3 research outputs found

    Applying project-based learning to teach software analytics and best practices in data science

    Get PDF
    Due to recent industry needs, synergies between data science and software engineering are starting to be present in data science and engineering academic programs. Two synergies are: applying data science to manage the quality of the software (software analytics) and applying software engineering best practices in data science projects to ensure quality attributes such as maintainability and reproducibility. The lack of these synergies on academic programs have been argued to be an educational problem. Hence, it becomes necessary to explore how to teach software analytics and software engineering best practices in data science programs. In this context, we provide hands-on for conducting laboratories applying project-based learning in order to teach software analytics and software engineering best practices to data science students. We aim at improving the software engineering skills of data science students in order to produce software of higher quality by software analytics. We focus in two skills: following a process and software engineering best practices. We apply project-based learning as main teaching methodology to reach the intended outcomes. This teaching experience shows the introduction of project-based learning in a laboratory, where students applied data science and best software engineering practices to analyze and detect improvements in software quality. We carried out a case study in two academic semesters with 63 data science bachelor students. The students found the synergies of the project positive for their learning. In the project, they highlighted both utility of using a CRISP-DM data mining process and best software engineering practices like a software project structure convention applied to a data science project.This paper was partly funded by a teaching innovation project of ICE@UPC-BarcelonaTech (entitled ‘‘Audiovisual and digital material for data engineering, a teaching innovation project with open science’’), and the ‘‘Beatriz Galindo’’ Spanish Program BEA-GAL18/00064.Peer ReviewedPostprint (published version

    Time for Addressing Software Security Issues: Prediction Models and Impacting Factors

    Get PDF
    Finding and fixing software vulnerabilities have become a major struggle for most software development companies. While generally without alternative, such fixing efforts are a major cost factor, which is why companies have a vital interest in focusing their secure software development activities such that they obtain an optimal return on this investment. We investigate, in this paper, quantitatively the major factors that impact the time it takes to fix a given security issue based on data collected automatically within SAP’s secure development process, and we show how the issue fix time could be used to monitor the fixing process. We use three machine learning methods and evaluate their predictive power in predicting the time to fix issues. Interestingly, the models indicate that vulnerability type has less dominant impact on issue fix time than previously believed. The time it takes to fix an issue instead seems much more related to the component in which the potential vulnerability resides, the project related to the issue, the development groups that address the issue, and the closeness of the software release date. This indicates that the software structure, the fixing processes, and the development groups are the dominant factors that impact the time spent to address security issues. SAP can use the models to implement a continuous improvement of its secure software development process and to measure the impact of individual improvements. The development teams at SAP develop different types of software, adopt different internal development processes, use different programming languages and platforms, and are located in different cities and countries. Other organizations, may use the results—with precaution—and be learning organizations
    corecore