46 research outputs found

    Quantifying the Impact of Cellular Vehicle-to-Everything (C-V2X) on Transportation System Efficiency, Energy and Environment

    Get PDF
    69A43551747123As communication technology develops at a rapid pace, connected vehicles (CVs) can potentially enhance vehicle safety while reducing energy consumption and emissions via data sharing. Many researchers have attempted to quantify the impacts of such CV applications and cellular vehicle-to-everything (C-V2X) communication. Highly efficient information interchange in a CV environment can provide timely data to enhance the transportation system\u2019s capacity, and it can support applications that improve vehicle safety and minimize negative impacts on the environment. This study summarizes existing literature on the safety, mobility, and environmental impacts of CV applications; gaps in current CV research; and recommended directions for future CV research. The study investigates a C-V2X eco-routing application that considers the performance of the C-V2X communication technology (mainly packet loss). The performance of the C-V2X communication is dependent on the vehicular traffic density, which is affected by traffic mobility patterns and vehicle routing strategies. As a case study of C-V2X applications, we developed an energy-efficient dynamic routing application using C-V2X Vehicle-to-Infrastructure (V2I) communication technology. Specifically, we developed a Connected Energy-Efficient Dynamic Routing (C-EEDR) application and used it in an integrated vehicular traffic and communication simulator (INTEGRATION). The results demonstrate that the C-EEDR application achieves fuel savings of up to 16.6% and 14.7% in the IDEAL and C-V2X communication cases, respectively, for a peak hour demand on the downtown Los Angeles network considering a 50% level of market penetration of connected vehicles

    Utilizing Simulated Vehicle Trajectory Data from Connected Vehicles to Characterize Performance Measures on an Arterial After an Impactful Incident

    Get PDF
    Traffic incidents are unforeseen events known to affect traffic flow because they reduce the capacity of an arterial corridor segment and normally generate a temporary bottleneck. Identification of retiming requirements to enhance traffic signal operations when an incident occurs depends on operations-oriented traffic signal performance measurements. When effective and real-time traffic signal performance metrics are employed at traffic control centers, delays, fuel use, and air pollution may all be decreased. The majority of currently available traffic signal performance evaluations are based on high-resolution traffic signal controller event data, which gives data on an intersection-by-intersection basis but requires a substantial upfront expenditure. The necessary detecting and communication equipment also involves costly and periodic maintenance. Additionally, the full manifestation of connected vehicles (CVs) is fast approaching with efforts in place to accelerate the adaptation of CVs and their infrastructures. CV technologies have enormous potential to improve traffic mobility and safety. CVs can provide abundant traffic data that is not otherwise captured by roadway detectors or other methods of traffic data collection. Since the observation is independent of any space restrictions and not impacted by queue discharge and buildup, CV data offers more comprehensive and reliable data that can be used to estimate various traffic signal performance measures. This thesis proposes a conceptual CV simulation framework intended to ascertain the effectiveness of CV trajectory-based measures in characterizing an arterial corridor incident, such as a vehicle crash. Using a four-intersection corridor with different signal timing plans, a microscopic simulation model was created in Simulation of Urban Mobility (SUMO), Vehicles in Network Simulation (Veins) and Objective Modular Network Testbed in C++ (OMNeT++) platforms. Furthermore, an algorithm for CVs that defines, detects and disseminates a vehicle crash incident to other vehicles and a roadside unit (RSU) was developed. In the thesis, it is demonstrated how visual performance metrics with CV data may be used to identify an incident. This thesis proposes that traffic signal performance metrics, such as progression quality, split failure, platoon ratios, and safety surrogate measures (SSMs), may be generated using CV trajectory data. The results show that the recommended approaches with access to CV trajectory data would help both performance assessment and operation of traffic control systems. Unlike the current state of the practice (fixed detection technology), the developed conceptual framework can detect incidents that are not captured by intersection-vicinity-limited detectors while requiring immediate attention

    Pay for Intersection Priority: A Free Market Mechanism for Connected Vehicles

    Full text link
    The rapid development and deployment of vehicle technologies offer opportunities to re-think the way traffic is managed. This paper capitalizes on vehicle connectivity and proposes an economic instrument and corresponding cooperative framework for allocating priority at intersections. The framework is compatible with a variety of existing intersection control approaches. Similar to free markets, our framework allows vehicles to trade their time based on their (disclosed) value of time. We design the framework based on transferable utility games, where winners (time buyers) pay losers (time sellers) in each game. We conduct simulation experiments of both isolated intersections and an arterial setting. The results show that the proposed approach benefits the majority of users when compared to other mechanisms both ones that employ an economic instrument and ones that do not. We also show that it drives travelers to estimate their value of time correctly, and it naturally dissuades travelers from attempting to cheat

    System-level Eco-driving (SLED): Algorithms for Connected and Autonomous Vehicles

    Get PDF
    One of the main reasons for increasing carbon emissions by the transportation sector is the frequent congestion caused in a traffic network. Congestion in transportation occurs when demand for commuting resources exceeds their capacity and with the increasing use of road vehicles, congestion and thereby emissions will continue to rise if proper actions are not taken. Adoption of intelligent transportation systems like autonomous vehicle technology can help in increasing the efficiency of transportation in terms of time, fuel and carbon footprint. This research proposes a System Level Eco-Driving (SLED) algorithm and compares the results, produced by performing microscopic simulations, with conventional driving and the coordination heuristic (COORD) algorithm. The SLED algorithm is designed based on shortcomings and observations of the COORD algorithm to improve the traffic network efficiency. In the SLED strategy, a trailing autonomous vehicle would only request coordination if it is within a set distance from the preceding autonomous vehicle and coordination requests will be evaluated based on their estimated system level emissions impact. Additionally, the human-driven vehicles will not be allowed to change lanes. Average CO2 emissions per vehicle for SLED showed improvements ranging from 0% to 5% compared to COORD. Additionally, the threshold limit to surpass the conventional driving behavior CO2 emissions at 900 vehicles per hour density reduced to 30% using SLED as compared to 40% using the COORD algorithm. Average wait time per vehicle for the SLED algorithm at 1200 vehicles per hour density increased by one to six seconds as compared to the COORD strategy although reduced up to thirty seconds of wait time compared to the conventional driving behavior. This finding can be helpful for policy makers to switch the algorithms based on the requirement i.e. opt for the SLED algorithm if reducing emissions has a higher priority compared to wait and travel time while opt for the COORD algorithm if reducing wait and travel time has a higher priority compared to emissions

    Optimal Trajectory Planning Algorithm for Connected and Autonomous Vehicles towards Uncertainty of Actuated Traffic Signals

    Get PDF
    69A43551747123This report introduces a robust green light optimal speed advisory (GLOSA) system for fixed and actuated traffic signals which considers a probability distribution. These distributions represent the domain of possible switching times from the signal phasing and timing (SPaT) messages. The system finds the least-cost (minimum fuel consumption) vehicle trajectory using a computationally efficient A* algorithm incorporated within a dynamic programming (DP) procedure to minimize the vehicle\u2019s total fuel consumption. Constraints are introduced to ensure that vehicles do not collide with other vehicles, run red indications, or exceed a maximum vehicular jerk for passenger comfort. Results of simulation scenarios are evaluated against empirical comparable trajectories of uninformed drivers to compute fuel consumption savings. The proposed approach produced significant fuel savings compared to an uninformed driver behavior, amounting to 37% on average for deterministic SPaT and 30% for stochastic SPaT data. A sensitivity analysis was performed to understand how the degree of uncertainty in SPaT predictions affects the optimal trajectory\u2019s fuel consumption. The results present the required levels of confidence in these predictions to achieve savings in fuel consumption. Specifically, the study demonstrates that the proposed system can be within 85% of the maximum savings if the timing error is (\ub13.3 seconds) at a 95% confidence level. Results also emphasize the importance of more reliable SPaT predictions as the time to green decreases relative to the time the vehicle is expected to reach the intersection given its current speed

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Explaining international IT application leaderhip

    Get PDF

    Unlocking Sustainability with Visualizations: Driving the Driven through the Whys and Hows

    Get PDF
    Visualizations have been broadly employed to help individuals understand complex environmental issues and encourage sustainable behaviors. However, sustainability knowledge only sometimes transpires to actual green practices. In this study, we explain the effects of post-trip visualized storytelling on eco-driving behaviors. We conducted a laboratory experiment involving eye-tracking and driving simulation. This study contributes to the literature by unraveling the impact of visualized narratives on behaviors and demonstrating eco-driving behaviors in multiple manifestations

    Harnessing Big Data for Characterizing Driving Volatility in Instantaneous Driving Decisions – Implications for Intelligent Transportation Systems

    Get PDF
    This dissertation focuses on combining connected vehicles data, naturalistic driving sensor and telematics data, and traditional transportation data to prospect opportunities for engineering smart and proactive transportation systems.The key idea behind the dissertation is to understand (and where possible reduce) “driving volatility” in instantaneous driving decisions and increase driving and locational stability. As a new measure of micro driving behaviors, the concept of “driving volatility” captures the extent of variations in driving, especially hard accelerations/braking, jerky maneuvers, and frequent switching between different driving regimes. The key motivation behind analyzing driving volatility is to help predict what drivers will do in the short term. Consequently, this dissertation develops a “volatility matrix” which takes a systems approach to operationalizing driving volatility at different levels, trip-based volatility, location-based volatility, event-based volatility, and driver-based volatility. At the trip-level, the dynamics of driving regimes extracted from Basic Safety Messages transmitted between connected vehicles are analyzed at a microscopic level, and where the interactions between microscopic driving decisions and ecosystem of mapped local traffic states in close proximity surrounding the host vehicle are characterized. Another new idea relates to extending driving volatility to specific network locations, termed as “location-based volatility”. A new methodology is proposed for combining emerging connected vehicles data with traditional transportation data (crash, traffic, road geometrics data, etc.) to identify roadway locations where traffic crashes are waiting to happen. The idea of event-based and driver-based volatility introduces the notion that volatility in longitudinal and lateral directions prior to involvement in safety critical events (crashes/near-crashes) can be a leading indicator of proactive safety.Overall, by studying driving volatility from different lenses, the dissertation contributes to the scientific analysis of real-world connected vehicles data, and to generate actionable knowledge relevant to the design of smart and intelligent transportation systems. The concept of driving volatility matrix provides a systems framework for characterizing the health of three fundamental elements of a transportation system: health of driver, environment, and the vehicle. The implications of the findings and potential applications to proactive network level screening, customized driver assist and control systems, driving performance monitoring are discussed in detail

    Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

    Get PDF
    The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the FutureDas 4. Symposium zum Management zukünftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl für Verkehrsprozessautomatisierung (VPA) an der Fakultät Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthält einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte Mobilitätssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. Darüber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Futur
    corecore