustworthy execution. They may stay active for an arbitrary amount of time

and can be programmed to expect input from specific parties.

We use the execution model of Universal Composition [11], exploiting its clearly

defined and widely used entities (ITIs) and interactions between them. Our security

treatment however follows the standalone simulation-based paradigm [164], according

to which we model the overarching security goals with an “ideal world” functionality

that handles the inputs of all honest parties and leaks controlled amount of data to the

ideal world adversary, a.k.a. simulator. In parallel we model the low-level details of the

construction with a “real world” protocol that is executed by one machine per protocol

party. We then prove that the protocol achieves the security goals by proving indis-

tinguishability of the execution pattern of the two worlds for any sequence of inputs.

According to the Universal Composition execution model, each party is modelled by

an instance of an Interactive Turing Machine (ITI) that in the real world executes the

code of the protocol under scrutiny, whereas in the ideal world it is a “dummy” party

that simply relays messages. Furthermore, there exist an environment ITI E , which

may be any PPT ITI, an adversary ITI A , which may be any PPT ITI and fully controls

all corrupted parties and one ITI for each functionality: FNIZK, GP
VoteBox, F P

CRS. Only

one ITI is active at any time. The first party to be activated is E and the “execution

token” returns to it whenever any other ITI completes its current chunk of execution

and does not explicitly and legally hand its execution token to another ITI. E and A
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may send messages to any other ITI except for FNIZK (as it is a local functionality), a

protocol party may only send messages to one of the functionalities or to E and each

functionality may either send a message to another functionality or to the ITI that ac-

tivated it. In the ideal world, dummy parties exclusively relay messages between E
and ideal functionality. As E models all human participants, along with their opinions

and the moment in which each chooses to vote, E freely decides the order and type of

activations of parties. We note that, since E may be any ITI, all possible orders of cast

votes and possible delays between them are permitted in this model.

5.4 Overview of GP
VoteBox

GP
VoteBox is the functionality that facilitates parties’ interactions, producing sets of

decryptors for each vote and ensuring parties may only contribute honestly to the pro-

tocol.

In particular, GP
VoteBox keeps track of the identities of parties implicated in the pro-

tocol. It also stores encrypted votes and decrypted batch shares. A party that wishes

to vote asks GP
VoteBox for a set of decryptors, which are decided by GP

VoteBox through a

special procedure discussed later. The party then sends its vote, which GP
VoteBox verifies

is correctly created. If so, GP
VoteBox stores the vote. A decryptor that handled a batch

may submit the result to GP
VoteBox. Once again, GP

VoteBox verifies that the decrypted

batch share was generated correctly and stores it. Lastly, parties may query both the

encrypted vote shares and the decrypted batch shares from GP
VoteBox.

As we will see below, GP
VoteBox leverages the zero-knowledge proof functionality

FNIZK to verify the correctness of votes and batch shares. This way all possible mali-

cious actions are effectively checked for and guarded against.

5.5 Overview of the Construction

Consider a set of participants P , of which up to s may be corrupted. Our analysis

is conducted in the static corruption setting, therefore all corruptions are decided by

A before the commencement of the execution and no further corruptions are allowed

during execution. Both the real-world protocol and the ideal-world functionality (and

therefore the execution) are parametrised by the following constants:

• B, the size of each batch.
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• n, the number of decryptors each vote is secret-shared for.

• t, the number of shares needed to reconstruct a secret.

We now focus on the real-world execution. Honest parties follow the Π
B,n,t
vote pro-

tocol (Fig. 5.6). In the initialisation phase of the execution, each participant generates

its keypair. This happens when E sends (INIT) to a party (Fig. 5.6, l. 1), which in turn

asks F P
CRS to return the master public key and the party’s secret key (Fig. 5.1, l. 3).

Note that, even though it is possible for E to skip to the next phase before initialisation

is complete by sending a (READ), (VOTE, v) or (DRAINBATCH) message to a party, this

will lead to the first activation of GP
VoteBox (Fig. 5.6, ll. 5, 20 and 30 respectively), which

triggers the initialisation sequence of GP
VoteBox (Fig. 5.4, ll. 1-8) in which GP

VoteBox halts

if there is any non-initialised party, leading to a failure of the voting protocol (and a

satisfaction of all security properties in vacuum). We therefore focus only in the cases

in which initialisation of all parties takes place before moving on to the next phase.

Subsequently execution moves to the voting phase. E may at any time send (VOTE,

v), (DRAINBATCH) or (READ) to any party. Note that E decides the value of the vote

of honest parties, since E models, among others, the human users interacting with a

practical software implementation of our protocol.

When an honest party is instructed to vote, it does so in four consecutive steps. It

first asks GP
VoteBox to provide it with a set of decryptors (Fig. 5.6, l. 20). GP

VoteBox first

ensures that the party has not attempted to vote (successfully or unsuccessfully) in the

past (Fig. 5.4, l. 14) and then chooses the decryptor set according to the following logic:

If the previous party that attempted to vote failed to do so (only possible for a malicious

party, see below), GP
VoteBox reuses the same set of decryptors (Fig. 5.4, l. 24 was not

executed before, so Fig. 5.4, l. 20 is executed with the previously stored decryptors).

Otherwise, if a number of votes that is a multiple of B has been successfully cast up to

that moment, a uniformly random n-sized subset of P is chosen (Fig. 5.3, ll. 5-6). In

case the number of successfully cast votes is not a multiple of B, the previously used set

of decryptors is used again (Fig. 5.3, l. 7). This method of selecting decryptors ensures

that valid batches will be formed in a timely manner, while a malicious party cannot

sabotage the completion of a valid batch of votes by asking for a set of decryptors and

then stalling, thus negatively affecting liveness.

In the second step, the party secret shares its vote and encrypts each share under

the identity of the respective decryptor (Fig. 5.6, ll. 21-26). Note that the randomness

for the SHARE and ENC algorithms is sampled explicitly so that it can be subsequently
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passed to FNIZK.

In the third step, the party submits its plaintext vote, the ciphertexts it just built, the

corresponding decryptors and the randomness it used to FNIZK (Fig. 5.6, l. 27), which

in turn ensures that the vote is −1, 0 or 1 and that the ciphertexts have been generated

correctly. FNIZK then stores this fact and returns control to the party (Fig. 5.2, ll. 3-15).

In a realistic software implementation of the protocol, the party would locally generate

a zero-knowledge proof of these facts instead.

In the fourth step, the party sends the encrypted shares to GP
VoteBox (Fig. 5.6, l. 28).

GP
VoteBox then verifies that the ciphertexts were generated correctly by asking FNIZK

(Fig. 5.4, l. 21). We note that in a practical implementation, the party would instead

have to pass the zero-knowledge proof as input instead. Given that the verification

succeeds, the vote is recorded locally by GP
VoteBox (Fig. 5.4, l. 26). The party has now

voted successfully.

Observe that the communication flow when an honest party P votes is P→GP
VoteBox

→ P→ FNIZK→ P→ GP
VoteBox. There is no instant in which this flow is interrupted

by A or E and all functionalities are always honest, therefore this flow can only be

broken if the party is malicious. This observation allows GP
VoteBox to deduce that if a

party has not successfully completed voting before a new vote arrives, then this party

is malicious.

When an honest party receives (DRAINBATCH), it first reads all votes from GP
VoteBox

(Fig. 5.6, l. 30). It then partitions the votes into batches (Fig. 5.6, l. 31) using the de-

terministic Batch algorithm (Fig. 5.5). This algorithm forms batches using the oldest

votes first, adding the oldest vote not considered yet in each new attempt to form a

batch. Lexicographic order of decryptors is used to break ties in case multiple batches

are possible. Note that Batch is general enough to be used if an arbitrarily more com-

plex method of choosing decryptors were used by GP
VoteBox.

After batching the votes, the party finds the minimum batch for which it is a decryp-

tor and has not been drained by the party yet (Fig. 5.6, l. 32) and, if such a batch exists,

the party drains it. Draining consists of the following steps. First the party calculates

the sum of all the ciphertexts in the batch that were the result of encrypting a share with

the public key of the party (Fig. 5.6, l. 35). As discussed previously, these ciphertexts

are guaranteed to be valid, as GP
VoteBox only stores ciphertexts that have been verified

by FNIZK. Then the party decrypts the sum, proves that the process was correctly done

(Fig. 5.6, l. 37) and sends the resulting aggregate share to GP
VoteBox (Fig. 5.6, l. 38),

which in turn verifies its correctness (Fig. 5.4, l. 35) and stores it (Fig. 5.4, l. 37). Note
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that, due to the additive-homomorphic properties of both the encryption and the secret

sharing schemes, the resulting aggregate share can be combined with t− 1 other ag-

gregate shares generated by other decryptors from ciphertexts from the batch votes to

reconstruct the sum of the votes in the batch.

Lastly, a party may receive (READ) from E . It then initially reads all batch shares

from GP
VoteBox (Fig. 5.6, l. 5) and subsequently for each batch, the party tries to recon-

struct all possible combinations of t aggregate shares from this batch until a valid vote

is extracted. This vote then is added to the sum of votes and finally the end result is

returned (Fig. 5.6, ll. 6-17).

We note that GP
VoteBox can be readily implemented in a blockchain that supports

Turing-complete, stateful smart contracts, such as Ethereum [2] or Cardano [13]. To

avoid possible attacks, special care should be given to ensuring that the randomness

used for choosing decryptors is unpredictable. To that end, a suitable randomness bea-

con such as [165, 166] should be employed. Furthermore, various optimisations should

be designed and incorporated to keep both the overall and the per-party smart contract

cost low. Since our protocol has no synchrony requirements, we do not need any ad-

ditional assumptions on top of the ones needed by the blockchain. To make analysis

simpler, we assume that our functionalities are executed in an idealised manner and do

not explicitly interact with a blockchain.

The parameter n is considered the security parameter and used as such in Theo-

rem 7, which gives specific privacy guarantees. At a high level it states that, as long

as t
n > s

|P | (where s is the number of corrupted players), the probability of any one set

of decryptors throughout the entire execution containing t or more corrupted parties is

negligible in n. This theorem provides a useful guideline for choosing safe values for

the protocol parameters n, t given specific expectations on the number of corruptions s

and total number of parties |P |. It also confirms the following appealing intuition: for

the voting system to be private, the ratio of the minimum shares needed to reconstruct

a batch over the shares each vote has been split into must exceed the ratio of corrupted

to total players overall.

The parameter B on the other hand can be treated separately. Changing its value

is connected to trading off anonymity set size for batch frequency. Indeed, for bigger

values of B more votes need to be cast to complete a batch, therefore the anonymity

set each party enjoys is bigger, but at the same time each party will need to wait for

more votes to be submitted by other parties before this bigger batch is completed and

the party’s vote is counted. Theorem 8 proves that a party has to wait for at most B−1
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more valid votes to be cast before its vote may be counted.

Furthermore, individual verifiability in our scheme is very straightforward: each

voter can see their vote on the Bulletin Board, observe whether it has been incorporated

into a batch, and, if so, verify the aggregation of the batch.

Please see Section 5.8 for further discussion on the parameters.

In the ideal world, the protocol is replaced by the functionality F B,n,t
vote . As we will

see later, we prove that Π
B,n,t
vote realizes the functionality F B,n,t

vote . The latter receives and

handles inputs from all honest parties, whereas inputs from malicious parties are for-

warded directly to the simulator S . Likewise, an output addressed from a malicious

party to E is passed by S to F B,n,t
vote and subsequently forwarded to E unchanged, via

the respective dummy party ITI. F B,n,t
vote is responsible for handling the same messages

from E that honest parties handle in the real world. In the initialisation phase of each

party, F B,n,t
vote simply returns control to E . In the voting phase, when a party is instructed

to vote, F B,n,t
vote asks for and receives from S the corresponding vote number and decryp-

tors, it checks that the vote number has not been reused and that the decryptor set does

not include t or more malicious parties. It then stores the vote locally, before informing

S of the successful vote. S submits the vote to GP
VoteBox. When a party is instructed

to drain a batch, F B,n,t
vote finds the oldest complete, non-drained batch for this player, if

any, following steps similar to the real-world protocol, and marks this batch as drained

by this party. If the batch has been drained by t parties, F B,n,t
vote then adds together the

honest votes of the batch, asks S for the sum of the votes of the malicious voters of

the batch, updates the locally stored results and sends the sum of the honest votes to S .

In any case, F B,n,t
vote informs S on the outcome of the draining. If draining succeeded,

once again S submits the result to GP
VoteBox. S may also inform F B,n,t

vote that a particular

malicious party has drained a particular batch. Lastly, when a party is instructed to

read the results, these are simply returned by F B,n,t
vote as stored.

Observe that the functionality always counts in the results all honest votes that

have been included in a complete, fully drained batch. Furthermore, as we will see in

the proof of Theorem 9, S knows the votes of all malicious parties and reports them

truthfully to F B,n,t
vote , which in turn includes them in the results as well. These two facts

together show that we have public verifiability in the ideal world, i.e. we can be certain

that no votes have been neglected in the result, as long as they are part of a drained

batch. Furthermore, given that Theorem 9 proves indistinguishability of the real and

the ideal world without any assumptions on the number of corruptions, only having

to trust the underlying ideal functionalities, we deduce that the real world protocol
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provides public verifiability as well. Observe that the only limitation on the number

of corruptions is imposed by l. 13 of Fig. 5.7, which is only relevant for providing

explicit privacy guarantees; the indistinguishability proof would go through if this line

was missing, in which case any amount of corruptions would be allowed.

5.6 Formal Description of the Construction

The t-out-of-n secret sharing scheme provides the following algorithms:

• (s1, . . . ,sn)← SHARE(m;r) where r is sampled uniformly from Rshare,

• m← RECONSTRUCT(s1, . . . ,st).

The homomorphic identity-based encryption scheme provides these algorithms:

• (mpk,msk) $← SETUP(),

• sk $← KEYGEN(msk,P),

• c← ENC(mpk,P,m;r) where r is sampled uniformly from Renc,

• m← DEC(sk,c).

In the real world, the SETUP algorithm of the encryption scheme is run by F P
CRS,

which never leaks the master secret key. In the ideal world the simulator internally

simulates F P
CRS. As we will see, this allows S to decrypt malicious players’ votes,

which is needed to simulate the real world without learning the honest votes.

1: Initialisation:

2: (mpk,msk) $← SETUP()

3: On (INIT) by P:

4: reply (mpk, KEYGEN(msk,P))

5: On any other message before every P ∈ P has sent (INIT):

6: reply ⊥

7: On (MPK):

Functionality F P
CRS
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8: reply (mpk)

9: On (VERIFY, sk, P) by FNIZK:

10: if sk = KEYGEN(msk,P) then reply (OK) else reply (ERROR)

Figure 5.1

The FNIZK functionality handles proofs of correct construction of votes and aggre-

gate shares.

1: Initialisation:

2: send (MPK) to F P
CRS and assign reply to mpk

3: On (PROVEVOTE,v,g0,⟨gs
k⟩k∈[n],⟨cs

k,Pk⟩k∈[n]) by P:

4: if v /∈ {−1,0,1} then

5: reply (ERROR)

6: end if

7: ⟨sk⟩k∈[n]← SHARE(v;g0)

8: for k from 1 to n do

9: cs← ENC(mpk,Pk,sk;gs
k)

10: if cs ̸= cs
k then

11: reply (ERROR)

12: end if

13: end for

14: store (P,⟨cs
k,Pk⟩k∈[n])

15: reply (OK)

16: On (VERIFYVOTE, P,⟨cs
k,Pk⟩k∈[n]):

17: if (P,⟨ck,Pk⟩k∈[n]) is stored then reply (OK) else reply (ERROR)

18: On (PROVESHARE, r, S, sk) by P:

Functionality FNIZK
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19: send (VERIFY, sk, P) to F P
CRS and assign reply to T

20: if T = (ERROR) then reply (ERROR)

21: send (READ) to GP
VoteBox, keep (VOTE,(r,⟨ck,Pk⟩k∈[n])) entries from reply and

collect them into votes= ⟨ri,⟨ci,k,Pi,k⟩k∈[n]⟩i∈[R]
22: B = ⟨{r : ⟨ri⟩i∈[B],P : ⟨Pj⟩}⟩ ← Batch(votes)

23: if any entry in Br contains no ciphertext for P then reply (ERROR)

24: C← ∑
i∈[|B|]

c : (Br.ri,⟨. . . ,(c,P), . . .⟩) ∈ votes

25: if S = DEC(sk,C) then

26: store (P,r,S)

27: reply (OK)

28: else

29: reply (ERROR)

30: end if

31: On (VERIFYSHARE, P, r, S):

32: if (P,r,S) is stored then reply (OK) else reply (ERROR)

Figure 5.2

getDecryptorsn,B,P () is used internally by GP
VoteBox to sample the decryptors of each

vote.

1: Initialisation:

2: r← 0

3: Execution:

4: r← r+1

5: if r mod B = 1 then

6: Kr
$←
(P

n

)
//
(P

n

)
is the set of n-sized subsets of P

7: else

8: Kr← Kr−1

9: end if

10: return (r,Kr)

Stateful Function getDecryptorsn,B,P ()
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Figure 5.3

The GP
VoteBox functionality provides the core functions regarding handling vote and

aggregate share submissions. When a player asks to vote, it samples decryptors (using

getDecryptorsn,B,P ()), checks the validity of the vote and stores it. Similarly, when a

player asks to submit an aggregate share, GP
VoteBox verifies and stores it.

1: Initialisation:

2: corrupted← /0

3: voted← /0

4: V ← /0

5: voting← false

6: decryptors←⊥
7: send (MPK) to F P

CRS and assign reply to mpk

8: if mpk is not a valid master public key then halt

9: On (GETDECRYPTORS) by P:

10: if voting then

11: add voter to corrupted // we expected a reply (l. 20) from voter

12: voting← false

13: end if

14: if P ∈ (voted∪corrupted) then yield execution token

15: voting← true

16: if decryptors=⊥ then

17: decryptors← getDecryptorsn,B,P ()

18: parse decryptors as (r,⟨Pi⟩i∈[n])
19: end if

20: reply decryptors to P and expect reply (VOTE, r, ⟨ci,Pi⟩i∈[n]) by P // received r

must match the one stored in decryptors

21: send (VERIFYVOTE, P, ⟨ci,Pi⟩i∈[n]) to FNIZK and assign reply to T

22: voting← false

23: if T = (OK) then

Functionality GP
VoteBox
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24: decryptors←⊥
25: add P to voted

26: add (VOTE,r,⟨ci,Pi⟩i∈[n]) to V
27: reply (OK)

28: else // T = (ERROR)

29: add P to corrupted

30: reply (VOTERCORRUPTED)

31: end if

32: On (READ) by P:

33: reply V

34: On (BATCHSHARE, j, S) by P:

35: send (VERIFYSHARE, P, j, S) to FNIZK and assign reply to T

36: if T = (OK) then

37: add (BATCHSHARE, j, S) to V
38: reply (OK)

39: else// T = (ERROR)

40: add P to corrupted

41: reply (PARTYCORRUPTED)

42: end if

Figure 5.4

The BatchB,t() function is used internally by FNIZK, the protocol Π
B,n,t
vote and the

functionality F B,n,t
vote . It groups votes into valid batches in a deterministic manner.

1: B ← ⟨⟩ // vector

2: for top from B to max{votes.map((r, ·) 7→ r)} do

3: entries_up_to_top← votes.filter((r, ·) 7→ r ≤ top)

4: // a valid batch consists of a vector of rounds r = ⟨ri ∈ [top]⟩i∈[B] (B natural

numbers up to top) and a vector of parties P= ⟨Pi ∈ P ⟩i∈[m] of length t ≤ m≤ n such

that Pi is in every vote of votes.filter(r ∈ r). If some P ∈ P appears multiple times in

Algorithm BatchB,t(votes)
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P, it must also be in each each vote of interest at least as many times.

(∀i ∈ [m],∀vote ∈ votes.filter(r ∈ r), |vote.filter(P = Pi)|)≥ |P.filter(P = Pi)|)
5: if ∃ a valid batch {r : ⟨ri⟩i∈[B],P : ⟨Pi⟩i∈[m]} in entries_up_to_top then

6: append the batch to B; if there are more than one valid batches, choose the

minimum, compared based on the lexicographic ordering of the concatenation of the

identifiers of all involved parties, P1P2 . . .Pm. // It is impossible that exactly the same

parties are involved in two different batches, as that would mean that the batches’

difference is in their entries’ r. In that case each of the two batches would have B−1

entries with r ̸= top with at least one difference in these entries. This means that there

would be at least B distinct entries with r ̸= top and t common parties. These entries

would however form a batch D without the entry that has r = top. If top= B, the

exclusion of the entry with r = B would mean that there are not enough entries to form

any batch, else D would have been already consumed in a previous iteration.

7: remove every entry involved in the new batch from entries // This removal

invalidates all alternative batches of the line above, therefore asserting the argument

that there cannot be two or more valid, disjoint batches per iteration.

8: end if

9: end for

10: return B

Figure 5.5

The Π
B,n,t
vote is executed by each protocol party. At any time, E can ask a party to

vote, drain the next available batch, or read decrypted results.

1: On first (INIT) by E :

2: send (INIT) to F P
CRS and store reply as (mpk,sk)

3: reply (DONE) to E

4: On (READ) by E :

5: send (READ) to GP
VoteBox, keep (BATCHSHARE, j,S) entries from reply and collect

them into shares= ⟨ j,S⟩
6: results← 0

Process Π
B,n,t
vote (self is P)
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7: for i from 1 to max{shares.map(( j,S) 7→ j)} do

8: while there are t (i,S) entries in shares that have not been given as input to

RECONSTRUCT() while handling the current READ message do // makes robust against

malicious BATCHSHARE entries

9: assign the shares of these t entries to (S1, . . . ,St)

10: newVotes← RECONSTRUCT(S1, . . . ,St)

11: if newVotes ̸=⊥ then

12: results← results+newVotes

13: break

14: end if

15: end while

16: end for

17: reply results to E

18: On first (VOTE, v) by E :

19: ensure v ∈ {−1,0,1}, otherwise ignore

20: send (GETDECRYPTORS) to GP
VoteBox and assign reply to (r,⟨Pk⟩k∈[n])

21: g0
$← Rshare

22: ⟨sk⟩k∈[n]← SHARE(v;g0)

23: for k in 1 to n do

24: gs
k

$← Renc

25: cs
k← ENC(mpk,Pk,sk;gs

k)

26: end for

27: send (PROVEVOTE,v,g0,⟨gs
k⟩k∈[n],⟨cs

k,Pk⟩k∈[n]) to FNIZK and expect reply (OK)

28: send (VOTE,r,⟨cs
k,Pk⟩k∈[n]) to GP

VoteBox and expect reply (OK)

29: On (DRAINBATCH) by E :

30: send (READ) to GP
VoteBox, keep (VOTE,(r,⟨ck,Pk⟩k∈[n])) entries from reply and

collect them into votes= ⟨ri,⟨ci,k,Pi,k⟩k∈[n]⟩i∈[R]
31: B = ⟨{r : ⟨ri⟩i∈[B],P : ⟨Pj⟩}⟩ ← Batch(votes)

32: j← argmin
i∈[|B|]

{P ∈ Bi.P∧Drained(Bi) = False}

33: if j exists then

34: Drained(B j)← True

35: C← ∑
i∈[|B|]

c : (B j.ri,⟨. . . ,(c,P), . . .⟩) ∈ votes // ∀r ∈ B j.r,∃(c,P) since

P ∈ B j.P
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36: S← DEC(sk,C)

37: send (PROVESHARE, j, S, sk) to FNIZK and expect reply (OK)

38: send (BATCHSHARE, j, S) to GP
VoteBox and expect reply (OK)

39: end if

Figure 5.6

The F B,n,t
vote functionality serves the same functions as Π

B,n,t
vote , but aggregates locally

the votes of all honest players. It also expects specific messages from the adversary

which let it know when a corrupted player votes or drains a batch.

1: F B,n,t
vote relays any message between A and any corrupted dummy party, as well as any

message between A and the interface of any party with GP
VoteBox.

2: Initialisation:

3: results← 0

4: votes← /0

5: maliciousEntries← /0

6: On first (INIT) by P: // one INIT per player

7: reply (DONE) to P

8: On (READ) by P:

9: reply (RESULTS, results)

10: On first (VOTE, v) by P:

11: send (GETDECRYPTORS, P) to A , expect reply (r,⟨Pk⟩k∈[n]) by A
12: if r has appeared again in votes or in a VOTED message by A then halt

13: if at least t players in ⟨Pk⟩k∈[n] are malicious then halt

14: append (r,P,v,⟨Pk⟩k∈[n]) to votes.

15: send (VOTED, P,⟨Pk⟩k∈[n]) to A

Functionality F B,n,t
vote
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16: On (VOTED, r, ⟨Pk⟩k∈[n]) by A :

17: if r has appeared in votes or in maliciousEntries then halt

18: add (r,⟨Pk⟩k∈[n]) to maliciousEntries

19: On (DRAINED, j, P) by A where P is corrupted:

20: HasDrained(P,B j)← True

21: if there are exactly t distinct Pi : HasDrained(Pi,B j) = True then

22: newVotes← ∑
i∈[|B|]

v : (B j.ri,v, ·) ∈ votes

23: send (GETMALICIOUSVOTES, j) to A and expect reply maliciousVotes

24: results← results+newVotes+maliciousVotes

25: end if

26: reply (OK)

27: On (GETHONESTVOTES, j) by A :

28: send (READ) to GP
VoteBox, keep (VOTE, _) entries from reply and collect them into

castVotes

29: if the j-th batch in castVotes is complete then

30: send (HONESTVOTES, j, ∑
i∈[|B|]

v : (B j.ri,v, ·) ∈ votes) to A

31: end if

32: On (DRAINBATCH) by P:

33: entries← votes.map((r,v,⟨Pk⟩k∈[n]) 7→ (r,⟨Pk⟩))∪maliciousEntries
34: B = ⟨{r : ⟨ri⟩i∈[B],P : ⟨Pj⟩}⟩ ← Batch(entries)

35: j← argmin
i∈[|B|]

{P ∈ Bi.P∧HasDrained(P,Bi) = False}

36: if j exists then HasDrained(P,B j)← True else return

37: if there are exactly t distinct Pi : HasDrained(Pi,B j) = True then

38: newVotes← ∑
i∈[|B|]

v : (B j.ri,v, ·) ∈ votes

39: send (GETMALICIOUSVOTES, j) to A and expect reply maliciousVotes

40: results← results+newVotes+maliciousVotes

41: end if

42: send (BATCHSHARE, P, j) to A

Figure 5.7
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5.7 Security, Privacy & Liveness Guarantees

Theorem 7 (Privacy). In a real-world execution with parties in P of which at most

s are malicious, let E be the event under which at least one of the sets of decryptors

returned by getDecryptorsn,B,P contains at least t malicious parties. It holds that

∀ PPT A ,E ,∀ set of parties P ,

∀0 < α≤ 1 : α|P | ∈ N,n = α|P |,

∀0 < γ≤ 1 : γn ∈ N, t = γn,

∀0≤ β < 1 : β|P | ∈ N,s = β|P |,B ∈ N,
t
n
>

s
|P |
⇒ Pr[E]≤ negl(n) in EXEC

GP
VoteBox,FNIZK

Π
B,n,t
vote ,A ,E

.

Proof of Theorem 7. getDecryptorsn,B,P is called at most |P | times. The first time and

every B times going forwards, a new, uniformly random subset of n players is chosen

(Fig. 5.3, l. 6), for a maximum total of ⌈ |P |B ⌉ independent choices. Each random choice

of n decryptors can be modelled as n consecutive single-ball draws without replace-

ment and with replacement scheme R(white) = R(black) = 0 (i.e. after drawing any

ball, no balls are added back to the urn) from an urn that initially has 1 white and 1

black ball for each honest and each malicious player respectively, for a total of s black

and |P |− s white balls. The random variable b = “number of black balls drawn after

n draws” follows a hypergeometric distribution [167]. From the above we deduce that

Pr[E]≤ Pr[b≥ t]⌈ |P |B ⌉. It is

E[b] = n
s
|P |

and ∀q≥ 0,Pr[b≥ E[b]+qn]≤ e−2q2n .

We want to upper bound Pr[b≥ t], therefore t = E[b]+qn = n s
|P | +qn⇔ q = t

n −
s
|P | ,

thus q is always positive due to the theorem prerequisite. It is

Pr[b≥ t]≤ e−2( t
n−

s
|P | )

2n
= e−2(γ−β)2n . (5.1)

Therefore Pr[E]≤ ⌈ n
αB⌉e

−2(γ−β)2n ≤ negl(n).

We note that the privacy of an individual honest voter P may be still be broken if

B− 1 malicious players are included in the same batch as P, as they can act honestly

until they learn the aggregate result of the batch and then subtract their own votes from

the sum. In the current protocol, E can arrange the order of votes as it pleases, therefore

this attack against privacy is feasible. In a practical implementation however and given

that there is a constant stream of votes, such an attack could be harder to carry out.
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An alternative protocol could instead have GP
VoteBox decide the order of players’ votes,

thus thwarting this attack against privacy. Such a measure would however impede

the ability of each party to vote when it decides to (which is the case in a practical

implementation of the current protocol) and would make the protocol prone to stalling

every time the expected voter happens to be unavailable.

Theorem 8 (Liveness). In a real-world execution, every honestly cast vote will become

part of a valid batch in V of GP
VoteBox after at most another B− 1 votes have been

successfully cast.

Proof of Theorem 8. In a real-world execution, sending a GETDECRYPTORS and then

a VOTE message to GP
VoteBox is the only way for P to vote, whether P is honest or

malicious (since V , which contains all votes, is stored locally by GP
VoteBox). GP

VoteBox

only accepts votes for which the decryptors have been generated by getDecryptorsn,B,P

(Fig. 5.4, ll. 17-20). getDecryptorsn,B,P in turn keeps choosing the same decryptors

until a batch of submitted votes is complete (Fig. 5.3). In particular, a batch is complete

every exactly B calls to getDecryptorsn,B,P , as in case a player gets its decryptors but

does not submit its vote before another player tries to vote, or it submits an invalid vote,

it is considered corrupted (Fig. 5.4, l. 11 and l. 29 respectively) and GP
VoteBox reuses the

same decryptors (as l. 24 of Fig. 5.4 is not run), therefore a party has to wait at most

B−1 successfully cast votes before its vote is included in a valid batch.

We note that no synchrony assumptions are made, therefore all party activations are

controlled by E . The latter may thus choose to never activate enough honest parties

to complete a batch (with a VOTE message) or enough honest decryptors to decrypt it

(with a DRAINBATCH message). Nevertheless, in a realistic software implementation

these two actions would be initiated spontaneously, not at the whim of E .

Theorem 9 (Security).

∀ PPT A ,∃ PPT S : ∀ PPT E it is

EXEC
GP

VoteBox,FNIZK,F P
CRS

Π
B,n,t
vote ,A ,E

≈ EXEC
GP

VoteBox
S ,E .

Proof of Theorem 9.

Finds St = (xt ,yt) : RECONSTRUCT(S1, . . . ,St) =V and the source polynomial of the secret,

P(x). Works for Shamir’s Secret Sharing scheme [136].

Algorithm findShare(S1, . . . ,St−1,xt ,V )
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1: for i from 1 to t−1 do

2: parse Si as (xi,yi) // xi,yi are finite field elements

3: end for

4: Solve linear equation V =
t
∑

i=1
yi

m=t
∏

m=1
m̸= j

xm
xm−xi

to find the only unknown, yt // yt is a finite

field element

5: for i from 1 to t do

6: li(x) =
t

∏
m=1
m̸=i

x−xm
xi−xm

7: end for

8: return ((xt ,yt),
t
∑

i=1
yili)

Figure 5.8

S takes over the interface and internally simulates both FNIZK and F P
CRS. It relays all

messages to and from these two simulated functionalities without any modification. The

only way in which S interacts with the internals of the functionalities is this: When the

simulated F P
CRS is initialised (Fig. 5.1, l. 1), S extracts and stores mpk and msk. // Note that

the last action makes the simulation of F P
CRS non-black-box.

1: Initialisation:

2: drained← (0, . . . ,0
⌈|P |/B⌉

) // 1 entry for each possible batch

3: S relays all messages between internal A and corrupted parties, which is accomplished

with the help of F B,n,t
vote (c.f. Fig 5.7, l. 1)

4: if corrupted party P sends (VOTE,r,⟨cs
k,Pk⟩k∈[n]) to GP

VoteBox and receives reply (OK)

then

5: intercept reply (OK)

6: send (VOTED, r, ⟨Pk⟩k∈[n]) to F B,n,t
vote and expect reply (OK)

7: if this vote completes the j-th batch then

8: assign number of corrupted decryptors in j-th batch to drained j

9: end if

10: skP← KEYGEN(msk,P)

11: vP← RECONSTRUCT(DEC(skP,c1), . . . ,DEC(skP,ct))

Simulator S – all messages by F B,n,t
vote , unless otherwise noted
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12: deliver intercepted reply

13: else if corrupted party P sends (BATCHSHARE, j,S) to GP
VoteBox and receives reply (OK)

then

14: intercept reply (OK)

15: send (DRAINED, j,P) to F B,n,t
vote and expect reply (OK) // If we receive

(GETMALICIOUSVOTES, j) instead of (OK) after sending the DRAINED message,

serve GETMALICIOUSVOTES first (l. 29) and then go back to expecting reply (OK)

16: deliver intercepted reply

17: end if

18: On (GETDECRYPTORS, P):

19: send (GETDECRYPTORS) to GP
VoteBox as P and forward reply to F B,n,t

vote

20: On (VOTED, P, ⟨Pk⟩k∈[n]):

21: for k from 1 to n do

22: ck← ENC(mpk,Pk,0)

23: end for

24: for the rest of the execution, when receiving (VERIFYVOTE, P, ⟨ck,Pk⟩k∈[n])
addressed to FNIZK, do not forward it to FNIZK but reply (OK) directly

25: if this vote completes the j-th batch then

26: assign number of corrupted decryptors in j-th batch to drained j

27: end if

28: send (VOTE, r, ⟨cs
k,Pk⟩k∈[n]) to GP

VoteBox as P

29: On (GETMALICIOUSVOTES, j):

30: send (READ) to GP
VoteBox and keep votes from reply

31: calculate the j-th batch B j

32: reply with sum of votes vP of all corrupted voters in B j

33: On (BATCHSHARE, P, j):

34: if all voters of the j-th batch are corrupted then

35: execute ll. 30-31 and 35-37 of Fig. 5.6 as P // copy actions of Π
B,n,t
vote

36: send (BATCHSHARE, j,S) to GP
VoteBox as P // use S as calculated in l. 35

37: end if

38: find index k of decryptor P in j-th batch
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39: drained j← drained j +1

40: if drained j < t then

41: sP, j
$← RSSS // RSSS is the finite field of Shamir’s Secret Sharing

42: S← (k,sP, j)

43: for the rest of the execution, when receiving (VERIFYSHARE, P, j, S) addressed

to FNIZK, do not forward it to FNIZK but reply (OK) directly

44: send (BATCHSHARE, j,S) to GP
VoteBox as P

45: else if drained j = t then

46: send (GETHONESTVOTES, j) to F B,n,t
vote , add to the reply the sum of corrupted

votes in the j-th batch (as stored in l. 11) and assign result to Vj

47: send (READ) to GP
VoteBox, from the reply extract the t−1 aggregate shares of the

j-th batch and assign them to S1, . . . ,St−1

48: (St ,Q j)← findShare(S1, . . . ,St−1,k,Vj)

49: for the rest of the execution, when receiving (VERIFYSHARE, P, j, St)

addressed to FNIZK, do not forward it to FNIZK but reply (OK) directly

50: send (BATCHSHARE, j,St) to GP
VoteBox as P

51: else // drained j > t

52: S← (k,Q j(k))

53: for the rest of the execution, when receiving (VERIFYSHARE, P, j, S) addressed

to FNIZK, do not forward it to FNIZK but reply (OK) directly

54: send (BATCHSHARE, j,S) to GP
VoteBox as P

55: end if

Figure 5.9

The contents of messages that involve corrupted parties are fully controlled by the

internal, simulated adversary A . S only extracts some data from some of these mes-

sages (Fig. 5.9, l. 8) and relays all adversarial messages, faithfully mirroring the real

world (Fig. 5.9, l. 3). S also informs F B,n,t
vote whenever a corrupted player successfully

votes (Fig. 5.9, l. 6) or drains a certain batch (Fig. 5.9, l. 15), which is information

that F B,n,t
vote uses to decide when a batch is fully drained and therefore whether it can

disclose the aggregate votes for this share to S . As we will see later in the proof, this in-

formation is necessary to ensure indistinguishability and could anyway be obtained by

having F B,n,t
vote read GP

VoteBox directly. Therefore the way S handles corrupted players’

messages cannot provide a distinguishing advantage.
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In the real world, an honest party P that receives (INIT) sends (INIT) to F P
CRS, stores

the response and replies (DONE) to E . In the ideal world, F B,n,t
vote simply replies with

(DONE) to E directly. In both cases the response is identical.

In the real world, an honest party that receives (VOTE, v) first gets the decryptors

from GP
VoteBox and then shares its vote and encrypts each share for each decryptor,

proves correct ciphertext generation to FNIZK and submits the vote to GP
VoteBox. In the

ideal world, an honest party that receives (VOTE, v) allows S to generate and send the

vote to GP
VoteBox. S chooses decryptors by asking GP

VoteBox (Fig. 5.9, l. 19), as in the

real world. F B,n,t
vote will not trigger the halt of Fig. 5.7, l. 12, as (i) S gives F B,n,t

vote the

round number r that was generated by GP
VoteBox, which in turn always provides a fresh r

and (ii) S only sends a VOTED message (representing a vote by a malicious party) only

if GP
VoteBox replies (OK) to such a vote (Fig. 5.9, ll. 4, 6). GP

VoteBox in turn only replies

(OK) if the round of the submitted vote is the one it expects (Fig. 5.4, l. 20) which as

we saw is always fresh and (iii) the local variable votes of F B,n,t
vote only contains votes

where each has a unique round number, as it is initially empty and the only location

in which votes is changes is Fig. 5.7, l. 14, which, as we saw only appends votes

with a fresh round number. The same argument precludes the triggering of the halt of

Fig. 5.7, l. 17. Also the halt of Fig. 5.7, l. 13 will only trigger with negligible proba-

bility by virtue of Theorem 7. F B,n,t
vote then informs S that the checks were successful

and the vote may go through; it is the job of S to submit a valid vote to GP
VoteBox. Since

it doesn’t learn the plaintext vote, S then generates ciphertexts of 0 and forms the vote

that will be submitted to GP
VoteBox. It also takes a note to intercept all future verification

queries for this vote to FNIZK and respond with (OK), effectively faking proofs of cor-

rectness. It then sends the generated vote to GP
VoteBox. The round and decryptors of the

vote are generated exactly as in the real world, so they are perfectly indistinguishable.

The ciphertexts’ distribution is negligibly close to uniform independent of the input

to ENC due to the IND-CPA property of the encryption scheme so the ciphertexts are

indistinguishable. Lastly, in both worlds FNIZK responds (OK) to verification queries

on this vote. Therefore the effects caused by a (VOTE, v) message to an honest party

are indistinguishable between the two worlds.

In the real world, an honest party that receives (DRAINBATCH) reads all published

votes, deterministically chooses a completed batch for which it is a decryptor (if any),

sums the ciphertexts encrypted for itself, decrypts the sum to obtain one aggregate

share, proves correct decryption and sends the share to GP
VoteBox. In the ideal world,

when an honest party receives (DRAINBATCH), F B,n,t
vote is aware of the same votes that
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it would know in the real world, since F B,n,t
vote knows all honest votes by virtue of the

dummy parties relaying them, as well as all malicious votes’ rounds and decryptors

since S sends a VOTED message with such information every time a malicious player

successfully votes. F B,n,t
vote can therefore proceed to calculate the same batches and

deterministically find the same batch for the party to drain as in the real world, if any.

In case this drain is the t-th for this batch, F B,n,t
vote asks S for the sum of malicious votes

for this batch and updates the total vote accordingly. It finally informs S that a valid

share should be submitted to GP
VoteBox, a task that subsequently S carries out.

S produces the share in the following fashion. In case all voters of this batch are

malicious, they have produced all shares and ciphertexts correctly (otherwise their vote

would have been ignored by GP
VoteBox), so the ciphertexts correspond to the actual votes

of the malicious players. In this case S follows the same steps that an honest decryptor

would follow in the real world, therefore introducing no opportunity for distinguisha-

bility. In case however there are honest voters, S had faked their ciphertexts when they

had voted. In order to generate the needed share now, S exploits the fact that it is free

to decrypt the sum of the honest player’s ciphertexts to any share, as long as its x com-

ponent is equal to the index of the player in the batch’s decryptors and the fact that it

can intercept verification queries to FNIZK and respond that such fabricated shares are

valid. If the sum of total corrupted decryptors in this batch plus the number of honest

decryptors that have drained this batch (including the current one) is less than t (call

this number d), then the current drain will not contribute the t-th share for this batch,

therefore it will not add anything to any party’s existing knowledge. Also no party

knows the value that the aggregate share would have in the real world, since at least

one of the voters is honest and thus the shares that it encrypted for honest decryptors

are never published. Note also that there is at least one honest decryptor in this batch,

as S receives the current message, BATCHSHARE, by F B,n,t
vote only when an honest de-

cryptor drains a batch. Therefore S generates a random y value for the share, takes a

note to intercept and answer positively to verification queries on this share addressed

to FNIZK and sends the share to GP
VoteBox.

In case d = t, the share that will be created by S has to be such that reconstructing

the t shares returns an aggregate vote matching that of the real world. To that end, S
learns the sum of honest voters’ votes in this batch by F B,n,t

vote and adds the corrupted

voters’ votes in this batch to get the aggregate batch vote. Note that having F B,n,t
vote

disclose this sum does not leak any more information that what a malicious party in the

real world could deduce after the aggregate share currently under generation would be
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made public. It then uses the aggregate vote and the t−1 existing batch shares to solve

a linear equation and obtain the y value of the new share, such that reconstruction leads

to the correct value. It also calculates the polynomial that corresponds to the aggregate

shares for future use (Fig. 5.8). It then takes a note to intercept and answer positively to

verification queries on this share addressed to FNIZK and sends the share to GP
VoteBox.

In this way, S has managed to only change data that cannot be known by malicious

parties in the real world and keep all other data consistent between the two worlds.

In case d > t, S simply uses the previously determined polynomial to generate a

new aggregate share that can be combined with the existing ones to correctly recon-

struct the aggregate vote. It then takes a note to intercept and answer positively to

verification queries on this share addressed to FNIZK and sends the share to GP
VoteBox.

In the real world, an honest party that receives (READ) reads all aggregate shares

from GP
VoteBox and for each batch that has at least t such shares, the party reconstructs

the aggregate vote and adds it to the sum. Once done, it returns the total. In the ideal

world, F B,n,t
vote simply returns the results as it has stored them locally. These two values

necessarily coincide, since F B,n,t
vote only updates the results once for each batch, exactly

when the latter can be reconstructed for the first time. F B,n,t
vote knows the honest votes of

this batch, as it receives them from the honest dummy parties, and the correct malicious

votes are given honestly by S . Therefore the two worlds are indistinguishable.

5.7.1 Public Verifiability

We here note that in no part of the security proof did we put any specific bounds on

the number of corrupted players except, in the interests of privacy, to require that no

set of decryptors contained t or more malicious players, a property enforced by F B,n,t
vote

(Fig. 5.7, l. 13). The indistinguishability argument would work even if this property

were not enforced, allowing for a truly arbitrary number of corruptions. Furthermore,

by simple inspection of F B,n,t
vote , we can see that honest votes are counted correctly once

in an opened batch, irrespective of the number of corrupted parties. This means that

our construction enjoys public verifiability, i.e. it has the property that, informally, any

observer (whether it participated in the process or not) can check that the votes of other

parties that belong to fully opened batches have not been ignored or counted wrongly.

264



5.8 Recommended Parameters

Theorem 7 provides a valuable result regarding privacy in the asymptotic case, i.e.

as n increases to infinity. In practice though it is useful to calculate the probability

of a bad event – namely that a uniformly random set of decryptors has t or more

malicious parties, in which case they would be able to reconstruct the corresponding

vote directly, i.e. without waiting for the completion of a batch, and thus break privacy

– for specific values of the system parameters n, t, s and number of total players |P |.
In particular, when choosing a uniformly random n-sized subset of P , the probability

of obtaining a decryptor set with at least t malicious parties is given by the expression

P[bad event] =

min(s,n)
∑
i=t

(s
i)(
|P |−s
n−i )

(|P |n )
and the probability of one or more bad events occurring

throughout an entire execution is upper bounded by ⌈ |P |B ⌉Pr[bad event]. We visualised

the value of this probability for various values of the parameters when |P | = 10000

(Fig. 5.10)1. We also determined that the bad event only happens one or more times

throughout an execution with probability less than 0.001 for |P | ≥ 8200, n = ⌊ |P |100⌋,
s= ⌊ |P |4 ⌋ and t = ⌊n

2⌋. The provided code can be used to plot and calculate exactly these

probabilities for an expected number of users in order to choose suitable parameters.

Figure 5.10: Visualisation of probabilities of bad event for |P | = 10000 and various

parameter values

Regarding the batch size B, we recommend a value of 11, which is the size of
1https://gitlab.com/orfeasLitos/democratic-decision-making-parameters
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the anonymity set of each Monero [168] transaction2. This recommendation should

however be taken with some reservation, as a higher value may be needed due to the

increased privacy requirements of votes as opposed to coins, or a lower value may be

preferred if batch completion is too slow. Experimentation with a realistic implemen-

tation would be needed to specify the best value for B, if any.

5.9 Future Work

A number of directions for further exploration are discussed next. One important en-

hancement to the scheme would be to allow for multiple concurrent votes on indepen-

dent topics to be cast. This can be currently done by running multiple independent

instantiations of the protocol simultaneously, but would be inefficient and not neces-

sarily secure, given the standalone nature of our security proofs. To achieve this im-

provement, a way to extend the additive-homomorphic properties of the secret sharing

and the encrpytion schemes from a single, scalar integer to a vector of integers would

be needed. A simple trick would be to multiply the vote of each topic with an increas-

ing power of 2, such that each topic has enough bits between its power of 2 and that of

the next topic to represent all practically plausible results, and add the votes together

to form a single, albeit longer, integer. In parallel, lifting the limitation of having to

vote for all topics at once would be of interest.

Two further goals regarding the number and availability of players are firstly allow-

ing dynamic participation, i.e. not requiring the set of all players to be known from the

onset of the protocol – which, among others, needs a method to eliminate the initialisa-

tion phase – and secondly allowing participants to vote again in case their batch is not

drained by at least t decryptors after a set amount of time (invalidating their old vote in

the process), thus further enhancing liveness. Achieving these two targets while main-

taining good performance properties may also require employing a reputation system

that rewards well-behaving, available parties and punishes misbehaving ones.

Furthermore, the current protocol could be ameliorated by making the security

model more robust. There are two such directions: On the one hand dynamic corrup-

tions could be permitted, which would likely need to make the order of votes and/or

the corresponding sets of decryptors less predictable. On the other hand, proving secu-

rity in a framework that supports composition, such as Universal Composition [11] or

Constructive Cryptorgraphy [169], would enable composing this protocol with other,

2https://www.getmonero.org/resources/moneropedia/ring-size.html
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independent protocols that either run concurrently in the same machines or use our

protocol as a subroutine.

5.10 Conclusion

In this chapter we formally defined and analysed the privacy and timely progress of

a novel decentralised voting scheme. We leveraged a variety of underlying primitives

to create a protocol that enables a number of parties to express their opinion on a

particular subject while maintaining their privacy within an anonymity set of known

size. Votes are revealed in batches that only disclose a single number, the votes’ sum.

Our simulations showed that tuning the parameters allows for a variety of tradeoffs

between, among others, the velocity with which vote batches are revealed and the

size of the anonymity sets. Our scheme may be extended to incorporate a variety of

features, such as parallel voting of multiple subjects and an unbounded number of

players.

267





Chapter 6

Conclusion

The present thesis touches upon a number of topics relating to blockchains and decen-

tralised applications through the lens of cryptography. In particular in Chapter 2 we

analyse the quality of content curation employed in the decentralised social network

Steemit, in Chapter 3 we model and prove the security of the lightning network, in

Chapter 4 we construct and prove the security of a novel protocol for building virtual

channels on Bitcoin and finally in Chapter 5 we construct and prove secure a new pro-

tocol that enables private, timely and decentralised aggregation of opinions of social

network users.
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