3 research outputs found

    Arithmetic of Ï„\tau-adic Expansions for Lightweight Koblitz Curve Cryptography

    Get PDF
    Koblitz curves allow very efficient elliptic curve cryptography. The reason is that one can trade expensive point doublings to cheap Frobenius endomorphisms by representing the scalar as a tau-adic expansion. Typically elliptic curve cryptosystems, such as ECDSA, also require the scalar as an integer. This results in a need for conversions between integers and the tau-adic domain, which are costly and hinder the use of Koblitz curves on very constrained devices, such as RFID tags, wireless sensors, or certain applications of the Internet of things. We provide solutions to this problem by showing how complete cryptographic processes, such as ECDSA signing, can be completed in the tau-adic domain with very few resources. This allows outsourcing conversions to a more powerful party. We provide several algorithms for performing arithmetic operations in the tau-adic domain. In particular, we introduce a new representation allowing more efficient and secure computations compared to the algorithms available in the preliminary version of this work from CARDIS 2014. We also provide datapath extensions with different speed and side-channel resistance properties that require areas from less than one hundred to a few hundred gate equivalents on 0.13-mu m CMOS. These extensions are applicable for all Koblitz curves.Peer reviewe

    Key Randomization Countermeasures to Power Analysis Attacks on Elliptic Curve Cryptosystems

    Get PDF
    It is essential to secure the implementation of cryptosystems in embedded devices agains side-channel attacks. Namely, in order to resist differential (DPA) attacks, randomization techniques should be employed to decorrelate the data processed by the device from secret key parts resulting in the value of this data. Among the countermeasures that appeared in the literature were those that resulted in a random representation of the key known as the binary signed digit representation (BSD). We have discovered some interesting properties related to the number of possible BSD representations for an integer and we have proposed a different randomization algorithm. We have also carried our study to the Ï„\tau-adic representation of integers which is employed in elliptic curve cryptosystems (ECCs) using Koblitz curves. We have then dealt with another randomization countermeasure which is based on randomly splitting the key. We have investigated the secure employment of this countermeasure in the context of ECCs

    Securing the Internet with digital signatures

    Get PDF
    The security and reliability of the Internet are essential for many functions of a modern society. Currently, the Internet lacks efficient network level security solutions and is vulnerable to various attacks, especially to distributed denial-of-service attacks. Traditional end-to-end security solutions such as IPSec only protect the communication end-points and are not effective if the underlying network infrastructure is attacked and paralyzed. This thesis describes and evaluates Packet Level Authentication (PLA), which is a novel method to secure the network infrastructure and provide availability with public key digital signatures. PLA allows any node in the network to verify independently the authenticity and integrity of every received packet, without previously established relationships with the sender or intermediate nodes that have handled the packet. As a result, various attacks against the network and its users can be more easily detected and mitigated, before they can cause significant damage or disturbance. PLA is compatible with the existing Internet infrastructure, and can be used with complementary end-to-end security solutions, such as IPSec and HIP. While PLA was originally designed for securing current IP networks, it is also suitable for securing future data-oriented networking approaches. PLA has been designed to scale from lightweight wireless devices to Internet core network, which is a challenge since public key cryptography operations are very resource intensive. Nevertheless, this work shows that digital signature algorithms and their hardware implementations developed for PLA are scalable to fast core network routers. Furthermore, the additional energy consumption of cryptographic operations is significantly lower than the energy cost of wireless transmission, making PLA feasible for lightweight wireless devices. Digital signature algorithms used by PLA also offer small key and signature sizes and therefore PLA's bandwidth overhead is relatively low. Strong security mechanisms offered by PLA can also be utilized for various other tasks. This work investigates how PLA can be utilized for controlling incoming connections, secure user authentication and billing, and for providing a strong accountability without an extensive data retention by network service providers
    corecore