5 research outputs found

    Indeterminacy-aware prediction model for authentication in IoT.

    Get PDF
    The Internet of Things (IoT) has opened a new chapter in data access. It has brought obvious opportunities as well as major security and privacy challenges. Access control is one of the challenges in IoT. This holds true as the existing, conventional access control paradigms do not fit into IoT, thus access control requires more investigation and remains an open issue. IoT has a number of inherent characteristics, including scalability, heterogeneity and dynamism, which hinder access control. While most of the impact of these characteristics have been well studied in the literature, we highlighted “indeterminacy” in authentication as a neglected research issue. This work stresses that an indeterminacy-resilient model for IoT authentication is missing from the literature. According to our findings, indeterminacy consists of at least two facets: “uncertainty” and “ambiguity”. As a result, various relevant theories were studied in this work. Our proposed framework is based on well-known machine learning models and Attribute-Based Access Control (ABAC). To implement and evaluate our framework, we first generate datasets, in which the location of the users is a main dataset attribute, with the aim to analyse the role of user mobility in the performance of the prediction models. Next, multiple classification algorithms were used with our datasets in order to build our best-fit prediction models. Our results suggest that our prediction models are able to determine the class of the authentication requests while considering both the uncertainty and ambiguity in the IoT system

    Preventing Capability Abuse through Systematic Analysis of Exposed Interface

    Full text link
    Connectivity and interoperability are becoming more and more critical in today’s software and cyber-physical systems. Different components of the system can better collaborate, enabling new innovation opportunities. However, to support connectivity and interoperability, systems and applications have to expose certain capabilities, which inevitably expands their attack surfaces and increases the risk of being abused. Due to the complexity of software systems and the heterogeneity of cyber-physical systems, it is challenging to secure their exposed interfaces and completely prevent abuses. To address the problems in a proactive manner, in this dissertation, we demonstrate that systematic studies of exposed interfaces and their usage in the real world, leveraging techniques such as program analysis, can reveal design-level, implementation-level, as well as configuration-level security issues, which can help with the development of defense solutions that effectively prevent capability abuse. This dissertation solves four problems in this space. First, we detect inconsistent security policy enforcement, a common implementation flaw. Focusing on the Android framework, we design and build a tool that compares permissions enforced on different code paths and identifies the paths enforcing weaker permissions. Second, we propose the Application Lifecycle Graph (ALG), a novel modeling approach to describing system-wide app lifecycle, to assist the detection of diehard behaviors that abuse lifecycle interfaces. We develop a lightweight runtime framework that utilizes ALG to realize fine-grained app lifecycle control. Third, we study real-world programmable logic controller programs for identifying insecure configurations that can be abused by adversaries to cause safety violations. Lastly, we conduct the first systematic security study on the usage of Unix domain sockets on Android, which reveals both implementation flaws and configuration weaknesses.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149960/1/yurushao_1.pd

    Establishing mandatory access control on Android OS

    Get PDF
    Common characteristic of all mobile operating systems for smart devices is an extensive middleware that provides a feature-rich API for the onboard sensors and user’s data (e.g., contacts). To effectively protect the device’s integrity, the user’s privacy, and to ensure non-interference between mutually distrusting apps, it is imperative that the middleware enforces rigid security and privacy policies. This thesis presents a line of work that integrates mandatory access control (MAC) mechanisms into the middleware of the popular, open source Android OS. While our early work established a basic understanding for the integration of enforcement hooks and targeted very specific use-cases, such as multi-persona phones, our most recent works adopt important lessons learned and design patterns from established MAC architectures on commodity systems and intertwine them with the particular security requirements of mobile OS architectures like Android. Our most recent work also complemented the Android IPC mechanism with provisioning of better provenance information on the origins of IPC communication. Such information is a crucial building block for any access control mechanism on Android. Lastly, this dissertation outlines further directions of ongoing and future research on access control on modern mobile operating systems.Gemeinsame Charakteristik aller modernen mobilen Betriebssysteme für sog. ”smart devices” ist eine umfangreiche Diensteschicht, die funktionsreiche Programmierschnittstellen zu der Gerätehardware sowie den Endbenutzerdaten (z.B. Adressbuch) bereitstellt. Um die Systemintegrität, die Privatsphäre des Endbenutzers, sowie die Abgrenzung sich gegenseitig nicht vertrauender Apps effektiv zu gewährleisten, ist es unabdingbar, dass diese Diensteschichten rigide Sicherheitspolitiken umsetzen. Diese Dissertation präsentiert mehrere Forschungsarbeiten, die “Mandatory Access Control” (MAC) in die Diensteschicht des weit verbreiteten Android Betriebssystems integrieren. Die ersten dieser Arbeiten schufen ein grundlegendes Verständnis für die Integration von Zugriffsmechanismen in das Android Betriebssystem und waren auf sehr spezielle Anwendungsszenarien ausgerichtet. Neuere Arbeiten haben hingegen wichtige Erkenntnisse und Designprinzipien etablierter MAC Architekturen auf herkömmlichen Betriebssystemen für Android adaptiert und mit den speziellen Sicherheitsanforderungen mobiler Systeme verflochten. Die letzte Arbeit in dieser Reihe hat zudem Androids IPC Mechanismus untersucht und dahingehend ergänzt, dass er bessere Informationen über den Ursprung von IPC Nachrichten bereitstellt. Diese Informationen sind fundamental für jedwede Art von Zugriffskontrolle auf Android. Zuletzt diskutiert diese Dissertation aktuelle und zukünftige Forschungsthemen für Zugriffskontrollen auf modernen, mobilen Endgeräten
    corecore