8,483 research outputs found

    Legal Judgement Prediction for UK Courts

    Get PDF
    Legal Judgement Prediction (LJP) is the task of automatically predicting the outcome of a court case given only the case document. During the last five years researchers have successfully attempted this task for the supreme courts of three jurisdictions: the European Union, France, and China. Motivation includes the many real world applications including: a prediction system that can be used at the judgement drafting stage, and the identification of the most important words and phrases within a judgement. The aim of our research was to build, for the first time, an LJP model for UK court cases. This required the creation of a labelled data set of UK court judgements and the subsequent application of machine learning models. We evaluated different feature representations and different algorithms. Our best performing model achieved: 69.05% accuracy and 69.02 F1 score. We demonstrate that LJP is a promising area of further research for UK courts by achieving high model performance and the ability to easily extract useful features

    Extraction of Keyphrases from Text: Evaluation of Four Algorithms

    Get PDF
    This report presents an empirical evaluation of four algorithms for automatically extracting keywords and keyphrases from documents. The four algorithms are compared using five different collections of documents. For each document, we have a target set of keyphrases, which were generated by hand. The target keyphrases were generated for human readers; they were not tailored for any of the four keyphrase extraction algorithms. Each of the algorithms was evaluated by the degree to which the algorithm’s keyphrases matched the manually generated keyphrases. The four algorithms were (1) the AutoSummarize feature in Microsoft’s Word 97, (2) an algorithm based on Eric Brill’s part-of-speech tagger, (3) the Summarize feature in Verity’s Search 97, and (4) NRC’s Extractor algorithm. For all five document collections, NRC’s Extractor yields the best match with the manually generated keyphrases

    SECaps: A Sequence Enhanced Capsule Model for Charge Prediction

    Full text link
    Automatic charge prediction aims to predict appropriate final charges according to the fact descriptions for a given criminal case. Automatic charge prediction plays a critical role in assisting judges and lawyers to improve the efficiency of legal decisions, and thus has received much attention. Nevertheless, most existing works on automatic charge prediction perform adequately on high-frequency charges but are not yet capable of predicting few-shot charges with limited cases. In this paper, we propose a Sequence Enhanced Capsule model, dubbed as SECaps model, to relieve this problem. Specifically, following the work of capsule networks, we propose the seq-caps layer, which considers sequence information and spatial information of legal texts simultaneously. Then we design a attention residual unit, which provides auxiliary information for charge prediction. In addition, our SECaps model introduces focal loss, which relieves the problem of imbalanced charges. Comparing the state-of-the-art methods, our SECaps model obtains 4.5% and 6.4% absolutely considerable improvements under Macro F1 in Criminal-S and Criminal-L respectively. The experimental results consistently demonstrate the superiorities and competitiveness of our proposed model.Comment: 13 pages, 3figures, 5 table

    Accelerating Innovation Through Analogy Mining

    Full text link
    The availability of large idea repositories (e.g., the U.S. patent database) could significantly accelerate innovation and discovery by providing people with inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for either human or automated methods. Previous approaches include costly hand-created databases that have high relational structure (e.g., predicate calculus representations) but are very sparse. Simpler machine-learning/information-retrieval similarity metrics can scale to large, natural-language datasets, but struggle to account for structural similarity, which is central to analogy. In this paper we explore the viability and value of learning simpler structural representations, specifically, "problem schemas", which specify the purpose of a product and the mechanisms by which it achieves that purpose. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional information-retrieval methods. In an ideation experiment, analogies retrieved by our models significantly increased people's likelihood of generating creative ideas compared to analogies retrieved by traditional methods. Our results suggest a promising approach to enabling computational analogy at scale is to learn and leverage weaker structural representations.Comment: KDD 201

    Findings from a literature review

    Get PDF
    Mentzingen, H., António, N., & Bação, F. (2023). Automation of legal precedents retrieval: Findings from a literature review. International Journal of Intelligent Systems, 2023, 1-22. [6660983]. https://doi.org/10.21203/rs.3.rs-2292464/v1, https://doi.org/10.21203/rs.3.rs-2292464/v2, https://doi.org/10.1155/2023/6660983---This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project-UIDB/04152/2020-Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Judges frequently rely their reasoning on precedents. Courts must preserve uniformity in decisions while, depending on the legal system, previous cases compel rulings. The search for methods to accurately identify similar previous cases is not new and has been a vital input, for example, to case-based reasoning (CBR) methodologies. This literature review offers a comprehensive analysis of the advancements in automating the identification of legal precedents, primarily focusing on the paradigm shift from manual knowledge engineering to the incorporation of Artificial Intelligence (AI) technologies such as natural language processing (NLP) and machine learning (ML). While multiple approaches harnessing NLP and ML show promise, none has emerged as definitively superior, and further validation through statistically significant samples and expert-provided ground truth is imperative. Additionally, this review employs text-mining techniques to streamline the survey process, providing an accurate and holistic view of the current research landscape. By delineating extant research gaps and suggesting avenues for future exploration, this review serves as both a summation and a call for more targeted, empirical investigations.publishersversionpublishe
    corecore