359 research outputs found

    A model structure on GCat

    Full text link
    We define a model structure on the category GCat of small categories with an action by a finite group G by lifting the Thomason model structure on Cat. We show there is a Quillen equivalence between GCat with this model structure and GTop with the standard model structure.Comment: 12 pages. Final version. Will appear in Proceedings for WIT (Women in Topology Workshop

    Rigidity in Equivariant Stable Homotopy Theory

    Get PDF
    For any finite group G, we show that the 2-local G-equivariant stable homotopy category, indexed on a complete G-universe, has a unique equivariant model in the sense of Quillen model categories. This means that the suspension functor, homotopy cofiber sequences and the stable Burnside category determine all "higher order structure" of the 2-local G-equivariant stable homotopy category, such as the equivariant homotopy types of function G-spaces. The theorem can be seen as an equivariant version of Schwede's rigidity theorem at the prime 2

    A Tight Upper Bound on the Number of Candidate Patterns

    Full text link
    In the context of mining for frequent patterns using the standard levelwise algorithm, the following question arises: given the current level and the current set of frequent patterns, what is the maximal number of candidate patterns that can be generated on the next level? We answer this question by providing a tight upper bound, derived from a combinatorial result from the sixties by Kruskal and Katona. Our result is useful to reduce the number of database scans

    Discovering correlated parameters in Semiconductor Manufacturing processes: a Data Mining approach

    Get PDF
    International audienceData mining tools are nowadays becoming more and more popular in the semiconductor manufacturing industry, and especially in yield-oriented enhancement techniques. This is because conventional approaches fail to extract hidden relationships between numerous complex process control parameters. In order to highlight correlations between such parameters, we propose in this paper a complete knowledge discovery in databases (KDD) model. The mining heart of the model uses a new method derived from association rules programming, and is based on two concepts: decision correlation rules and contingency vectors. The first concept results from a cross fertilization between correlation and decision rules. It enables relevant links to be highlighted between sets of values of a relation and the values of sets of targets belonging to the same relation. Decision correlation rules are built on the twofold basis of the chi-squared measure and of the support of the extracted values. Due to the very nature of the problem, levelwise algorithms only allow extraction of results with long execution times and huge memory occupation. To offset these two problems, we propose an algorithm based both on the lectic order and contingency vectors, an alternate representation of contingency tables. This algorithm is the basis of our KDD model software, called MineCor. An overall presentation of its other functions, of some significant experimental results, and of associated performances are provided and discussed

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)
    • …
    corecore