631,166 research outputs found

    Cluster Space Gradient Contour Tracking for Mobile Multi-robot Systems

    Get PDF
    Multi-robot systems have the potential to exceed the performance of many existing robotic systems by taking advantage of the cluster’s redundancy, coverage and flexibility. These unique characteristics of multi-robot systems allow them to perform tasks such as distributed sensing, gradient climbing, and collaborative work more effectively than any single robot system. The purpose of this research was to augment the existing cluster space control technique in order to demonstrate effective gradient-based functionality, specifically, that of tracking gradient contours of specified concentration levels. To do this, we needed first to estimate the direction of the gradient and/or contour based on the real-time measurements made by sensors on the distributed robots, and second, to steer the cluster in the appropriate direction. Successful simulation, characterization, and experimental testing with the developed testbed have validated this approach. The controller enabled the cluster to sense and follow a contour-based trajectory in a parameter field using both a kayak cluster formation and also the land based Pioneer robots. The positive results of this research demonstrate the robustness of the cluster space control while using the contour following technique and suggest the possibility of further expansion with field applications

    A Bootstrap Theory: the SEMAT Kernel Itself as Runnable Software

    Full text link
    The SEMAT kernel is a thoroughly thought generic framework for Software Engineering system development in practice. But one should be able to test its characteristics by means of a no less generic theory matching the SEMAT kernel. This paper claims that such a matching theory is attainable and describes its main principles. The conceptual starting point is the robustness of the Kernel alphas to variations in the nature of the software system, viz. to software automation, distribution and self-evolution. From these and from observed Kernel properties follows the proposed bootstrap principle: a software system theory should itself be a runnable software. Thus, the kernel alphas can be viewed as a top-level ontology, indeed the Essence of Software Engineering. Among the interesting consequences of this bootstrap theory, the observable system characteristics can now be formally tested. For instance, one can check the system completeness, viz. that software system modules fulfill each one of the system requirements.Comment: 8 pages; 2 figures; Preprint of paper accepted for GTSE'2014 Workshop, within ICSE'2014 Conferenc

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    Properties of Cooperatively Induced Phases in Sensing Models

    Full text link
    A large number of eukaryotic cells are able to directly detect external chemical gradients with great accuracy and the ultimate limit to their sensitivity has been a topic of debate for many years. Previous work has been done to understand many aspects of this process but little attention has been paid to the possibility of emergent sensing states. Here we examine how cooperation between sensors existing in a two dimensional network, as they do on the cell's surface, can both enhance and fundamentally alter the response of the cell to a spatially varying signal. We show that weakly interacting sensors linearly amplify the sensors response to an external gradient while a network of strongly interacting sensors form a collective non-linear response with two separate domains of active and inactive sensors forming what have called a "1/2-state" . In our analysis we examine the cell's ability to sense the direction of a signal and pay special attention to the substantially different behavior realized in the strongly interacting regime.Comment: 8 pages, 5 figure

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors
    corecore