50 research outputs found

    The impact of shadowing and the severity of fading on the first and second order statistics of the capacity of OSTBC MIMO Nakagami-lognormal channels

    Get PDF
    This article presents a thorough statistical analysis of the capacity of orthogonal space-time block coded (OSTBC) multiple-input multiple-output (MIMO) Nakagami- lognormal (NLN) channels. The NLN channel model allows to study the joint effects of fast fading and shadowing on the statistical properties of the channel capacity. We have derived exact analytical expressions for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the capacity of MIMO NLN channels. It is observed that an increase in the MIMO dimension or a decrease in the severity of fading results in an increase in the mean channel capacity, while the variance of the channel capacity decreases. On the other hand, an increase in the shadowing standard deviation increases the spread of the channel capacity, however the shadowing effect has no influence on the mean channel capacity. We have also presented approximation results for the statistical properties of the channel capacity, obtained using the Gauss-Hermite integration method. It is observed that approximation results not only reduce the complexity, but also have a very good fitting with the exact results. The presented results are very useful and general because they provide the flexibility to study the impact of shadowing on the channel capacity under different fading conditions. Moreover, the effects of severity of fading on the channel capacity can also be studied. The correctness of theoretical results is confirmed by simulations

    Vehicle-to-Vehicle Channel Modeling and Real Time Simulator Design

    Get PDF

    Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    Get PDF
    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included

    The impact of shadowing and the severity of fading on the first and second order statistics of the capacity of OSTBC MIMO Nakagami-lognormal channels

    Get PDF
    Published version of an article in Wireless Personal Communications (2011), 1-16. Also available from the publisher at http://dx.doi.org/10.1007/s11277-011-0275-xThis article presents a thorough statistical analysis of the capacity of orthogonal space-time block coded (OSTBC) multiple-input multiple-output (MIMO) Nakagami- lognormal (NLN) channels. The NLN channel model allows to study the joint effects of fast fading and shadowing on the statistical properties of the channel capacity. We have derived exact analytical expressions for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the capacity of MIMO NLN channels. It is observed that an increase in the MIMO dimension or a decrease in the severity of fading results in an increase in the mean channel capacity, while the variance of the channel capacity decreases. On the other hand, an increase in the shadowing standard deviation increases the spread of the channel capacity, however the shadowing effect has no influence on the mean channel capacity. We have also presented approximation results for the statistical properties of the channel capacity, obtained using the Gauss-Hermite integration method. It is observed that approximation results not only reduce the complexity, but also have a very good fitting with the exact results. The presented results are very useful and general because they provide the flexibility to study the impact of shadowing on the channel capacity under different fading conditions. Moreover, the effects of severity of fading on the channel capacity can also be studied. The correctness of theoretical results is confirmed by simulations

    Performance Evaluation of High-Frequency Mobile Satellite Communications

    Get PDF
    Communication satellites have a much longer propagation delay than terrestrial communication networks such as cellular or WiFi. In addition, as the carrier frequency moves up, mobile satellite communications show worse performances than the conventional fixed satellite communications. The mobile satellite service (MSS) has not been actively pursued with long latency at high-frequency bands for future applications. In this paper, the adverse impact of long propagation delay in the conventional satellite system is investigated with various user mobility and Doppler-shifted carrier frequency. The satellite network is modeled as a basic delayed feedback channel system and the communication performance is analyzed under delayed channel state information (CSI) for assessing the system feasibility in mobile conditions. The results of performance analysis are provided at high-frequency bands with high-speed user movement, specifically on the outage probability and the channel capacity exploiting three types of channel models: conventional land mobile satellite (LMS) channel models of E. Lutz and C. Loo, and Nakagami fading model. In the circumstance with various user speeds, system performances are evaluated with different propagation delays in the LMS channel models and for line-of-sight (LOS) components in the Nakagami fading. In addition, the conventional models are compared depending on different altitudes for geostationary orbit (GEO), medium earth orbit (MEO), and low earth orbit (LEO) satellites, as well as high-altitude platforms (HAP). © 2019 IEEE.1

    Level crossing rate of SC receiver over gamma shadowed Weibull multipath fading channel

    Get PDF
    U ovom radu je razmotren bežični telekomunikacijski sustav sa SC prijemnikom koji radi u prisustvu Weibull-ovog fedinga i Gamma sjenke. Utjecaj Weibull-ovog fedinga na primljeni signal se ogleda u promjeni anvelope signala, a utjecaj Gamma sjenke u promjeni snage izlaznog signala. SC prijemnik se koristi za smanjenje utjecaja fedinga i sjenke na karakteristike sustava. Izraz za srednji broj osnih presjeka izlaznog signala iz SC prijemnika je izveden u zatvorenom obliku. Dobiveni rezultati se mogu koristiti za izračunavanje prosječnog trajanja otkaza bežičnog sustava. Numerički rezultati su predstavljeni grafički, kako bi se prikazao utjecaj parametara fedinga i sjenke na karakteristike sustava.The wireless telecommunication system consisting of selection combining (SC) receiver which works in Gamma shadowed Weibull multiple-faded channel is discussed in this work. The received signal suffers Weibull small scale fading which leads in variation of the signal envelope and Gamma large scale fading which results in variation of the SC receiver output signal envelope power. SC receiver is utilized to abate the impact of Gamma large scale fading effects and Weibull small scale fading effects on system characteristics. The formula for average level crossing rate (LCR) of signal envelope at SC combiner output is performed in the closed shape. The result we get can be applied to calculate the average fade duration (AFD) of such wireless systems. The obtained solutions are plotted in a few graphs to point out the impact of Weibull fading envelope severity parameter and Gamma shadowing severity parameter on system features

    Development of a MATLAB Toolbox for Mobile Radio Channel Simulators

    Get PDF
    A profound knowledge of mobile radio channels is required for the development, evaluation, and also assessment at practical conditions of present and future mobile radio communication systems. The modelling, analysis, and simulation of mobile radio channels are important sub area since the initiation of mobile communications. In addition to that knowledge of channel behaviour in mobile radio communication is extensively recommended for the study of transmitter/receiver performances. Our intention in this master's thesis is to develop various kinds of mobile fading channel simulators using MATLAB and embed them into MATLB software as a toolbox. Implemented channel simulators were combined into a user-friendly Matlab toolbox from which users can easily select well-known channel models to test and to study the performance of mobile communication systems. The help file was developed based on HTML. It gives better support for the new users to work on the developed channel simulators, run the test procedures as well as parameter computation. The help file consistent with other supplementary programs like computation of PDF and CDF for different distributions, Rice simulation model, extended Suzuki process type I and II simulator etc. In addition to that each program consists with guidelines embedded with the source code. The help file web interfaces are listed in Appendix- 1.The toolbox can be integrated into the new release of Matlab software. The toolbox contains channel simulators for simulating non-stationary land mobile satellite channel, spatial shadowing processes, MIMO channels, multiple uncorrelated Rayleigh fading channels, mobile to mobile channel, frequency hopping channels etc. We developed set of test procedures, such as the autocorrelation function ACF, average duration of fades ADF, the probability density function PDF, and the level-crossing rate LCR etc., in order to test and to confirm the correctness of the implemented channel simulators. Proposed new algorithms to compute the model parameters of the channel simulators were also implemented in the toolbox to enable the parameterization of the channel simulators under specific propagation conditions. Finally, “how can a channel simulator be tested?” have been address in the thesis as a research question. It was based on the comparison of simulation results with the measured model or the reference model under different scenarios. In addition to that selection of the simulation time duration, sampling rate and size of the samples were considered. Developed test procedures were helped to assess the implemented channel simulators
    corecore