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Abstract

It is essential to secure the implementation of cryptosystems in embedded devices

agains side-channel attacks. Namely, in order to resist differential (DPA) attacks, ran-

domization techniques should be employed to decorrelate the data processed by the device

from secret key parts resulting in the value of this data. Among the countermeasures that

appeared in the literature were those that resulted in a random representation of the key

known as the binary signed digit representation (BSD). We have discovered some inter-

esting properties related to the number of possible BSD representations for an integer and

we have proposed a different randomization algorithm. We have also carried our study

to the τ -adic representation of integers which is employed in elliptic curve cryptosystems

(ECCs) using Koblitz curves. We have then dealt with another randomization counter-

measure which is based on randomly splitting the key. We have investigated the secure

employment of this countermeasure in the context of ECCs.
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Chapter 1

Introduction

There appears to be an increasing trend towards adapting elliptic curve cryptography

[Mil86; Kob87] for different security purposes. A good illustration of this trend is the

announcement of suite B by the NSA [NSA] which is a set of cryptographic algorithms

that serves as an interoperable cryptographic base for both unclassified information and

most classified information. In suite B, elliptic curves recommended in [NIST] over 256-

bit prime modulus, which match the security of AES with 128-bit keys are sufficient

for protecting classified information up to the secret level. The 384-bit prime modulus

elliptic curves, matching AES with 192-bit keys are sufficient for the protection of top

secret information, though for the sake of interoperability, the 521-bit prime modulus

elliptic curves, matching 256-bit keys for AES, are used.

Elliptic curve cryptosystems (ECCs) are suitable for implementation on devices with

limited memory and computational capability such as smart cards and also with limited

power such as wireless handheld devices. This is due to the fact that elliptic curves over

large finite fields provide the same security level as other cryptosystems such as RSA for

much smaller key sizes.
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2 Introduction

However nowadays, the mathematical strength of the cryptosystem implemented

on such devices as smart cards and personal wireless devices is not enough to ensure

the security of the keys stored in them. It is becoming inevitable to check the re-

sistance of these devices against side-channel attacks. Side channels include execution

time [Koc96], power consumption [KJJ99; MDS99a; MDS99b], electromagnetic ema-

nations [QS01; AARR] and computational errors due to faults in hardware [BDL01].

For recent surveys on these attacks and their countermeasures, we refer the reader to

[Ava05; Osw05; Joy05; BCF06; Lan06].

Considering power analysis attacks, there are two main types that were presented by

Kocher et al. These are simple and differential power analysis attacks (referred to as SPA

and DPA respectively). Both of them are based on monitoring the power consumption of

a cryptographic token while executing an algorithm that manipulates the secret key. The

traces of the measured power are then analyzed to obtain significant information about

the key. In some cases the key can be totally compromised and in others the search space

of the key can be reduced to a computationally affordable size. In SPA, a single power

trace can reveal large features of the algorithm being executed such as the iterations of

the loop. Moreover, cryptosystem-specific operations such as point doubling and adding

in ECCs can be identified [Cor99]. In order to resist this SPA attack, the steps of the

algorithm need to be uniform across different executions.

On the other hand, even if the SPA attack does not apply, DPA attacks rely on

first collecting several power traces for executions of the algorithm using the same key.

Then, these traces are processed using various statistical tools to identify features of the

processed data (operands or memory address) at a specific instant of the cryptographic

algorithm, e.g., its Hamming weight or the number of toggled bits compared with another

data. Information about the processed data can directly lead to revealing information
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about the key parts that lead to processing this specific data at this specific instant.

Hence, DPA attacks are, in general, more powerful than the SPA attack. Randomization

of the data processed at some instant is essential in resisting this type of attacks.

Electromagnetic emanations present another powerful side channel since the infor-

mation is leaked from the device via more than one channel and is a function of space

as well as of time. In [AARR], Agrawal et al. presented both simple (SEMA) and dif-

ferential (DEMA) electromagnetic analysis attacks on smart cards and on a Palm pilot

in [RAA+03]. In [AARR], they conclude that software countermeasures rely on signal

information reduction, which is achieved by “randomization and/or frequent key refresh-

ing within the computation”, which agrees with the concept of resisting DPA attacks.

Therefore, in this thesis we include the attacks on both side channels under the acronyms

SPA and DPA, for simple and differential attacks, respectively. Also, in the thesis we

assume that, whenever random data is needed, this data is available in a secure fashion.

In other words, we assume that the random—or pseudorandom— number generator is

not vulnerable to the described attacks.

Motivation

Various randomization techniques were proposed to protect the ellipitic curve scalar mul-

tiplication (ECSM), which is the core operation of ECCs, against DPA attacks. Among

them were those proposed by Oswald and Aigner in [OA01] and by Ha and Moon in

[HM02a]. Their approach is based on randomizing the number and the sequence of exe-

cution of operations in the scalar multiplication algorithm. This is achieved by inserting

a random decision in the process of building the representation of the scalar k. The algo-

rithms to which this randomization is applied were originally proposed to speed up the
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EC scalar multiplication by producing the non-adjacent form (NAF) of k, which contains

fewer nonzero signed bits than the binary representation. Hence, an important outcome

of these algorithms is a random binary signed digit (BSD) representation of k.

Although randomizing the BSD representation of the key alone is not considered a

countermeasure against DPA attacks [FMPV04], it was of at least mathematical interest

to us to analyse these randomization algorithms and to identify their similarities and

differences and the true randomness of the resulting BSD representation from each of

them. Then we embarked on studying and discovering some statistical properties of this

representation and we proposed a different randomization approach. We then carried

the randomization concept to a different representation of integers known as the τ -adic

representation which is employed in ECCs using Koblitz curves [Sol00]. Such curves were

recommended in [NIST] and their use can significantly increase the performance of ECCs.

key splitting is another key randomization technique that was proposed as a DPA

countermeasure [CJ01; CJ03; CQS03]. It is based on randomly splitting the key into

two parts such that each part is different in every ECSM execution. This approach is

a good candidate for a DPA countermeasure since the actual value of the key parts is

randomized, and, hence, resists different forms of DPA attacks, such as the address reuse

and operand reuse attacks. We studied the different forms of key splitting the key and

the possible evaluation techniques for each form.

Thesis organization

In Chapter 2, we present an overview of ECCs and the different algorithms employed to

carry the scalar multiplication operation. We also present a background on the SPA and

DPA attacks on this operation and the countermeasures that form the base of the work
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subsequently presented.

In Chapter 3, we provide a detailed analysis of the Oswald-Aigner (OA) and the Ha-

Moon (HM) randomization algorithms. We investigate the randomness of the recoded

keys of each of them i.e., whether or not each can produce all possible BSD representations

of an integer. We also present the complexity (average case) analysis of each algorithm

using both Markov chain model and grammatical specification method.

We subsequently present in Chapter 4 our answers to relevant questions concerning

the BSD representation of integers such as: What is the average number of BSD rep-

resentations of n bit integers? Can we find the exact number of representations for a

certain integer? Which n-bit integer has the maximum number of representations? We

prove that the maximum number of representations is a Fibonacci number, and provide

an alternate expression for that number. We also present a randomization algorithm that

scans the bits of the input integer starting from the most significant end unlike the OA

and HM algorithms.

We carry the HM randomization technique to the τ -adic representation of integers in

Chapter 5 where the input to the algorithm is a τ -adic NAF (τNAF). We discover the

τNAF that yields the maximum number of representation and prove that this number

is also a Fibonacci number. Thereafter, we study the average and exact number of

τ -adic representations of a τNAF. We also analyze the average-case complexity of the

randomization algorithm.

In Chapter 6, we analyze the DPA resistance of specific implementations of each key

splitting approach. We discuss the candidate SPA-resistant algorithms and compare the

resulting performance when combined with each form of key splitting. At the end of

the chapter, we discuss briefly countermeasures to DPA attacks on the ECDSA and the

ECMQV algorithms.
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In Chapter 7, we summarize our contribution and provide some interesting directions

for future work.

In Appendix A, we provide an extensive survey on SPA and DPA countermeasures

along with the computational cost of each one. We also reconcile the different types of

attacks and emphasize the conditions favoring their application, which is summarized in

the conclusion of that appendix.

The remaining appendices provide a background on the various analysis tools and

techniques we employed in our work.

Summary of Major Contributions

• Analysis of the randomness of the BSD representations resulting from the Oswald-

Aigner and Ha-Moon randomization algorithms as well as their average case com-

plexity.

• New properties of the number of BSD and τ -adic representations, such as the av-

erage and maximum number of representations and the patterns and values of the

integers or τNAFs having the maximum number of representations.

• New algorithms for generating a random representation and for counting the number

of possible representations.

• Secure deployment of key splitting schemes and the ECDSA and ECMQV algo-

rithms.



Chapter 2

Elliptic Curve Cryptosystems and

Side-Channel Attacks

In this chapter, we present an overview of elliptic curve cryptosystems (ECCs). The

core operation of ECCs is the elliptic curve scalar multiplication (ECSM). We briefly

summarize the different algorithms employed to carry this operation that would be useful

for the remainder of the thesis.

Thereafter, we give a background on how the original ECSM algorithms are suscep-

tible to side-channel analysis (SCA) attacks. The countermeasures to these attacks that

initiated the work in this thesis are briefly introduced. For a more detailed overview on

SCA attacks and their countermeasures, we refer the reader to Appendix A. The survey

presented by Avanzi [Ava05] was an inspiration to that appendix.

7



8 Elliptic Curve Cryptosystems and Side-Channel Attacks

2.1 Elliptic Curve Cryptosystems

Let K be a finite field and E be an elliptic curve (EC) over K defined by the following

Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where ai ∈ K and ∆ 6= 0, where ∆ is the discriminant of E and is defined in [HMV04,

Section 3.1].

Let L be an extension field of K. Then E(L) denotes the set of L-rational points

(x, y) on E, where (x, y) ∈ L × L and satisfy (2.1), together with the point at infinity

O. The addition of two points on the curve is performed using a chord-and-tangent rule.

E(L) and this addition operation form an abelian group where O is the identity.

The point addition operation consists of finite field operations carried in the under-

lying field K. In the remainder of this thesis, we denote the field inversion by I, the

multiplication by M , the squaring by S. The point addition is denoted by A. When the

two operands of the addition are the same point, the operation is referred to as point

doubling and is denoted by D.

2.1.1 Elliptic curves over prime fields

If K = Fp, where p > 3 is a prime, (2.1) can be simplified to1

E : y2 = x3 + ax+ b, (2.2)

where a and b ∈ Fp. The discriminant of this curve is ∆ = −16(4a3 +27b2). The negative

of a point P = (x, y) is −P = (x,−y) such that P + (−P ) = O.

1This simplification is generally applicable when the characteristic of K is not 2 or 3.
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The affine coordinate (A) representation of a point P = (x, y) can be replaced by

projective coordinates representations in order to render the point addition and doubling

operations less costly in terms of field operations. The following representations are the

best known

• standard (homogeneous) projective coordinates (P); the projective point (X : Y :

Z), Z 6= 0, corresponds to the affine point (X/Z, Y/Z), O corresponds to (0 : 1 : 0)

and the negative of (X : Y : Z) is (X : −Y : Z).

• Jacobian projective coordinates (J ); the projective point (X : Y : Z), Z 6= 0,

corresponds to the affine point (X/Z2, Y/Z3), O corresponds to (0 : 1 : 0) and the

negative of (X : Y : Z) is (X : −Y : Z).

• Chudnovsky coordinates (C); the Jacobian point (X : Y : Z) is represented as

(X : Y : Z : Z2 : Z3).

The number of field multiplications (M), squarings (S) and inversions (I) needed to

perform the point addition and doubling are summarized in Table 2.1. In that table, it is

assumed that a = −3 in (2.2). Theorem 3.15 of [HMV04] confirms that this assumption

is without much loss of generality since about half of all isomorphism classes of elliptic

curves over Fp have a representative with a = −3. Therefore, multiplication by 3 or

multiplication and division by any power of 2 are not taken into account. We refer the

reader to Section 3.2 of [HMV04] for the point addition and doubling formulas in the

aforementioned coordinate systems.

It is estimated that the computational cost of the inversion and the squaring opera-

tions compared to the multiplication is 1I = 80M and 1S = 0.8M [HMV04]. Therefore,

the use of Jacobian coordinates for point doubling and mixed coordinate for point ad-

dition is recommended [CMO98], as will be further explained later. Note that the use
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Table 2.1: Field operations count for point addition and point doubling on E over Fp

Doubling General addition Mixed coordinates add.

2A → A 1I, 2M, 2S A+A → A 1I, 2M, 1S J +A → J 8M, 3S

2P → P 7M, 3S P + P → P 12M, 2S J + C → J 11M, 3S

2J → J 4M, 4S J + J → J 12M, 4S C +A → C 8M, 3S

2C → C 5M, 4S C + C → C 11M, 3S

of projective coordinates, especially the Chudnovsky coordinates, is at the expense of

storing more coordinates. The use of mixed coordinates will be further illustrated in

Section 2.1.3.

2.1.2 Elliptic curves over binary fields

If K = F2m , (2.1) can be simplified to

E : y2 + xy = x3 + ax2 + b, (2.3)

where a and b ∈ F2m . The discriminant of this curve is ∆ = b and the negative of a point

P = (x, y) is −P = (x, x+ y). Such a curve is known as non-supersingular.

Standard and Jacobian projective coordinates are used to represent points on this type

of curves in the same way as on the prime curves with the difference that the negative

of (X : Y : Z) is (X : X + Y : Z). Another possible representation of points is using the

López-Dahab (LD) projective coordinates where the projective point (X : Y : Z), Z 6= 0,

corresponds to the affine point (X/Z, Y/Z2), O corresponds to (1 : 0 : 0) and the negative

of (X : Y : Z) is (X : X + Y : Z).

The field operations count is summarized in Table 2.2. In that table, it is assumed

that a ∈ {0, 1}. Theorem 3.18(ii) of [HMV04] confirms that this restriction is without

much loss of generality since all isomorphism classes of elliptic curves over F2m have a
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representative with a ∈ {0, ν}, where ν ∈ F2m and Tr(ν) = 1 2. The cost of inversion is

assumed to be between I = 5M and I = 8M . Also, for most practical implementations,

the cost of squaring in F2m is negligible compared to multiplication and, hence, is not

taken into account.

Table 2.2: Field operations count for point addition and point doubling on E over F2m

Doubling General addition Mixed coordinates add.

2A → A 1I, 2M A+A → A 1I, 2M

2P → P 7M P + P → P 13M P +A → P 12M

2J → J 5M J + J → J 14M J +A → J 10M

2LD → LD 4M LD + LD → LD 14M LD +A → LD 8M

2.1.3 Elliptic Curve Scalar Multiplication (ECSM)

Scalar multiplication in the group of points of an elliptic curve is analogous to exponen-

tiation in the multiplicative group of integers modulo a fixed integer. Thus, it is the

fundamental operation in EC-based cryptographic systems. The scalar multiplication,

denoted kP , is the result of adding the point P to itself k times, where k is a positive

integer, that is

kP = P + P + · · ·+ P
︸ ︷︷ ︸

k copies

and −kP = k(−P ). u is said to be the order of P if u is the smallest integer such that

uP = O.

Let E be an elliptic curve defined over Fq. The order of a curve E over Fq is the

number of points in E(Fq) and is denoted by #E(Fq). From Hasse’s theorem [HMV04,

Theorem 3.7], #E(Fq) ≈ q. In this thesis, we focus on elliptic curves defined in the

2Tr : F2m → F2 is the trace function on F2m defined by Tr(c) = c + c2 + c22

+ · · ·+ c2m−1

.



12 Elliptic Curve Cryptosystems and Side-Channel Attacks

standards such as those defined in [NIST]. The order of these curves is characterized by

the form #E(Fq) = h · u, where u is prime and h, the cofactor, is small. That is, h = 1

for the curves defined over prime fields and h = 2 or 4 for curves defined over binary

fields including Koblitz curves (cf. Section 2.1.4). Hence, u is the order of the points in

the main subgroup.

In many applications, the scalar k is a short-term (ephemeral) or long-term (private)

secret (key). From now on, we will always assume that k is a n-bit integer, where n is

the bit length of u, the order of the group of points of interest in an ECC. Also the point

P may be fixed (e.g., the base point of the ECC) or unknown a priori.

Let (kn−1, kn−2, . . . , k1, k0)2 be the binary representation of k, i.e., ki ∈ {0, 1} for

0 ≤ i < n− 1. Thus,

kP =

(
n−1∑

i=0

ki2
i

)

P

= 2(2(· · · 2(2(kn−1P ) + kn−2P ) + · · · ) + k1P ) + k0P (2.4)

= (kn−12
n−1P ) + · · · (k12P ) + (k0P ) (2.5)

Hence, kP can be computed using the straightforward double-and-add approach in n

iterations. In fact, there are two algorithms that can be used. Algorithm 2.1, which

corresponds to the expansion in (2.4), scans the bits of the scalar k from left to right, i.e.,

from the most significant bit to the least significant one. Algorithm 2.2, corresponding

to (2.5), scans the bits of k from right to left. These algorithms are analogous to the

square-and-multiply algorithms employed in exponentiation-based cryptosystems. These

algorithms are also known as the binary algorithms [Knu73, Section 4.6.3].
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Algorithm 2.1. Left-to-Right Double-and-

Add Algorithm

Input: k = (kn−1, . . . , k0)2 and P ∈ E(Fq).

Output: kP .

1. Q← O.

2. for i from n− 1 down to 0 do

2.1 Q← 2Q.

2.2 if (ki = 1) then

Q← Q+ P .

3. Return(Q).

Algorithm 2.2. Right-to-Left Double-and-

Add Algorithm

Input: k = (kn−1, . . . , k0)2 and P ∈ E(Fq).

Output: kP .

1. Q← O; R← P .

2. for i from 0 to n− 1 do

2.1 if (ki = 1) then

Q← Q+R.

2.2 R← 2R.

3. Return(Q).

The expected number of point addition (A) and point doubling (D) operations per-

formed in the binary algorithm (left-to-right or right-to-left) is

(n− 1) D +
n

2
A.

If affine coordinates are used, the field operation count is

2.5n S + 3n M + 1.5n I.

Algorithm 2.1 is usually preferred since one of the addition operands is the base point

P which is constant through the algorithm. This has the advantage of saving a register if P

is a fixed point known a priori. Moreover, it allows the use of mixed coordinates addition.

That is, when one of the operands to the addition operation is fixed, the Z-coordinate

of that operand is set to and remains 1, this reduces the number of field multiplications

needed to perform the point addition as illustrated in Table 2.1 and Table 2.2.

Hence if Q is stored in Jacobian coordinates and P in affine coordinates, Jacobian

coordinates can be used for doubling in Algorithm 2.1 and mixed Jacobian-affine for the
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addition. The field operation count is then

8n M + 5.5n S + (1 I + 3 M + 1 S),

where the last three terms are needed to convert the resulting point back to affine coor-

dinates. The binary algorithms are suitable for unknown point P .

To speed up this algorithm, different variants have been proposed. We only included

the following ones that would serve as a background for the remainder of the thesis. For

the reader’s interest, we have included other algorithms in Appendix A. For each of the

following ECSM algorithms, we included the storage cost and the computation cost. The

latter consists of the point and/or field operations count in the expected running time

and the precomputation phase, if any. We also mention any specific coordinate selection.

Non-Adjacent form (NAF)

The key k can be represented in Non-adjacent Form (NAF) k′ = (k′n, . . . , k
′
1, k

′
0)2, where

k′i ∈ {0,±1} and no two consecutive digits are non zero; that is, k′i+1k
′
i = 0 for i ≥ 0

[Rei60; Sol00]. The NAF of an integer is unique and is at most one digit longer than its

binary representation. The average density of nonzero digits among all NAFs of length

n is n/3.

This key representation requires the slight modification of the binary algorithm that

is to subtract, rather than add, P when k′i = −1, i.e., to add −P . This is advantageous

for ECCs since the negative of a point can be obtained with a minor cost as we mentioned

in Section 2.1, e.g., a modular negation for curves over prime fields and a bit-wise XOR

operation for curves over binary fields.

Hereafter, we will refer to the digits of a NAF representation as signed bits or, in short,

sbits. Different forms of algorithms have been proposed in the literature to produce the
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NAF of an integer. In [Rei60], it is modeled as a look-up table. In [MO90], it is modeled

as an automaton that does not directly output the sbits but rather performs the point

addition and doubling operations along with the transitions. In [Sol00], it is based on

the same idea as producing the binary representation of an integer using division by 2.

In Chapter 3, we will reconcile all three algorithms.

The cost of the binary algorithm using the NAF representation of k is

Storage: key k recoded (2n bits, since each digit would be represented by 2 bits).

Expected running time: (n− 1) D + n
3 A.

Coordinate selection: same as for Algorithm 2.1.

Window methods

This method is sometimes referred to as m−ary method. There are different versions of

window methods [MOC97; Sol00]. What is common among them is that, if the window

width is w, some multiples of the point P up to (2w − 1)P are precomputed and stored

and k is processed w bits at a time. k is recoded to the radix 2w. k can be recoded in a

way so that the average density of the nonzero digits in the recoding is 1/(w+ ξ), where

0 ≤ ξ ≤ 2 depends on the algorithm.

Let the number of precomputed points be t, in the precomputation stage, each point

requires either a doubling or an addition to be computed also depending on the algo-

rithm. In the main loop, the accumulator point will be doubled at least w times, then

a precomputed point corresponding to the current digit of the key will be added to the

accumulator.

When a window technique is referred to as sliding window, this means that the 0s in k

are skipped so that the windows formed all contain odd integers; this cuts the number of

precomputed points to about one half and decreases the number of additions in the main
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loop. Another cut by half to the precomputed points is possible if the recoded windows

are formed of both negative and positive digits.

This ECSM method is suitable for unknown or fixed point P . The cost is

Storage: t points, where 2w−2 ≤ t ≤ 2w − 1, depending on the algorithm.

Precomputation: t point operations (A or D).

Expected running time: (n − 1) D + n
w+ξ A, where 0 ≤ ξ ≤ 2 depending on the

algorithm. Note that the number of doubling is between n− w and n− 1.

Coordinate selection: The accumulator point Q is represented in Jacobian coordinates.

The precomputed points are represented in either affine or Chudnovsky coordinates (to

save the inversions in the latter case), then the addition in the loop will be performed in

mixed Jacobian-affine or Jacobian-Chudnovsky coordinates respectively, and the doubling

will be in Jacobian coordinates as before.

Simultaneous multiple point multiplication

This method is used to compute kP + lS where P may be a known point. This algorithm

was referred to as Shamir’s trick in [ElG85]3. If k and l are n-bit integers, then their

binary representations are written in a 2 × n matrix called the exponent array. Given

width w, the values iP + jS are calculated for 0 ≤ i, j < 2w. Now the algorithm performs

d = dn/we iterations. In every iteration, the accumulator point is doubled w times and

the current 2 × w window over the exponent array determines the precomputed point

that is to be added to the accumulator.

Algorithm 2.3. Simultaneous multiple point multiplication (Shamir-Strauss method)

Input: Window width w, d = dn/we, k = (Kd−1, . . . ,K1,K0)2w , l = (Ld−1, . . . , L1, L0)2w , and

P, S ∈ E(Fq).

3Also according to [Ber01], it is originally due to Straus [Str64].
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Output: kP + lS.

1. Precomputation. Compute iP + jS for all i, j ∈ [0, 2w − 1].

2. Q← Kd−1P + Ld−1S.

3. for i from d− 2 down to 0 do

3.1 Q← 2wQ.

3.2 Q← Q+ (KiP + LiS).

4. Return(Q).

Storage: 22w − 1 points. For w = 1, 3 points. For w = 2, 15 points.

Precomputation: (22(w−1) − 2w−1) D + (3 · 22(w−1) − 2w−1 − 1) A.

For w = 1, 1 A.

For w = 2, 1 D + 11 A.

Expected running time: (d− 1)w D +
(

22w−1
22w d− 1

)

A.

For w = 1, (n− 1) D +
(

3
4n− 1

)
A.

For w = 2, (n− 1) D +
(

15
32n− 1

)
A.

Using sliding windows can save about 1
4 of the precomputed points and decrease the

number of additions to n
w+(1/3) , which is about 9% saving for w ∈ {2, 3}.

Note that if S = 2
n
2 P , then this method is the comb method with w = 2 (cf. Algo-

rithm A.3).

Interleaving method

This method is also a multiple point multiplication method, that is we want to compute

∑
kjPj for points Pj and integers kj . In the comb and simultaneous multiplication

methods, each of the precomputed values is a sum of the multiples of the input points.

In the interleaving method, each precomputed value is simply a multiple of one of the
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input points. Hence, the required storage and the number of point additions at the

precomputation phase is decreased at the expense of the number of point additions in

the main loop.

This method is flexible in that each kj can have a different representation, e.g., dif-

ferent window size, as if a separate execution of a window method is performed for each

kjPj with the doubling step performed jointly on a common accumulator, as shown in

[HMV04]. As an illustration, which is also useful for the remainder of this thesis, we pro-

vide the following algorithm that computes kP + lS where both k and l are represented

to the same base 2w.

Algorithm 2.4. Interleaving method

Input: Window width w, d = dn/we, k = (Kd−1, . . . ,K1,K0)2w , l = (Ld−1, . . . , L1, L0)2w , and

P, S ∈ E(Fq).

Output: kP + lS.

1. Precomputation. Compute iP and iS for all i ∈ [0, 2w − 1].

2. Q← Kd−1P .

3. Q← Q+ Ld−1S.

4. for i from d− 2 down to 0 do

4.1 Q← 2wQ.

4.2 Q← Q+KiP .

4.3 Q← Q+ LiS.

5. Return(Q).

Storage: 2w+1 − 2 points.

Precomputation: 2(w − 1) D + 2(2w − w − 1) A.

Expected running time: w(d− 1) D + (2d− 1)2w−1
2w A.
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In general, if different basis and/or representations are used for k and l, we have

Storage: 2t points, where 2w−2 ≤ t ≤ 2w − 1 depending on the particular window

algorithm used as discussed in Section 2.1.3.

Precomputation: 2t point operations (A or D).

Expected running time: (n − 1) D + 2 n
w+i A, where 1 ≤ i ≤ 2, depending on the

algorithm.

2.1.4 Koblitz curves

Koblitz curves [Kob92]—originally named anomalous binary curves—are the curves Ea,

a ∈ {0, 1}, defined over F2

Ea : y2 + xy = x3 + ax2 + 1, (2.6)

which is a special case of (2.3) where b = 1.

Ea(F2m) is the group of F2m-rational points on Ea. Let µ = (−1)1−a, that is

µ ∈ {−1, 1}. The order of the group is computed as

#Ea(F2m) = 2m + 1− Vm, (2.7)

where {Vh} is the Lucas sequence defined by

V0 = 2, V1 = µ and Vh+1 = µVh − 2Vh−1 for h ≥ 1.

The value of m is chosen to be a prime number so that #Ea(F2m) = h · u is very

nearly prime, that is u > 2 is prime and h = 3− µ.

The main advantage of Koblitz curves when used in public-key cryptography is that

scalar multiplication of the points in the main subgroup, the group of order u, can be

performed without the use of point doubling operations. This is due to the following
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property. Since these curves are defined over F2m , then if P = (x, y) is a point on Ea,

then the point (x2, y2) is on the curve, as well. That is the Frobenius (squaring, in this

case) endomorphism τ : Ea(F2m)→ Ea(F2m) defined by

(x, y) 7→ (x2, y2), O 7→ O

is well defined. It can also be verified by point addition on Ea that

(x4, y4) + 2(x, y) = µ · (x2, y2).

Hence, the squaring map can be considered as a multiplication by the complex number

τ satisfying

τ2 + 2 = µτ, (2.8)

that is

τ =
1

2
(µ+

√
−7).

The norm of τ is 2. Thus, it is beneficial to represent the key k as an element of the ring

Z[τ ], i.e.,

k =
l−1∑

i=0

κiτ
i (2.9)

for some l. We can therefore carry the scalar multiplication kP of a point P on Ea more

efficiently by replacing the doubling operation in the double-an-add algorithm by the

squaring map.

In [Sol00], Solinas has shown how to represent k as in (2.9) in its τ -adic non adjacent

form (τNAF) where κi ∈ {−1, 0, 1} and κi+1κi = 0 for i ≥ 0—abusing the notation, we

will refer to κi as a sbit. However, this results in l ≈ 2m. Therefore, he proposed a reduced

τ -adic non adjacent form (RTNAF) for k where k is reduced modulo δ = (τm−1)/(τ−1),

hence l = m+ a. He has proved that in a τNAF representation the number of 0s is 2
3 on

average. He also mentioned that 1 and -1 are equally likely on average.
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2.2 Power and Electromagnetic Analysis Attacks on ECCs

As mentioned before, the elliptic curve scalar multiplication Q = kP , where both P

and Q are points on the curve and k is an integer, is the fundamental computation

performed in ECCs. Usually both P and Q are public information and k is the secret key

stored securely in the cryptosystem. The security of the system lies in the difficulty of

extracting k from P and Q, which is the hard problem known as EC discrete logarithm

problem (ECDLP).

However, the mathematically proved security of a cryptosystem does not imply its

implementation security against side-channel attacks. Among those attacks are those

that monitor the power consumption and/or the electromagnetic emanations of a device,

e.g., a smart card or a handheld device, and can infer important information about the

instructions being executed or the operands being manipulated at a specific instant of

interest.

These attacks are broadly divided into two categories; simple and differential analy-

sis attacks. We will refer to the former category as SPA attacks and the latter as DPA

attacks. Though SPA and DPA are the acronyms for simple power analysis and differen-

tial power analysis, respectively, are used in this thesis to include simple and differential

electromagnetic analysis as well due to their extensive usage in the literature. Also, in

subsequent discussions, we may only focus on power analysis attacks, since the counter-

measures that we are interested in were proposed to prevent information leakage on both

side-channels, the power consumption and the electromagnetic emanations.

Power analysis attacks use the fact that the instantaneous power consumption of a

hardware device is related to the instantaneous computed instructions and the manipu-

lated data. The attacker could measure the power consumption during the execution of a
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cryptographic algorithm, store the waveform using a digital oscilloscope and process the

information to learn the secret key. Kocher et al., in [KJJ99], first introduced this type

of attack on smart cards performing the DES operation. Then Messerges et al. [MDS02]

augmented Kocher’s work by providing further analysis and detailed examples of actual

attacks they mounted on smart cards.

In general, SPA attacks are those based on retrieving valuable information about

the secret key from a single leaked information—power consumption or electromagnetic

emanation—trace. On the other hand, DPA attacks generally include all attacks that

require more than one such trace along with some statistical analysis tools to extract the

implicit information from those traces.

2.2.1 SPA Attack on ECCs and its Countermeasures

Coron [Cor99] has transferred the power analysis attacks to ECCs and has shown that

an unaware implementation of EC operations can easily be exploited to mount an SPA

attack. Monitoring of the power consumption enables us to visually identify large features

of an ECC implementation such as the main loop in Algorithms 2.2 and 2.1. Moreover, it

may also enable to recognize the exact instruction that has been executed. For example,

if the difference in power consumption between point doubling (D) and point addition

(A) is obvious in their respective power traces, then, by investigating one power trace of

a complete execution of a double-and-add algorithm, the bits of the scalar k are revealed.

That is, whenever a D is followed by A, the corresponding bit is ki = 1, otherwise if D is

followed by another D, then ki = 0. This sequence of point operations is referred to as

the DA sequence.

As a countermeasure, Coron proposed making the DA sequence uniform across the

executions of the ECSM algorithm, independent of the value of ki. Thus, he proposed
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performing the point addition in every iteration and collecting its result only if ki = 1,

otherwise, the point addition is considered a dummy operation. The resulting algorithms

are referred to as the double-and-add-always algorithms (cf. Algorithms A.4 and A.5).

Another better approach is to use the Montgomery ladder [Mon87; Gou03; IT02] (see

Algorithms A.6 and A.7) which has the advantage that the point addition is never dummy.

Both the double-and-add algorithms and the Montgomery ladder process the key on a

bit level.

Window methods process the key on a digit (window) level. The basic version of

this method, that is where ξ = 0 in Section 2.1.3, is inherently uniform since in most

iterations, w D operations are followed by 1 A, except for possibly when the digit is 0.

Therefore, fixed-sequence window methods were proposed [Möl01; OT03; Thé06] in order

to recode the digits of the key such that the digit set does not include 0. We will discuss

the recoding that appeared in [Thé06] in detail in Section 6.4.1.

2.2.2 DPA Attack on ECCs and its Countermeasures

When the relation between the instructions executed by a cryptographic algorithm and

the key bits is not directly observable from the power signal, an attacker can apply

differential power analysis (DPA). DPA attacks are in general more threatening and

more powerful than SPA attacks because the attacker does not need to know as many

details about how the algorithm was implemented. The technique also gains strength by

using statistical analysis and digital signal processing techniques on a large number of

power consumption signals to reduce noise and to amplify the differential signal. The

latter is indicated by a peak, if any, in the plot of the processed data. This peak appears

only if the attacker’s guess of a bit or a digit of the secret key is correct. The attacker’s

goal is to retrieve partial or full information about a long-term key that is employed in
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several ECSM executions.

As for the SPA attack, Kocher et al. were the first to introduce the DPA attack on a

smart card implementation of DES [KJJ99]. Techniques to strengthen the attack and a

theoretical basis for it were presented by Messerges et al. in [MDS99a; MDS02]. Coron

applied the DPA attack to ECCs [Cor99]. We provide more details about first-order DPA

attack methodology on ECCs, other variants and the different countermeasures that were

proposed in Section A.3 and Section A.4.

As we concluded in Section A.5, in order to resist DPA attacks, it is important to

randomize the value of the long-term key involved in the ECSM across the different

executions. Some of the countermeasures that were based on randomizing the key rep-

resentation [OA01; HM02a] were proven to be inadequate since the intermediate point

computed in the accumulator Q at a certain iteration remained one of two possible values

[FMPV04]. The constancy of the value of this intermediate point is an integral part in

the success of first-order DPA attacks. However, these randomization algorithms were of

mathematical interest to us since their outcome was a random binary signed digit (BSD)

representation of the key. We were interested in studying the properties of this repre-

sentation (Chapter 4) as well as the application of the randomization algorithms to the

τNAF of an integer in order to produce a random τ -adic representation (Chapter 5).

A potential DPA countermeasure is known as key splitting [Joy05]. It is based on

randomly splitting the key into two parts such that each part is different in every ECSM

execution. An additive splitting using subtraction is attributed to Clavier and Joye

[CJ01]4. It is based on computing

kP = (k − r)P + rP, (I)

4The authors mention that the idea of splitting the data was abstracted in [CJRR99].
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where r is a n-bit random integer, that is, of the same bit length as k.

Alternatively, Ciet and Joye [CJ03] suggest the following additive splitting using di-

vision, that is, k is written as

k = bk/rcr + (k mod r).

Hence, if we let k1 = (k mod r), k2 = bk/rc and S = rP , we can compute

kP = k1P + k2S, (II)

where the bit length of r is n/2. They also suggest that (II) should be evaluated with

Shamir-Strauss method as in Algorithm 2.3. However, they did not mention whether the

same algorithm should be used to evaluate (I).

The following multiplicative splitting was proposed by Trichina and Bellezza [CQS03]

where r is a random integer invertible modulo u, the order of P . The scalar multiplication

kP is then evaluated as

kP = [kr−1 (mod u)](rP ). (III)

To evaluate (III), two scalar multiplications are needed; first R = rP is computed, then

kr−1R is computed.

In Chapter 6, we will further discuss the different splitting methods and their SPA-

and DPA-resistant evaluation.

2.3 Conclusion

In this chapter, we have presented a background on elliptic curve cryptosystems (ECCs)

along with the different methods used to compute the scalar multiplication (ECSM),

which is the core operation of ECCs, and the various costs associated with them.
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We have also provided a brief background on simple (SPA) and differential (DPA)

power and electromagnetic analysis attacks on the classical ECSM algorithms. We have

included the countermeasures to both types of attacks that were of interest to us and

that serve as the basis for the work presented in this thesis.



Chapter 3

Analysis of the BSD

Randomization Algorithms

As a countermeasure to DPA attacks, Oswald and Aigner [OA01] and Ha and Moon

[HM02a] have, each, proposed a randomization technique to the binary algorithm (Al-

gorithm 2.1). Though not explicitly mentioned by the former authors, both techniques

yield a binary signed digit (BSD) recoded version of the key, which is the scalar k in

Algorithm 2.1. Studying the similarities and the differences between the two techniques

has been of mathematical interest to us.

In this chapter, we investigate the randomness of the recoded keys resulting from the

Oswald-Aigner (OA) and the Ha-Moon (HM) algorithms, i.e., whether or not each can

produce all possible BSD representations of an integer. We prove that this is true for the

HM technique while not possible with the OA technique.

We also present the complexity (average case) analysis of each algorithm using both

Markov chain model and grammatical specification method. We find that the OA random-

27
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ization method incurs slightly more point additions on average than the binary algorithm.

Our analytical result is different from the experimental one provided by the authors. As

for the HM algorithm, we use the grammatical specification method to confirm the results

obtained by the authors using the Markov chain model.

3.1 The Proposed Algorithms

In this section, we present a brief overview of the OA and the HM algorithms.

3.1.1 Oswald-Aigner Randomized Automaton

As a countermeasure to DPA attacks on EC scalar multiplication, Oswald and Aigner

[OA01] proposed a randomization technique to Morain and Olivos’ automata [MO90].

Automaton 2 was proposed by the latter authors in order to speed up the elliptic curve

scalar multiplication by implicitly generating the non-adjacent form (NAF) of the scalar.

Figure 3.2 shows the OA randomized version of Automaton 2 (Figure 3.1). In the following

we discuss the randomized automaton.

The inputs to the automaton are the key k and a point P on the elliptic curve. The

output is Q = kP . The initial condition is Q = O. The bits of k = (kn−1, . . . , k0)2 are

scanned from the least significant to the most significant (from right to left). States are

represented by circles and transitions by arrows along with the corresponding scanned

bit. Each bit scanned, which we will refer to as ki+1, triggers a transition from a state to

another. In Automaton 2, each state is labeled according to the sequence of bits that led

to that state starting from state 0. This labeling scheme was preserved in the randomized

automaton. Also in both automata, the original and the randomized, the most significant

bit of k, kn−1, is assumed to be always 1, whence the exit transitions.
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Figure 3.1: Automaton 2.

For every state other than state 0, when the bit scanned ki+1 = 1, a random variable

e is drawn. If e = 0, the algorithm follows the original path of Morain-Olivos’ Automaton

2 (dashed arrows) and performs a point subtraction and a point doubling–or just a point

doubling. Otherwise, it proceeds as in the binary algorithm (dotted-dashed arrows) to

perform a point addition and point doubling.1 Transitions that are not affected by the

randomization are depicted as solid arrows. Due to the random variable e, a different

sequence of operations is performed each time the algorithm is executed for the same key

k. As a side effect, the algorithm can be interpreted as recoding k into one of its binary

1We have interchanged the values of e from the original paper for the transitions departing from state

11 when the bit scanned is 1. This is in order to make them consistent with the other transitions that

depend on the value of e.
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Figure 3.2: Randomized version of Automaton 2.

signed digit (BSD) representations. A BSD representation k′ of an integer k ∈ [0, 2n − 1]

is a base-2 representation denoted by (k′n, k
′
n−1, . . . , k

′
0)BSD where k′i ∈ {−1, 0, 1}. Note

that Automaton 2, and hence, its randomized version, may produce a BSD representation

that is one sbit longer than the binary representation. We will call the k′is signed bits, or

sbits for short, and -1 will be written as 1. The sbits of k′ are not mentioned explicitly

by the authors but can be deduced from the operations performed:

• A transition where P = 2P , i.e., a point doubling, is performed indicates that a 0

was prepended to k′.

• A transition where a point addition (resp. subtraction) and a point doubling are

performed indicates that a 1 (resp. 1) was prepended to k′.
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• Only in the transition from state 11 to state 1 when ki+1 = 1 and e = 1, a point

doubling is performed before the point addition. This is equivalent to prepending

a 0 and then a 1 to k′. This specific transition is a flaw in the algorithm that was

exploited by the cryptanalysis of the randomized version of Automaton 1 presented

by Okeya and Sakurai in [OS02a] and that of Automaton 2 presented by Walter in

[Wal04a].

3.1.2 Ha-Moon Randomized Algorithm

The DPA countermeasure provided by Ha and Moon [HM02a] was based on inserting a

random decision in Reitwiesner’s canonical recoding algorithm [EK94; Rei60]. The input

to both algorithms is the binary representation of k and the output is k′, the NAF of k

in the case of Reitwiesner’s algorithm, and a random BSD representation in the case of

the HM algorithm. Both algorithms scan the bits of k from right to left. There is an

auxiliary carry variable ci which is initially set to 0. Based on the current bit ki, the

current auxiliary carry ci and the next scanned bit ki+1, the output sbit k′i and the next

auxiliary carry ci+1 are determined.

Ha and Moon noticed that the outcomes of the algorithm, the auxiliary carry ci+1

and the NAF sbit k′i, have the value ci+12
i+1 +k′i2

i = 2i(2ci+1 +k′i). Therefore, whenever

ci+1k
′
i = 01 they can be equivalently represented as ci+1k

′
i = 11 and vice-versa. To insert

randomness in the algorithm, they generated a random n-bit integer r = (rn−1, rn−2, . . . ,

r0)2. The random bits of r determine the decision to be taken, if applicable, for the

algorithm outcome with each scanned bit.

Both algorithms were presented by their authors as look-up tables; we represent them

in this chapter as automata to show the point operations performed with each transition,

instead of storing k′ and then executing the binary algorithm. Also this representation
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makes the HM algorithm easily comparable with the analogous OA algorithm discussed

previously. The exit states of the automata are as shown assuming that a 0 is prepended to

k, that is, kn = 0. The arrows are labeled ki+1/ci+1, k
′
i. The dashed arrows in Figure 3.3

represent the transitions that were randomized by the HM algorithm as in Figure 3.4.

We notice that the behavior of Reitwiesner’s algorithm as presented in Figure 3.3 is

identical to that of Automaton 2 in Figure 3.1. In fact, the point doubling operations in

the latter can be rearranged to be identical to the former without loss of generality and

also without affecting its performance. They also perform the same operations on exit if

kn−1 = 1 as assumed in Automaton 2. We have labeled the states in Figure 3.3 in a way

to reflect this analogy.

ki = 0

ci = 1
ki = 1

ci = 0
ki = 1

ci = 1
ki = 0

ci = 0

P = 2P

0/0, 1

Q = Q + P

P = 2P
Q = Q− P

1/1, 1

P = 2P

P = 2P

Q = Q− P

0/0, 1

1/1, 1

Q = Q + P0/0, 0
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P = 2P

1/0, 0

A

P = 2P
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′
i

T1

T110

T0 T11

0/0-

1/0-

Q

Q = Q + P

Figure 3.3: Automaton of Reitwiesner’s canonical recoding algorithm.
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Figure 3.4: Automaton of Ha-Moon’s randomization algorithm.

3.2 Randomness of the Recoded Keys

In this section, we discuss the randomness of the recoded keys resulting from the OA

and the HM randomization algorithms. That is, we investigate whether or not they can

produce any of all the possible BSD representations of an integer.
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3.2.1 Randomness of the Keys of the OA Automaton

We will illustrate the following observations using an example of a small integer. Let

k = 15 = (1111)2, three successive random decisions will be drawn, which we will denote

as e1, e2 and e3. In Table 3.1, we give the different representations k′ generated for

all possible random decisions taken and the corresponding operations performed. We

denote the elliptic curve (EC) point addition, subtraction and doubling as A, S and D

respectively.

Table 3.1: The possible outcomes of the randomized algorithm for k = 15.

Case e1e2e3 k′ Operations Performed

1 000 10011 AD SD D D A

2 001 10011 AD SD D DA

3 010 10011 AD SD DA SD A

4 011 10011 AD SD DA AD

5 100 10111 AD AD SD D A

6 101 10111 AD AD SD DA

7 110 11111 AD AD AD SD A

8 111 01111 AD AD AD AD

We note the following in Table 3.1.

• When the sequence DA is followed by SD, as in case 3, the subtraction cancels the

effect of the addition on the result and the addition and subtraction operations are

then redundant.

• When the sequence DA is followed by AD, as in case 4, this sequence of operations

DAAD is equivalent to DDA, that is, it yields the same result. Thus, there is one

extra addition operation.

Therefore, in the first four cases shown in Table 3.1, though the random decisions drawn

were different, the resulting generated representations k′ are the same. This means that,
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for a scalar k where the binary representation contains a block of four consecutive 1s,

half of the possible resulting k′ after the processing of this block are the same. In the

following lemmas, we generalize this argument. Let S be a string. The notation 〈S〉d

denotes S repeated d times. For example, (〈0 1〉3)2 is (0 1 0 1 0 1)2. b
d for b ∈ {1, 0, 1}

denotes a sequence of where b appears d times.

Lemma 3.1 Starting from state 0 of the OA Randomized Automaton 2, the processing of

a block of consecutive 1s in the binary representation of k yields the same BSD represen-

tation with probability 1
2 .

Proof. Let t + 1 be the length of the block of consecutive 1s in k that the algorithm

starts scanning when at state 0. We have a t-tuple of random decisions e = (e1 . . . et).

Assume that the first random decision drawn is 0, i.e., e1 = 0. The algorithm will then

move to state 11 after generating a 1 and a 1. At this point, no matter what is the value

of the remaining terms of e, the operations performed will be equivalent to successive

t − 1 doubling operations and an addition at the end, which translates into generating

t− 1 0s and a 1 from right to left.

• This is obvious in the case where e = (0 0 . . . 0).

• In the case where e = (0 〈1 0〉j . . .) the sequence of operations starting from state

11 is 〈DASD〉j which is equivalent to 〈DD〉j . When exiting the state 11, i.e., when

a 0 is scanned or when the most significant bit is reached, the algorithm performs

a point addition.

• In the case where e = (0 1j . . .) the sequence of operations starting from state 11

is DA〈AD〉j−1. This sequence is equivalent to DDA〈AD〉j−2 = DDDA〈AD〉j−3 =

· · · = 〈D〉jA.
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It is obvious that the mix between the above cases covers all the possibilities for

e = (0 e2 . . . et) and that it also yields a sequence of doubling operations ending with an

addition. Hence, for half of the possible values for e, the BSD representation generated

for the t+ 1-long block of 1s is (10t−111)BSD. �

We can also extend the previous argument to the case where e = (1 0 e3 . . . et). In

this case the resulting BSD representation will be (10t−2111)BSD and so forth. This leads

to the following more general lemma.

Lemma 3.2 Starting from state 0 of the OA Randomized Automaton 2, the processing of

a block of t+ 1 consecutive 1s in the binary representation of k yields t+ 1 possible BSD

representations 1k
′, 2k

′, . . . , tk
′ and t+1k

′ with the following probability of appearance

Pr(1k
′) = 1

2 , P r(2k
′) = 1

4 , . . . P r(tk
′) = 1

2t and Pr(t+1k
′) = 1

2t

We also note from Table 3.1 that the NAF of k = 15 which is (10001)BSD was not

among the different BSD representations generated. This suggests the following lemma.

Lemma 3.3 The NAF of k cannot be generated by the OA Randomized Automaton 2,

unless the binary representation of k is a NAF.

Proof. Compared to the original automaton by Morain and Olivos [MO90], Oswald and

Aigner have redistributed the operations performed with the original transitions. For

the first automaton, when in state 0 and ki+1 = 1, no operations were performed until

another bit is scanned and if it is another 1, a subtraction is performed, otherwise, an

addition. Whereas in the randomized automaton, there is always an addition performed

with the first 1 scanned starting from state 0, hence the least significant sbit of k′ will be

1 and can never be 1. Since, in essence, the NAF of an integer is produced by using the
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following transformation [MO90]

1r01t 7→ 10r10t−11, (3.1)

this suggests that, unless the binary representation of k was sparse (e.g., k = (10)10), the

OA algorithm will not generate the NAF of k as one of its random outcomes. �

3.2.2 Randomness of the Keys of the HM Algorithm

First, we will establish the analogy between Reitwiesner’s canonical recoding algorithm

and Solinas’ NAF-recoding algorithm [Sol00]. This will help us verify whether or not the

HM algorithm can produce any of all the possible BSD representations of an integer.

Solinas’ algorithm is based on the following idea. To derive the binary expansion of

an integer, we divide it by 2, store the remainder (0 or 1), and repeat the process with

the quotient. To derive the NAF of an integer, using the method proposed by Solinas, we

divide it repeatedly by 2 as well, allowing remainders to be 0, 1 or -1. If the remainder

should be ±1, we choose whichever makes the quotient even so that the next division

yields a remainder of 0.

Algorithm 3.1. Solinas’ NAF-computing algorithm

Input: k, a positive integer

Output: k′ = NAF(k)

1. i← 0

2. while k > 0 do

2.1 if k is odd then

2.1.1 k′i ← 2− (k mod 4)

2.1.2 k ← k − k′i
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2.2 else

k′i ← 0

2.3 k ← k/2

2.4 i← i+ 1

In the following, we will compare Reitwiesner’s (Figure 3.3) and Solinas’ algorithms

and the decisions taken by them for different input bits. For simplicity, we will refer to

these two algorithms as RNAF and SNAF respectively. There are two cases for k.

Case 1: k is odd

Case 1.1: k ≡ 1 (mod 4)

In SNAF, k′i is set to 1, a 1 is subtracted from k and then k is divided

by 2, which makes this subtraction unnecessary in this case if k is just

shifted to the right by one bit.

This is equivalent in RNAF to the case where ki +ci = 1 and ki+1 = 0.

k′i is set to 1 and ci+1 = 0; hence, there is no change in the remaining

bits of k.

Case 1.2: k ≡ 3 (mod 4)

In SNAF, k′i is set to 1, a 1 is added to k and then k is divided by

2. In this case, alternatively, the addition can be performed after the

division by 2.

This is equivalent in RNAF to the case where ki +ci = 1 and ki+1 = 1.

k′i is set to 1 and ci+1 = 1.

Case 2: k is even

In SNAF, k′i is set to 0 and k is divided by 2.
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In RNAF, this is the case where ki + ci ≡ 0 (mod 2). For any value of ki+1, k
′
i

is set to 0 and ci+1 is set to be equal to ci to propagate the carry, if any.

Nevertheless, Reitwiesner’s canonical recoding algorithm has better performance than

Solinas’ algorithm. The reason for that is that the former sets ci+1 appropriately to save

the carry, if any, instead of performing the subtraction or addition as in step 2.1.2 in

Algorithm 3.1 and causing the carry to propagate up to the most significant bit with

every iteration.

Lemma 3.4 Ha and Moon’s randomization algorithm can generate any random BSD rep-

resentation of length n+ 1 sbits for an n-bit integer k.

Proof. As was mentioned before, in HM algorithm a random decision ri is taken whenever

ki+ci = 1, that is whenever k ≡ 1 or 3 (mod 4). We can insert the same random decision

in Algorithm 3.1 by Solinas by modifying step 2.1.1 as follows

k′i ← (−1)ri [2− (k mod 4)].

Using this modification, we can see that when k is odd the remainder can be either 1

or 1. Since there are no other possible values for the remainder, the proof is established.�

3.3 Average-Case Analysis of the Randomized Algorithms

In this section, we present the average case (complexity) analysis of the OA and HM algo-

rithms. That is, we calculate how many point doubling and point addition (subtraction)

operations are performed on average. The basic assumptions are that the n-bit integer k

is uniformly distributed in the range [0, 2n − 1]. Thus, each bit of k is equally likely to

be 0 or 1, i.e., Pr(ki = 0) = Pr(ki = 1) = 1
2 for 0 ≤ i < n. The same assumption applies

to the random decisions taken.
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3.3.1 Average-Case Analysis of the OA Automaton

We provide this analysis using both the Markov chains method and the grammatical

specification method.

Analysis Using Markov Chains

We use this method to find the limiting probability of occurrence of point additions

or subtractions in the proposed algorithm (please refer to Appendix B for theoretical

background on Markov chains). We follow the same procedure as in [HM02a; EK94]. We

define the states of the Markov chain to be the triplet (Ai, ki+1, ei) where Ai denotes one

of the states of the algorithm, namely 0, 1, 110 or 11. We will refer to these states as a, b,

c and d respectively. The possible state transitions are shown in Table 3.2. Note that in

the table, oi denotes the operation performed, i.e., it takes the value 1 or 1 when a point

addition or subtraction is performed respectively and 0 otherwise. We cannot consider

oi as the sbits of the resulting random BSD representation since the current resulting oi

may not always be prepended to the previous ones, but may be added or subtracted to

the same sbit position of the previous one as was explained in Section 3.2.1.

From Table 3.2, we deduce the probability matrix P. We then obtain the limiting

probability vector π = (π0 . . . πw) as the unique solution of

πP = π,

w∑

j=0

πj = 1
(3.2)

where, in this case, w = 15.



3.3. Average-Case Analysis of the Randomized Algorithms 41

Table 3.2: State transition table for the randomized automaton of Figure 3.2.

State Output Next state

(ki+2, ei+1)

si (Ai, ki+1, ei) (Ai+1, oi) (0, 0) (0, 1) (1, 0) (1, 1)

s0 (a, 0, 0) (a, 0) s0 s1 s2 s3
s1 (a, 0, 1) (a, 0) s0 s1 s2 s3
s2 (a, 1, 0) (b, 1) s4 s5 s6 s7
s3 (a, 1, 1) (b, 1) s4 s5 s6 s7
s4 (b, 0, 0) (a, 0) s0 s1 s2 s3
s5 (b, 0, 1) (a, 0) s0 s1 s2 s3
s6 (b, 1, 0) (d, 1) s12 s13 s14 s15
s7 (b, 1, 1) (b, 1) s4 s5 s6 s7
s8 (c, 0, 0) (a, 0) s0 s1 s2 s3
s9 (c, 0, 1) (a, 0) s0 s1 s2 s3
s10 (c, 1, 0) (d, 1) s12 s13 s14 s15
s11 (c, 1, 1) (b, 1) s4 s5 s6 s7
s12 (d, 0, 0) (c, 1) s8 s9 s10 s11
s13 (d, 0, 1) (c, 1) s8 s9 s10 s11
s14 (d, 1, 0) (d, 0) s12 s13 s14 s15
s15 (d, 1, 1) (b, 1) s4 s5 s6 s7
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Solving (3.2) using MAPLE, we obtain

π = (0.1071428572, 0.1071428572, 0.1071428572, 0.1071428572,

0.08928571431, 0.08928571431, 0.08928571432, 0.08928571431,

0.01785714286, 0.01785714286, 0.01785714286, 0, 01785714286,

0.03571428573, 0.03571428573, 0.0357142857, 0.03571428568).

from which we can find the probability of additions (or subtractions)

Pr(oi 6= 0) = π2 + π3 + π6 + π7 + π10 + π11 + π12 + π13 + π15 = 0.5357142859.

Thus, we conclude from this analysis that the average number of point addition op-

erations for Oswald and Aigner’s algorithm is about 3.6% more than that of the binary

algorithm; whereas the authors, using experimental results, have stated that it was 9%.

We have not studied the details of the authors’ experiments that had lead to this result.

Analysis Using Grammatical Specification

Now we analyze Oswald and Aigner’s randomized automaton (Figure 3.2) using the

grammatical specification method [Gre83; HMU01; SF96] that was used by Morain and

Olivos [MO90] to analyze their automata (for background on this method, please see

Appendix C). This is an alternative method to the Markov chain analysis.

The language recognized by the randomized automaton is L = {(0, 0), (0, 1),(1, 0),

(1, 1)}∗{(1, 0), (1, 1)}. The symbols of this language represent the pair (ki+1, ei) given

that the most significant bit of k is 1. The grammar that generates L consists of

• the terminal alphabet T = {(0, 0), (0, 1), (1, 0), (1, 1)},
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• the nonterminal alphabet N = {T0, T1, T11, T110} corresponding to the states 0, 1,

11 and 110 of the automaton respectively,

• the start symbol S = A (not shown in the graph since it is a dummy state that

leads directly to T0 without scanning any input symbol).

• the productions P as follows

A→ T0,

T0 → (0, 0) T0 | (0, 1) T0 | (1, 0) T1 | (1, 1) T1,

T1 → (0, 0) T0 | (0, 1) T0 | (1, 0) T11 | (1, 1) T1 | ε,

T11 → (0, 0) T110 | (0, 1) T110 | (1, 0) T11 | (1, 1) T1 | ε,

T110 → (0, 0) T0 | (0, 1) T0 | (1, 0) T11 | (1, 1) T1.

The system of equations corresponding to the productions is

A = T0

T0 = 2zuT0 + 2zu2T1,

T1 = 2zuT0 + zu2T1 + zu2T11 + 1,

T11 = 2zu2T110 + zuT11 + zu2T1 + u,

T110 = 2zuT0 + zu2T1 + zu2T11.

(3.3)

We have solved the system of equations (3.3) using MAPLE to obtain the bivariate

generating function A(z, u). Using partial fraction decomposition and Taylor expansion,

we can write A(z, u) in the following form

A(z, u) =
∑

n,m

an,mz
num
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where an,m, denoted as [znum]A(z, u), is the number of strings with n symbols and with

cost m.

Since the terminal alphabet consists of four equally probable symbols, we obtain the

probability generating function

Ap(z, u) = A(
z

4
, u),

from which we deduce the generating function for the expectation

ap(z) =
∂Ap

∂u

∣
∣
∣
∣
u=1

.

The coefficient of zn in the series ap(z), i.e., [zn]ap(z) is the expected cost of the

processing of a string of length n. The most significant bit of k is always assumed to

be 1 [MO90]; hence, only n − 1 bits of k are involved in the processing. Therefore, the

expected cost is

1

2

1

4n−1
[zn]a(z) = [zn]2ap(z) = [zn]2a(z/4)

=
43

28
n+

117

196
+ O(2−

3
2
n),

= 1.535714286 n+ 0.5969387755 + O(2−
3
2
n).

This result shows that the total number of doubling and addition/subtraction oper-

ations per bit is 1.5357 on average, which agrees with the result obtained using Markov

chains, since one doubling operation is performed per bit.

3.3.2 Average-Case Analysis of the HM Algorithm

The authors have analyzed their algorithm using the Markov chains method. We present

here the analysis of the algorithm using the grammatical specification method.
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For the sake of completeness, we first analyze the automaton of Reitweiser’s canon-

ical recoding algorithm (see Figure 3.3). The language recognized by this automaton is

L = {0, 1}∗0. The symbols of this language represent ki+1 given that a 0 is prepended to

k. The grammar that generates L consists of

• T = {0, 1},

• N = {T0, T1, T11, T110} as the states were denoted in Figure 3.3,

• S = A,

• the productions P as follows

A→ 0 T0 | 1 T1,

T0 → 0 T0 | 1 T1, | ε,

T1 → 0 T0 | 1 T11,

T11 → 0 T110 | 1 T11,

T110 → 0 T0 | 1 T11 | ε.

The system of equations corresponding to the productions is

A = 2zT0 + 2zT1,

T0 = zuT0 + zuT1 + 1,

T1 = zu2T0 + zu2T11,

T11 = zuT110 + zuT11,

T110 = zu2T0 + zu2T11 + u.

(3.4)
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The expected cost was found to be

[zn+1]2a(z/2) =
4

3
(n+ 1)− 8

9
− (1− (−1)(n+1)+1

9
)2−(n+1)

=
4

3
n+

4

9
− (1− (−1)n+2

9
)2−(n+1),

which is identical up to the second term to that of Automaton 2 [MO90]. This result also

agrees with Solinas’ [Sol00], that is, the average number of nonzero sbits in the NAF of

an n-bit integer, which is also the average number of additions/subtractions in the scalar

multiplication algorithm, is 1
3 n.

The automaton shown in Figure 3.4 representing the HM algorithm operates on the

language L = {(0, 0), (0, 1), (1, 0), (1, 1)}∗{(0, 0), (0, 1)} with the productions being as

follows

A→ (0, 0) T0 | (0, 1) T0 | (1, 0) T1 | (1, 1) T1,

T0 → (0, 0) T0 | (0, 1) T0 | (1, 0) T1 | (1, 1) T1 | ε,

T1 → (0, 0) T0 | (0, 1) T110 | (1, 0) T11 | (1, 1) T1,

T11 → (0, 0) T110 | (0, 1) T110 | (1, 0) T11 | (1, 1) T11,

T110 → (0, 0) T0 | (0, 1) T110 | (1, 0) T11 | (1, 1) T1 | ε.

The corresponding system of equations is

A = 2zT0 + 2zT1,

T0 = 2zuT0 + 2zuT1 + 1,

T1 = zu2T0 + zu2T110 + zu2T11 + zu2T1,

T11 = 2zuT110 + 2zuT11,

T110 = zu2T0 + zu2T110 + zu2T11 + zu2T1 + u.

(3.5)
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The expected cost for the automaton is

[zn+1]2a(z/4) = 1.5 (n+ 1)− 1 + ((n+ 1) + 1)2−(n+1)+2

= 1.5 n+ 0.5 + (n+ 2)2−n+1

agreeing with the result obtained by the authors using Markov chains method.

3.4 Conclusion

We have considered in this chapter the randomized algorithms proposed by Oswald and

Aigner and by Ha and Moon. We have compared both algorithms from the viewpoint of

randomness of the encoded keys and demonstrated that the HM algorithm can in fact

generate any possible BSD representation of the key while this is not the case for the OA

algorithm . Although both randomized automata proposed by Oswald and Aigner were

shown to be breakable by [Wal04a; OS02a; KW03], neither of these papers reported their

key randomness shortage. We have also shown how the random decision proposed by Ha

and Moon can be simply inserted in Solinas NAF generating algorithm.

We have also compared the average case (complexity) analysis of the concerned al-

gorithms using both Markov chains and grammatical specifications method. Hence,

our work confirms that Ha-Moon’s has the same average computational complexity as

the binary algorithm while Oswald-Aigner’s algorithm executes 3.5% more point addi-

tions/subtractions on average. This is a new result since the experimental one reported

by the authors has shown that the additional number of point additions is 9% on average.





Chapter 4

Binary Signed Digit

Representations of Integers

Applications of signed digit representations of an integer include computer arithmetic,

cryptography, and digital signal processing. Recall that a binary signed digit (BSD)

representation of an integer k ∈ [0, 2n − 1] is a base-2 representation denoted by (k′n,

k′n−1, . . . , k
′
0)BSD where k′i ∈ {−1, 0, 1}. We refer to the k′is as signed bits, or sbits for

short, and -1 is written as 1.

An integer can have several BSD representations. For example, k = (9)10 can be

written as (01001)BSD = (01011)BSD = (11001)BSD among other possibilities. Among

the possible BSD representations of an integer there are two unique representations: one

is the conventional binary representation where there are no 1s, and the other is the

non-adjacent form (NAF). The NAF of k is characterized by having no two adjacent

non-zero sbits, and hence, having the number of 0s about 2
3n. This representation was of

particular importance in speeding up the scalar multiplication operation in elliptic-curve

49
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cryptosystems [MO90; Sol00]. Especially that in those cryptosystems, the use of negative

bits does not incur any noticeable extra computations.

In this chapter, we first consider a number of relevant questions concerning random

BSD representations of an integer. These questions, which are not necessarily restricted to

cryptographic applications of BSD representations and can be fundamentally important

from the mathematical point of view, are: For an integer k ∈ [0, 2n − 1], what is the

average number of BSD representations that are of length n or n+1 sbits and what is the

exact number of representations? For integers in this range, which one has the maximum

number of representations? We first present the answers to these questions and prove

that the maximum number of representation of an n-bit integer is a Fibonacci number.

Thereafter, we present an algorithm that calculates the exact number of representations

of k in O(n).

We then present an algorithm that generates a random BSD representation for an

integer k by scanning its bits starting from the most significant end in O(n). Also,

we provide modifications to this algorithm to obtain a BSD generation algorithm that

can produce all BSD representations of an integer k in O(ϕn) in the worst case, where

ϕ ≈ 1.618 is the golden ratio [Kos01]. The latter algorithm helps us formulate the

maximum number of BSD representations of an integer among all integers of length n,

and, hence, provide an alternate expression for a Fibonacci number. We also demonstrate

the effect of prepending 0s to k on the number of its BSD representations. The main

contents of this chapter were published as [EH07]. Notations used throughout this chapter

are as defined on page 35 prior to Lemma 3.1.
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4.1 Number of Binary Signed Digit Representations

Considering the binary representation of k as one of its BSD representations, different

BSD representations for k can be obtained by replacing 01 with 11 and vice versa and

by replacing 01 with 11 and vice versa [Rei60, Equations 8.4.4- and 8.4.5-]. For example

if k = (11)10 is represented in n = 5 bits, i.e., k = (01011)2, the different BSD represen-

tations for k are: 01011, 01111, 01101, 11011, 11111, 11101, 10111, 10101. The second

representation can be obtained from the first one by replacing the second occurrence of 01

with 11. The third representation can then be obtained from the second one by replacing

the 11 with 01, and so forth. Those replacements are done exhaustively until all possible

BSD representations for k are obtained.

The binary representation of k must include at least one 0 that precedes a 1, so that

from it we can obtain all other BSD representations.

4.1.1 Useful Lemmas

In the following we present some lemmas related to the number of BSD representations

of an integer k. These lemmas will be used to derive the main results of this chapter.

Let λ(k, n) be the number of BSD representations of k ∈ [0, 2n − 1] that are n sbits

long. Then the following lemmas hold.

Lemma 4.1

(i) λ(0, n) = 1,

(ii) λ(1, n) = n,

(iii) λ(2i, n) = n− i.

Proof.
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(i) This is obvious since in two’s complement representation, the value 0 is represented

with n consecutive zeros. Therefore, there exists no choices for alternative repre-

sentations.

Let us assume that there is some other BSD representation for the integer k = 0

=
∑n−1

i=0 k
′
i2

i where k′ ∈ {1, 0, 1}. Then this representation must contain one or more

sbits of the value 1 or 1. For example, let us assume that there is a representation

where k′j = 1 for some 0 ≤ j ≤ n − 1, then the summation of the remaining sbits

with their appropriate weights should be −2j . The largest absolute value that the

sbits (k′j−1, . . . , k
′
0)2 can take is

∑j−1
i=0 2i = 2j − 1. The smallest absolute value that

is greater than 0 that the sbits (k′n−1, . . . , k
′
j+1)2 can take is 2j+1. The difference

between these two values is 2j+1 − 2j + 1 = 2j + 1. That is there is no possible

assignment for the remaining sbits resulting in a value of −2j .

(ii) The possible BSD representations for 1 in n sbits are 0n−11, 0n−211, 0n−3111, . . . ,

11
n−1

. Their total number is n.

This is true since, for any t ∈ [0, n]

2t −
t−1∑

i=0

2i = 2t − 2t − 1

2− 1
= 1.

(iii) The possible BSD representations for 2 in n sbits are 0n−210, 0n−3110, 0n−41110,

. . . , 11
n−2

0. Note that these are the same representations for 1 when its binary

representation is (n − 1) bits long with a 0 appended as the least significant sbit.

Their total number is n− 1.

That is,

λ(2, n) = λ(1, n− 1) = n− 1.
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Hence,

λ(4, n) = λ(2, n− 1) = λ(1, n− 2) = n− 2.

By induction,

λ(2i, n) = n− i. �

Lemma 4.2 For 2n−1 ≤ k ≤ 2n − 1,

λ(k, n) = λ(k − 2n−1, n− 1).

Proof. An integer k in this range would have the binary form (1, kn−2, . . . , k0)2 and

its value is 2n−1 + d, where d = (kn−2, . . . , k0)2, and is (n − 1) bits long. The BSD

representations for d in n − 1 sbits are of the form (k′n−2, . . . , k
′
0)BSD with k′n−2 6= 1,

otherwise, d would be negative.

The BSD representations of k are then of the form (1, k′n−2, . . . , k
′
0)BSD. The two most

significant sbits are either 10 or 11. In both cases, no new BSD representations can be

generated. Thus, k will have the same BSD representations as for d with an added 1 as

the most significant sbit. �

Lemma 4.3 For k even,

λ(k, n) = λ(
k

2
, n− 1).

Proof. In this case, the integer k is of the form (kn−1, . . . , k1, 0)2 = 2d where d =

(kn−1, . . . , k1)2, and is (n− 1) bits long. The BSD representations for d in n− 1 sbits are

of the form (k′n−1, . . . , k
′
1)BSD. When d is multiplied by 2 to obtain k, it is shifted left

by one and a 0 is added to the least significant position. The same is done to each of its

BSD representations. In all of them, the least two significant sbits will be either 10, 00 or

10. In all three cases, no new BSD representations can be generated. Thus, k will have

the same BSD representations as for d with an added 0 as the least significant sbit. �
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Lemma 4.4 For k odd,

λ(k, n) = λ(k − 1, n) + λ(k + 1, n), (a)

or

λ(k, n) = λ

(
k − 1

2
, n− 1

)

+ λ

(
k + 1

2
, n− 1

)

. (b)

Proof. There are two cases to consider.

Case 1: k ≡ 1 (mod 4), that is k ends with 01, k − 1 ends with 00 and k + 1 ends with

10.

From Lemma 4.3, the BSD representations for k + 1 in n sbits are the same as those

for k+1
2 with a 0 added as the least significant sbit. If this 0 is replaced by a 1, those

representations will be possible representations for k. If we think we should start replac-

ing the rightmost 11 with 01 to generate new representations, we will find out that all

representations that end with a 1 will be accounted for by considering those of k − 1.

Also from Lemma 4.3, the BSD representations for k− 1 in n sbits are the same as those

for k−1
4 in n − 2 sbits with 00 added as the least significant sbits. If the rightmost 0

is replaced with a 1, those representations will be possible representations for k. If we

think we should start replacing the rightmost 01 with 11 to generate new representations,

we will find out that all representations that end with a 1 have been accounted for by

considering those of k + 1 as mentioned before.

Case 2: k ≡ 3 (mod 4), that is k ends with 11, k − 1 ends with 10 and k + 1 ends with

00.

The same argument holds as in case 1. The BSD representations of k− 1 can be possible

representations for k by replacing the least significant 0 with 1. Also the BSD represen-

tations for k + 1 can be possible representations for k by replacing the least significant 0

with 1.
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There are no other possible representations for k. This is obvious from the fact that

any BSD representation for k should have the rightmost sbit either 1 or 1, it can not be 0.

Otherwise, k ≡ 0 (mod 2) which is not the case since k is odd. So, if the rightmost 1 or 1

in any representation of k is replaced with 0 then this will be one of the representations of

the even number preceding or following k respectively as shown in (a). Using Lemma 4.3,

(b) is obtained. �

4.1.2 Number of BSD Representations of Length n

Here we will investigate the total number of BSD representations for all integers in the

range [0, 2n − 1] that are n sbits long. We will denote that total number by σ(n). Table

4.1 gives an example of λ(k, n) and σ(n) for small n.

We can intuitively find an expression for σ(n) as follows. In the BSD system, the

integers k, represented in n sbits, would be in the range −2n < k < 2n. There are

3n different combinations for k. We consider in this case non-negative integers k, i.e.,

0 ≤ k < 2n. In fact, −k has the same BSD representations as k with the 1s replaced with

1s and vice versa. Thus, the total number of non-negative combinations is 3n+1
2 . We will

now use the previous lemmas to prove that

2n−1∑

k=0

λ(k, n) = σ(n) =
3n + 1

2
.

Let

ε(n) =
2n−1−1∑

k=1

λ(k, n). (4.1)

From Lemma 4.1(i) and Lemma 4.2, we have

σ(n) = σ(n− 1) + ε(n) + 1. (4.2)
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Table 4.1: λ(k, n) and σ(n) for small n.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 5 cont’d

k λ(k, n) k λ(k, n) k λ(k, n) k λ(k, n) k λ(k, n) k λ(k, n)

0 1 0 1 0 1 0 1 0 1 16 1

1 1 1 2 1 3 1 4 1 5 17 4

2 1 2 2 2 3 2 4 18 3

3 1 3 3 3 5 3 7 19 5

4 1 4 2 4 3 20 2

5 2 5 5 5 8 21 5

6 1 6 3 6 5 22 3

7 1 7 4 7 7 23 4

8 1 8 2 24 1

9 3 9 7 25 3

10 2 10 5 26 2

11 3 11 8 27 3

12 1 12 3 28 1

13 2 13 7 29 2

14 1 14 4 30 1

15 1 15 5 31 1

σ(n) = 2 σ(n) = 5 σ(n) = 14 σ(n) = 41 σ(n) = 122
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If we substitute for σ(n) recursively in this equation we obtain

σ(n) = σ(1) + ε(2) + · · ·+ ε(n) + n− 1. (4.3)

From Lemma 4.3 we have

2n−1−1∑

k=2, k even

λ(k, n) =
2n−1−2∑

k=2, k even

λ

(
k

2
, n− 1

)

=
2n−2−1∑

i=1

λ(i, n− 1)

= ε(n− 1). (4.4)

From Lemma 4.4 we have

2n−1−1∑

k=1, k odd

λ(k, n) =
2n−1−1∑

k=1, k odd

(

λ

(
k − 1

2
, n− 1

)

+ λ

(
k + 1

2
, n− 1

))

=
2n−2−1∑

i=0

λ(i, n− 1) +
2n−2
∑

i=1

λ(i, n− 1).

From Lemma 4.1(iii), λ(2n−1, n) = 1, and also from Lemma 4.1(i) we have

2n−1−1∑

k=1, k odd

λ(k, n) = 2 + 2 ε(n− 1) (4.5)

where the last equality follows from (4.4). Substituting from (4.4) and (4.5) into (4.1),

we have

ε(n) = ε(n− 1) + 2 + 2 ε(n− 1)

= 3 ε(n− 1) + 2. (4.6)

With recursive substitution for ε(n) and the fact that ε(1) = 0, we obtain

ε(n) = 3n−1ε(1) + 2 + 2 · 3 + 2 · 32 + · · ·+ 2 · 3n−2

= 2 · 3
n−1 − 1

3− 1

= 3n−1 − 1. (4.7)
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Finally we use (4.7) and the fact that σ(1) = 2 (from Table 4.1) to evaluate (4.3)

σ(n) = 2 + (3− 1) + · · ·+ (3n−1 − 1) + n− 1

= 2 + (n− 1)− (n− 1) + 3 · 3
n−1 − 1

3− 1

=
3n + 1

2
. (4.8)

4.1.3 Number of BSD Representations of Length n + 1

The NAF of an integer may be one sbit longer than its binary representation [Rei60;

Sol00]. As mentioned before, the algorithms that generate a random BSD representation

of an integer are each based on a NAF-generating algorithm [HM02a; EH03a] (cf. Chap-

ter 3). Therefore, we are interested in knowing the number of BSD representations of an

n-bit integer k that are n+1 sbits long. Moreover, for those integers that are in the range

[2n−1, 2n−1], we will see the effect of having a 0 as the most significant bit in their binary

representation on the number of their BSD representations and on the distribution of the

number of representations among all n-bit integers as opposed to the previous section.

The effect of prepending more 0s to the binary representation of integers on the number

of their BSD representation is studied in Section 4.3.3.

Lemma 4.5 Let δ(k, n) be the number of BSD representations of k ∈ [0, 2n − 1] in n+ 1

sbits. Then, we have

δ(k, n) = λ(k, n) + λ(2n − k, n).

Proof. A part of the BSD representations of k that are n + 1-sbit long are those that

have a 0 as the most significant sbit and their number is λ(k, n), as was defined in the

previous section. If we change the most significant 0 in these representations to a 1, i.e.,

add 2n to the value of k, we should add −(2n − k) in the remaining n sbits, that is the
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negative of the two’s complement of k. 2n − k has λ(2n − k, n) BSD representations of

length n. The negative of these representations is obtained by replacing the 1s with 1s

and vice versa. �

The same argument applies to the two’s complement of k

δ(2n − k, n) = λ(2n − k, n) + λ(k, n)

= δ(k, n). (4.9)

For k = 0, δ(0, n) = λ(0, n) = 1. From (4.9), we conclude that, for k ∈ [0, 2n − 1], the

distribution of δ(k, n) is symmetric around k = 2n−1.

Let ς(n) be the total number of BSD representations of length n + 1 for all integers

k ∈ [0, 2n − 1]. Then, we have

ς(n) =

2n−1∑

k=0

δ(k, n) = 1 +

2n−1∑

k=1

δ(k, n)

= 1 +
2n−1∑

k=1

(
λ(k, n) + λ(2n − k, n)

)
= 1 + 2

2n−1∑

k=1

λ(k, n)

= 1 + 2

(
3n + 1

2
− 1

)

= 3n. (4.10)

Remark 4.1 We conclude that, for any n-bit integer, the average number of its—(n+ 1)

sbits long—BSD representations is roughly
(

3
2

)n

Table 4.2 gives an example of δ(k, n) and ς(n) for small n. It is clear from Table 4.1

and Table 4.2 and from the definitions of λ(k, n) and δ(k, n) that, for 0 ≤ k < 2n−1,

λ(k, n) = δ(k, n− 1) (4.11)

since in this range, the binary representation of k has a 0 as the leftmost bit. In other

words, the algorithm that computes λ(k, n) that we present in Section 4.2 can be used to
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Table 4.2: δ(k, n) and ς(n) for small n.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 5 cont’d

k δ(k, n) k δ(k, n) k δ(k, n) k δ(k, n) k δ(k, n) k δ(k, n)

0 1 0 1 0 1 0 1 0 1 16 2

1 2 1 3 1 4 1 5 1 6 17 9

2 2 2 3 2 4 2 5 18 7

3 3 3 5 3 7 3 9 19 12

4 2 4 3 4 4 20 5

5 5 5 8 5 11 21 13

6 3 6 5 6 7 22 8

7 4 7 7 7 10 23 11

8 2 8 3 24 3

9 7 9 11 25 10

10 5 10 8 26 7

11 8 11 13 27 11

12 3 12 5 28 4

13 7 13 12 29 9

14 4 14 7 30 5

15 5 15 9 31 6

ς(n) = 3 ς(n) = 9 ς(n) = 27 ς(n) = 81 ς(n) = 243

compute δ(k, n) as

δ(k, n) = λ(k, n+ 1), (4.12)

for 0 ≤ k < 2n−1.

4.1.4 Integer with Maximum Number of BSD Representations

It is desirable to know which integer k ∈ [0, 2n − 1] has the maximum number of BSD

representations of length n or n+ 1 sbits. We note from (4.12) that the integer with the

largest δ(k, n) is the same one with the largest λ(k, n + 1). Also from the symmetry of
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δ(k, n) around 2n−1 (Eq. (4.9)), we note that there are two values of k for which δ(k, n)

is the maximum value. We will denote them as kmax1,n and kmax2,n. From (4.9) we have

kmax2,n = 2n− kmax1,n. In the following theorem, we will consider only kmax1,n and drop

the subscript 1.

Theorem 4.1 For n ≥ 3,

δ(kmax,n, n) = δ(kmax,n−1, n− 1) + δ(kmax,n−2, n− 2).

Proof. We will prove this theorem by induction. From Table 4.2, we see that the theorem

is true for n = 3. Now we assume that it is true up to an arbitrary n = i − 1. That is,

using (4.12) we can write

λ(kmax,i−1, i) = λ(kmax,i−2, i− 1) + λ(kmax,i−3, i− 2) (4.13)

Also, from Lemma 4.4, we know that

λ(kmax,i−1, i) = λ

(
kmax,i−1 − 1

2
, i− 1

)

+ λ

(
kmax,i−1 + 1

2
, i− 1

)

. (4.14)

From Lemma 4.3 and Lemma 4.4, kmax,i must be an odd integer. Let k be an i-bit

odd integer, then k =
(

k−1
2

)
+
(

k+1
2

)
. Obviously, one of these two terms is an odd integer

and the other is the preceding or following even integer. We will denote those two integers

as ko and ke, respectively. From Lemma 4.4, we have

λ(k, i+ 1) = λ(ko, i) + λ(ke, i).

For k to be equal kmax,i, one or both of the following conditions must be true:

• ko = kmax,i−1, and ke ≡ 2 (mod 4) (Lemma 4.3 and 4.4).

• ke has the maximum number of representations among all even integers. From

Lemma 4.3, this is equivalent to saying that ke = 2 · kmax,i−2.
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We have four cases for the value of an odd k modulo 8. In each case, if the first

condition is verified, we will prove that the second condition is also verified, which will

prove the theorem.

Case 1: k ≡ 1 (mod 8)

⇒ ke = k−1
2 ≡ 0 (mod 4).

This violates the first condition.

Case 2: k ≡ 3 (mod 8)

⇒ ko = k−1
2 ≡ 1 (mod 4)⇒ ke = k+1

2 ≡ 2 (mod 4).

Assume ko = kmax,i−1

⇒ kmax,i−1−1
2 ≡ 0 (mod 2) (even).

Hence, from (4.13) and (4.14), we have

kmax,i−2 =
kmax,i−1 + 1

2
,

2 · kmax,i−2 = kmax,i−1 + 1 = ke. (4.15)

That is, the second condition is verified.

Case 3: k ≡ 5 (mod 8)

⇒ ke = k−1
2 ≡ 2 (mod 4)⇒ ko = k+1

2 ≡ 3 (mod 4).

Assume ko = kmax,i−1

⇒ kmax,i−1−1
2 ≡ 1 (mod 2) (odd).

Hence, from (4.13) and (4.14), we have

kmax,i−2 =
kmax,i−1 − 1

2
,

2 · kmax,i−2 = kmax,i−1 − 1 = ke. (4.16)
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That is, the second condition is verified.

Case 4: k ≡ 7 (mod 8)

⇒ k−1
2 ≡ 3 (mod 4) (odd) ⇒ ke = k+1

2 ≡ 0 (mod 4).

This violates the first condition. �

From the proof of Theorem 4.1, we can deduce the following corollary.

Corollary 4.1

kmax,n = kmax,n−1 + 2 · kmax,n−2.

Values and patterns of kmax1,n and kmax2,n

Now, we will derive a formula for kmax1,n and kmax2,n. From the proof of Theorem 4.1,

we see that when kmax1,n ≡ 3 (mod 4) (Case 2), kmax1,n−1 ≡ 1 (mod 4) and

kmax1,n = 2 · kmax1,n−1 + 1, (4.17)

and that when kmax1,n ≡ 1 (mod 4) (Case 3), kmax1,n−1 ≡ 3 (mod 4) and

kmax1,n = 2 · kmax1,n−1 − 1. (4.18)

Thus, we see that with every increment of n (n > 2), cases 2 and 3 alternate. For n = 3,

from Table 4.2 we have kmax1,3 = 3 ≡ 3 (mod 4). Hence, Case 2 occurs when n is odd

and Case 3 occurs when n is even.

For n even, we can substitute from (4.17) into (4.18) to obtain

kmax1,n = 2 kmax1,n−1 − 1

= 2 (2 kmax1,n−2 + 1)− 1

= 4 kmax1,n−2 + 1. (4.19)
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Using recursive substitution,

kmax1,n = 4 · 4 · 4 · · · kmax1,2 + 1 + 4 + 16 + · · ·

= (22)
n−2

2 · 1 +
(22)

n−2
2 − 1

22 − 1

=
1

3
(2n − 1). (4.20)

For n odd, we can follow the same derivation procedure to obtain

kmax1,n =
1

3
(2n + 1). (4.21)

As for kmax2,n, for n even we have

kmax2,n = 2n − 1

3
(2n − 1)

=
1

3
(2n+1 + 1) (4.22)

= kmax1,n+1

where the last equality follows from (4.21).

Similarly, for n odd, we have

kmax2,n =
1

3
(2n+1 − 1) (4.23)

= kmax1,n+1.

The sbit pattern of kmax1,n for even n and for odd n can be deduced from the previous

discussion. From (4.19) we can deduce that for n even, kmax1,n is of the form (〈0 1〉n
2 )2

and hence from (4.18) for n odd, kmax1,n is of the form (〈0 1〉n−1
2 1)2.

Thus, after specifying the binary structure of the integer with maximum number of

BSD representations, we will use it as the worst-case input to our left-to-right generation

algorithm in Section 4.3.2. We will hence derive an expression for the number of BSD

representations of that integer.
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δ(kmax,n, n) as a Fibonacci number

The Fibonacci numbers form a sequence defined by the following recurrence relation

[Kos01]

F (0) = 0, F (1) = 1, F (n) = F (n− 1) + F (n− 2), n > 1. (4.24)

The closed-form expression of Fibonacci numbers, which is known as Binet’s formula, is

F (n) =
ϕn − (1− ϕ)n

√
5

, (4.25)

where

ϕ =
1 +
√

5

2
, (4.26)

ϕ is known as the golden ratio.

From Theorem 4.1, we can see that the values of δ(kmax,n, n) for n ≥ 1 form a

Fibonacci sequence, where from Table 4.2, we have

δ(kmax,1, 1) = 2 = F (3),

δ(kmax,1, 2) = 3 = F (4),

hence,

δ(kmax,n, n) = F (n+ 2) =
ϕn+2 − (1− ϕ)n+2

√
5

. (4.27)

In Section 4.3.2, we will derive another expression for δ(kmax,n, n) = λ(kmax,n, n+ 1).

4.2 Algorithm to Compute the Number of BSD Represen-

tations for an Integer

In this section, we will present an algorithm that computes λ(k, n) for any integer

k ∈ [0, 2n − 1]. This algorithm is based on the lemmas presented in Section 4.1.1.
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Algorithm 4.1. Number of BSD representations of an integer k in n sbits

Input: k ∈ [0, 2n − 1] and n.

Output: C = λ(k, n).

external λ2(ke, ko, we, wo, n). /*computed by Algorithm 4.2 that follows.*/

1. if (k = 0) then

C ← 1.

2. else if (k = 1) then

C ← n.

3. else if (k ≥ 2n−1) then

C ← λ(k − 2n−1, n− 1).

4. else if (k is even) then

C ← λ(k
2
, n− 1).

5. else

5.1 if (k ≡ 1 (mod 4)) then

C ← λ2(k−1

2
, k+1

2
, 1, 1, n− 1).

5.2 else

C ← λ2(k+1

2
, k−1

2
, 1, 1, n− 1).

6. Return(C).

Algorithm 4.1 uses Lemma 4.1(i) and 4.1(ii) to return the value of λ(k, n) directly

if the value of k is either 0 or 1. Otherwise, it uses Lemmas 4.2 and 4.3 to trim k

recursively from any leading 1s or trailing 0s since they do not add to the number of BSD

representations of k as mentioned in the proofs of these lemmas. Then, this algorithm

calls Algorithm 4.2 to find the actual number of BSD representations of k which is then
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an odd integer in the range [0, 2n′−1−1], for some n′ ≤ n. Hence, Lemma 4.4 is applicable

to this k.

Algorithm 4.2. Auxiliary algorithm used by Algorithm 4.1 to compute λ(k, n)

Input: ke, ko, we, wo and n.

Output: c = λ2(ke, ko, we, wo, n).

1. if (ko = 1 AND ke = 2) then

c← n ∗ wo + (n− 1) ∗ we.

2. else

2.1 if (ke ≡ 0 (mod 4)) then

2.1.1 if (ko ≡ 1 (mod 4)) then

c← λ2(ke

2
, ke

2
+ 1, wo + we, wo, n− 1).

2.1.2 else

c← λ2(ke

2
, ke

2
− 1, wo + we, wo, n− 1).

2.2 else

2.2.1 if (ko ≡ 1 (mod 4)) then

c← λ2(ke

2
− 1, ke

2
, wo, wo + we, n− 1).

2.2.2 else

c← λ2(ke

2
+ 1, ke

2
, wo, wo + we, n− 1).

3. Return(c).

Using Lemma 4.4, λ(k, n) for k odd consists of two other evaluations of the same

function λ; one is for an even integer, ke which is the closest even integer to k/2, and the

other is for the preceding or the following odd integer, ko. If we start using Lemmas 4.3

and 4.4 recursively to evaluate λ for ke and ko respectively, at each iteration there will

be always two terms for the λ function multiplied by a certain weight each, we and wo.
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In general, at the ith iteration

λ(k, n) = we,n−i λ(ke,n−i, n− i) + wo,n−i λ(ko,n−i, n− i).

At the beginning, we,n = wo,n = 1. From Lemma 4.3 we have

λ(ke,n−i, n− i) = λ

(
ke,n−i

2
, n− i− 1

)

.

From Lemma 4.4 we have

λ(ko,n−i, n− i) = λ

(
ko,n−i − 1

2
, n− i− 1

)

+ λ

(
ko,n−i + 1

2
, n− i− 1

)

.

There are two possible cases for ke in each iteration and two corresponding subcases for

ko.

Case 1: ke,n−i ≡ 0 (mod 4) ⇒ ke,n−i

2 is even

Case 1.1: ko,n−i ≡ 1 (mod 4), i.e., ko,n−i = ke,n−i + 1 ⇒ ko,n−i−1
2 is even

Hence,

ke,n−i−1 =
ko,n−i−1

2 =
ke,n−i

2

ko,n−i−1 =
ko,n−i+1

2 =
ke,n−i

2 + 1

Case 1.2: ko,n−i ≡ 3 (mod 4), i.e., ko,n−i = ke,n−i − 1 ⇒ ko,n−i−1
2 is odd

Hence,

ke,n−i−1 =
ko,n−i+1

2 =
ke,n−i

2

ko,n−i−1 =
ko,n−i−1

2 =
ke,n−i

2 − 1
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In case 1, the weights are updated as follows

we,n−i−1 = wo,n−i + we,n−i

wo,n−i−1 = wo,n−i

Case 2: ke,n−i ≡ 2 (mod 4) ⇒ ke,n−i

2 is odd

Case 2.1: ko,n−i ≡ 1 (mod 4), i.e., ko,n−i = ke,n−i − 1

Hence,

ke,n−i−1 =
ko,n−i−1

2 =
ke,n−i

2 − 1

ko,n−i−1 =
ko,n−i+1

2 =
ke,n−i

2

Case 2.2: ko,n−i ≡ 3 (mod 4), i.e., ko,n−i = ke,n−i + 1

Hence,

ke,n−i−1 =
ko,n−i+1

2 =
ke,n−i

2 + 1

ko,n−i−1 =
ko,n−i−1

2 =
ke,n−i

2

In case 2, the weights are updated as follows

we,n−i−1 = wo,n−i

wo,n−i−1 = wo,n−i + we,n−i

We depict in Figure 4.1 some examples that illustrate the iterations of Algorithm 4.2

for some chosen values of k. In these examples we have used the notation (k) that means

λ(k, n). We have also used a tree-like representation where, for a parent node k, the

number of BSD representations is equal to the sum of the number of BSD representations

of its child nodes. The weight update procedure is depicted by the number of links
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between the parent and child nodes. The examples are chosen such that ke and ko that

are passed as arguments to Algorithm 4.2, e.g., 12 and 13 in Figure 4.1 (a), correspond

to the four different cases discussed.

For the time and space complexity of Algorithm 4.1—including its usage of Algo-

rithm 4.2—it is clear that it runs in O(n) time and occupies O(n) bits in memory. This

time complexity results from the fact that both algorithms deal with the integer k one

bit at a time. As for the space complexity, the new values generated for k and n by

Algorithm 4.1 and for ke, ko, we, wo and n by Algorithm 4.2 can replace the old values

in memory. That is, though the algorithms are illustrated in a recursive form, they can

be transformed into an iterative form.

4.3 Left-to-Right BSD Randomization and Generation Al-

gorithms

The algorithms that generate a random BSD representation of an integer [OA01; HM02a;

EH03a] (cf. Chapter 3) scan its bits from the least significant to the most significant bit,

i.e., from right to left. This is because they are based on the NAF-generating algorithms

[Rei60; MO90; Sol00] that scan the bits of the integer in the same direction.

In this section, we present an algorithm that generates a random BSD representation

of k while scanning it from left to right. Then we modify it in order to generate all of

the possible BSD representations of k. The modified algorithm helps us demonstrate the

exponential growth with n of the number of BSD representations of kmax1,n, as well as

the effect of prepending 0s to any integer k.
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n = 7

= (12) + (13)

= 2 (6) + (7)

= 3 (3) + (4)

= 3 (1) + 4 (2)

n = 7

n = 6

n = 5

n = 4

n = 3

(23)

= (11) + (12)

= (5) + 2 (6)

= (2) + 3 (3)

= 4 (1) + 3 (2)

(6)

(11)

(23)

(5)

(3)(2)

(1) (2)

k = 23 = 0010111

(12)

(27)

= (13) + (14)

= (6) + 2 (7)

= 3 (3) + 2 (4)

= 3 (1) + 5 (2)

(7)

(14)(13)

(27)

k = 27 = 0011011

(6)

(3)

(1)

(4)

(2)

(29)

= (14) + (15)

= 2 (7) + (8)

= 2 (3) + 3 (4)

= 2 (1) + 5 (2)

(15)

(7)

(14)

(8)

(3)

(1) (2)

(4)

(29)

k = 29 = 0011101

(25)

n = 6

n = 5

n = 4

n = 3

(12) (13)

(25)

(7)(6)

(3) (4)

(2)(1)

k = 25 = 0011001

(a)

(d)

(b)

(c)

Figure 4.1: (a) λ(25, 7), corresponds to case 1.1. (b) λ(23, 7), corresponds to case 1.2. (c)

λ(27, 7), corresponds to case 2.1. (d) λ(29, 7), corresponds to case 2.2.
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4.3.1 Left-to-Right Randomization Algorithm

We start with an example. Let k = 10001001 = 27 + 24 + 20. That is k is the result of

adding the following three integers:

k = 10000000

+ 00001000

+ 00000001

We will consider the different BSD representations for each integer separately and then

add those different representations together to get those of k.

The first integer has no other representation according to Lemma 4.1(iii). From the

same lemma, the second integer has the following additional representations 00011000,

00111000, 01111000 and 11111000. If we add this last representation to the first integer,

then k would need more than 8 sbits in this example to represent it, so we will not take

it into consideration. Finally the third integer has this set of additional representations

00000011, 00000111, 00001111, . . . and 01111111. We will notice that we only need to

take into account the first three representations. This is because all the representations

starting from the third one when added to the first two integers will yield a 0 in sbit

position 3, 1s in the lower positions and a sbit pattern in the upper positions that has

been accounted for in the different representations of the second integer.

Also, we can consider that this representation of k

k = 10000000

+ 00111000

+ 00001111

= 10110111
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could be obtained from this one

k = 10000000

+ 00111000

+ 00000111

= 10111111

after changing the 11 at sbit positions 3 and 2 to 01.

Thus, the underlying idea of the algorithm is that the binary representation of k is

subdivided into groups of bits—of different lengths—such that each group is formed by a

number of consecutive 0s ending with a single 1. For each of these groups a random BSD

representation is chosen as in the proof of Lemma 4.1(ii). Whenever the choice yields a 1

at the end of a group—which happens when any representation for that group other than

the binary one is chosen—and a 1 at the beginning of the next group—which happens

when the representation chosen for the next group is the one that has no 0s—another

random decision is taken so as whether to leave those two sbits (i.e., 11) as they are or

to change them to 01.

The choice of a random representation for a certain group is done by counting the

number of 0s in it, say z, and choosing a random integer t ∈ [0, z] which will be the

number of 0s to be written to the output. If t is equal to z, the last sbit to be written

to the output for this group is 1, and it is actually written before considering the next

group. Otherwise, t 0s, a 1 and only z − t − 1 1s are written to the output, that is the

last 1 is not written, but saved as the value of a variable labeled as last. We then do the

same for the next group. If for the next group t = 0, we take a random decision whether

to write 11 to the output or 01 at the boundary of the two groups. This leads to the

following algorithm. Note that a 0 is prepended to k so that the BSD representation k′
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generated is of length n+ 1 sbits.

Algorithm 4.3. Left-to-Right Randomization of an integer’s BSD representation

Input: k = (kn−1, . . . , k0)2.

Output: k′ = (k′n, . . . , k
′
0)BSD, a random BSD representation of k.

1. Set kn ← 0; i← n+ 1; last← 1.

2. for j from n down to 0 do

if (kj = 1) then

2.1 t←R [0, i− j − 1].

2.2 if (t = 0 AND last = 1) then

2.2.1 c←R {0, 1}.

2.2.2 if (c = 0) then

k′i ← 1.

i← i− 1; k′i ← 1.

2.2.3 else

k′i ← 0.

2.3 else

2.3.1 if (last = 1) then

k′i ← 1.

2.3.2 while (t > 0) do

i← i− 1; k′i ← 0; t← t− 1.

2.3.3 i← i− 1; k′i ← 1.

2.4 if (i = j) then

last← 1.

2.5 else

2.5.1 while (i > j + 1) do

i← i− 1; k′i ← 1.
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2.5.2 i← i− 1; last← 1.

3. if (last = 1) then

k′i ← 1.

4. while (i > 0) do

i← i− 1; k′i ← 0.

We note the following about the algorithm:

• The algorithm runs in O(n) time.

• The sbits of k′ are written to the output one at a time in their correct order from

left to right. This means that there is no need to store k′ in an application where

the sbits are processed from left to right as they are generated. For example, it is

advantageous to perform the elliptic curve scalar multiplication from left to right,

especially when a mixed (projective and affine) coordinate system is used for saving

computational cost in scalar multiplication [LD99; CMO98]. If the randomization of

the BSD representation of the key is needed during the scalar multiplication, then

Algorithm 4.3 can be readily interleaved with point doubling and point addition

operations. Thus, it is more beneficial than Ha-Moon’s algorithm [HM02a] (cf.

Chapter 3), where the generated representation is first stored in order to use it in

the scalar multiplication. Note that a BSD representation would probably need

twice the storage required for the binary representation, if each sbit is internally

represented by two bits.

• The minimum and/or the maximum number of 0s allowed in each group of the

resulting BSD representation can be set by changing the range from which t is

randomly chosen in step 2.1, e.g., the minimum value can be some fraction of
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z = i − j − 1. This is interesting if it is desired to keep the Hamming weight of

the representation low. Moreover, in step 2.2.1, a bias could be given to choosing 1

more than 0 in order to make it more likely to choose 01 at the group boundaries

than 11.

• When there is a group with a long run of 0s in k, considering the possible random

representation for that group, we can see that the most significant bit of that group

will be 0 with high probability among the resulting representations. This is also the

case for a long run of 1s. Though each of those 1s forms a group, the randomization

at the boundary of the group ensures that the most significant bit of that run is

also more likely to be 0. That is 01111 = 11111 = 10111 = 10011 = 10001. This

agrees with the observation of Fouque et al. [FMPV04] on their right-to-left attack

that, after a long run of 0s or 1s, the probability of the sbit being 0 becomes close

to 1.

• The number of representations of a group is the length of that group. Assume that

an n-bit integer k has all groups of the same length l ≥ 2 (since for l = 1, k can

be considered as having one group as in the previous note). If we do not consider

the randomization at the group boundaries, then the lower bound on the number

of representations of k, λ(k, n), is (l)
n
l . If we consider the boundary randomization

as one more representation of the group—except for the last group, then the upper

bound on λ(k, n) is (l + 1)
n
l
−1 l ≈ (l + 1)

n
l . The actual number is closer to the

upper boundary than the lower one. The upper boundary strictly decreases with

l. We conclude that an integer with more groups has a larger number of BSD

representations than another integer of the same length with fewer groups. As

mentioned in the previous note, a run of 1s can be considered as one group. Thus,
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the former conclusion is equivalent to saying that an integer with a better random

distribution of its bits has more representations than another integer with longer

runs of 0s or 1s. In Section 4.3.2, we will derive an expression for the number of

BSD representations when l = 2, which will be of the order of the upper boundary.

• It could be further investigated whether the output BSD representations of this

algorithm as well as those of the HM algorithm (cf. Section 3.1.2) are equally

probable.

4.3.2 Left-to-Right Generation Algorithm

The algorithm presented here is a modified version of Algorithm 4.3 that recursively and

exhaustively substitutes every group of 0s ending with a 1 with one of its possible forms.

It also takes into consideration the alternative substitutions at the group boundary when

the representation of a group ends with a 1 and that of the next group starts with 1.

This algorithm can be used as a straight-forward check that Algorithm 4.3 is capable of

generating any possible—(n + 1) sbits long—BSD representation of an integer k in the

range [1, 2n − 1], i.e., there is no BSD representation of k that cannot be generated by

that algorithm. It was tested on small values of n.

Algorithm 4.4. Left-to-Right Generation of all BSD representations of k

Input: k = (kn−1, . . . , k0)2.

Output: all possible strings k′ = (k′n, . . . , k
′
0)BSD.

1. Subdivide k from left to right into groups of consecutive 0s each ending with a single 1.

Store the length of each group in a look-up table G. Let g be the index of the table.

2. Set g ← 0; i← n+ 1;

last← 1; j ← i−G[g]; k′ ← 〈〉.
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3. for t = 0 to i− j − 1 do

ChooseForm(k, g, t, i, j, last, k′).

Algorithm 4.5. ChooseForm(k, g, t, i, j, last, k′), a recursive procedure employed by Algo-

rithm 4.4.

Input: k, g, t, i, j, last and k′.

Output: returns k′, a string of sbits, as a possible BSD representation of k.

1. if (t > 0) OR (last = 1) then //this step is equivalent to step 2.3 in Algorithm 4.3.

1.1 if (last = 1) then

k′ ← k′|1. //concatenate k′ with 1.

1.2 while (t > 0) do

i← i− 1; k′ ← k′|0; t← t− 1.

1.3 i← i− 1; k′ ← k′|1.

2. if (i = j) then

last← 1.

3. else

3.1 while (i > j + 1) do

i← i− 1; k ← k′|1.

3.2 i← i− 1; last← 1.

4. if (j = 0) then

4.1 if (last = 1) then

k′ ← k′|1.

4.2 Return(k′).

5. g ← g + 1; j ← j −G[g].

6. if (j = 0) AND (k is even) then



4.3. Left-to-Right BSD Randomization and Generation Algorithms 79

6.1 if (i > 0) then

6.1.1 if (last = 1) then

k′ ← k′|1.

6.1.2 while (i > 0) do

i← i− 1; k′ ← k′|0.

6.2 Return(k′).

7. t← 0.

8. if (last = 1) then

ChooseForm(k, g, t, i− 1, j, last, k′|11).

ChooseForm(k, g, t, i, j, last, k′|0).

9. else

ChooseForm(k, g, t, i, j, last, k′).

10. for t from 1 to i− j − 1 do

ChooseForm(k, g, t, i, j, last, k′).

To better explain the different behaviors of the algorithm, we present in Figure 4.2

the tree explored by the algorithm for k = 21 and n = 5. This tree is explored by the

algorithm in a depth-first fashion. That is, the recursive function ChooseForm is first

called from Algorithm 4.4 at node a in the figure. Then this function calls itself at node

b and then at node c where it returns with the first BSD representation for k = 21 which

is 111111. With the flow control at node b the function calls itself at node d where the

second BSD representation is generated and so forth.

The algorithm proceeds as follows. The integer k is first subdivided into groups of bits

where each group consists of consecutive 0s and a single 1 at the end as for Algorithm 4.3.

Starting from the leftmost group, a particular BSD representation for that group is chosen
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Figure 4.2: The tree explored by Algorithm 4.4 for k = 21 and n = 5.

starting with the one that contains no 0s (i.e., t = 0, where t is the number of 0s to be

written to the output for that group as before). The representation is formed inside the

function ChooseForm which takes t as one of its arguments. In turn, this function goes

through the possible values of t for the following group and, for each one, calls itself

to form the corresponding BSD representation of that group. When t is equal to 0,

the two possible alternatives at the group boundary are considered as was explained in

Section 4.3.1. For example, in Figure 4.2, the last sbit in the group at node a may remain

1 or change to 0 depending on the random decision taken at the group boundary when

t = 0 for the next group. This is why this last sbit is written at nodes b and f before the

symbol ‘|’ which designates the boundary between the groups.

The worst-case complexity analysis of Algorithm 4.4 is presented in the following.

The worst case occurs for the integer with the maximum number of BSD representations

in the range [1, 2n − 1]. There are actually two integers with this property for any given

n, which we referred to as kmax1,n and kmax2,n in Section 4.1.4. We mentioned that,



4.3. Left-to-Right BSD Randomization and Generation Algorithms 81

for n even, kmax1,n is of the form (〈0 1〉n
2 )2. For example, kmax1,6 = 21 = (010101)2

(see Figure 4.3). We also mentioned that, for any n, kmax2,n = kmax1,n+1. For example,

kmax1,5 = 11 = (01011)2 and kmax2,5 = 21 = (10101)2 (see Figure 4.3). Therefore, our

analysis is conducted on those integers k of the binary form (〈0 1〉n
2 )2 for n even and

(1〈0 1〉n−1
2 )2 for n odd. In the following discussion, we will drop the subscript n from

kmax1,n and kmax2,n for simplicity, since it will be obvious from the context.

For n even, we have the following.

n = 2: kmax1 = kmax2 = 1 = (01)2,

δ(1, 2) = λ(1, 3) = 3.

The tree explored for this integer is of the same structure as the one having as

root the node b in Figure 4.2. The difference is that, in this case, t can take

the values 0, 1 and 2 and the corresponding representations are 111, 011and 001,

respectively, with only one representation for t = 0.

n = 4: kmax1 = 5 = (0101)2,

δ(5, 4) = λ(5, 5) = 8 = 3 · 3− 1.

The tree explored for this integer is of the same structure as the one having as

root a in Figure 4.2.

n = 6: kmax1 = 21 = (010101)2,

δ(21, 6) = λ(21, 7) = 21 = 3 · 3 · 3− (3.1 + 3).

The tree explored for this integer is illustrated in Figure 4.3.
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Figure 4.3: The tree explored by Algoritm 4.4 for k = 21 and n = 6.

Let m = n
2 . By induction, we can deduce the following

λ(kmax1 , n+ 1) = 3m − (m− 1)3m−2 +

(
m−3∑

i1=1

i1

)

3m−4

−
(

m−5∑

i1=1

i1∑

i2=1

i2

)

3m−6 +

(
m−7∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3

)

3m−8 − · · · .
(4.28)

For n odd, we have the following.

n = 1: kmax1 = kmax2 = 1 = (1)2,

δ(1, 1) = λ(1, 2) = 2.

The tree explored for this integer is simply the same as the one having as root the

node u in Figure 4.2.

n = 3: kmax2 = 5 = (101)2,

δ(5, 3) = λ(5, 4) = 5 = 2 · 3− 1.

The tree explored for this integer is the same as the one having as root the node

p in Figure 4.2.
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n = 5: kmax2 = 21 = (10101)2,

δ(21, 5) = λ(21, 6) = 13 = 2 · 3 · 3− (3 + 2 · 1).

The tree for this integer is the one illustrated in Figure 4.2.

Let m = n−1
2 . By induction we can deduce the following

λ(kmax2 , n+ 1) = 2 · 3m −
[
3m−1 + 2(m− 1)3m−2

]

+

[

(m− 2)3m−3 + 2

(
m−3∑

i1=1

i1

)

3m−4

]

−
[(

m−4∑

i2=1

i2

)

3m−5 + 2

(
m−5∑

i1=1

i1∑

i2=1

i2

)

3m−6

]

+

[(
m−6∑

i2=1

i2∑

i3=1

i3

)

3m−7 + 2

(
m−7∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3

)

3m−8

]

− · · · .

(4.29)

From this discussion, for any n the maximum number of BSD representations gener-

ated by Algorithm 4.4 appears to be O(3b
n
2
c). However, a tighter bound on the maximum

number of BSD representations is obtained from (4.27) and is given by O(ϕn), where the

golden ratio ϕ ≈ 1.618 < 3
1
2 .

On a related note, Equations (4.28) and (4.29) can be considered another solution for

the Fibonacci number F (n − 2) (cf. (4.27)). The first few terms of these formulas can

then be used as an approximation to a Fibonacci number where floating point arithmetic

is not available.

4.3.3 Effect of Prepending 0s to k on the Number of its BSD Repre-

sentations

In this section, we show how the number of BSD representations of k increases if we

lengthen its binary representation by adding 0s at the most significant end.
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If we compare Figure 4.2 with Figure 4.3, we see that for the same integer k = 21,

increasing n from 5 to 6 had the effect of increasing the number of branches emerging

from the root by one. The added branch has the same tree structure as the leftmost

branch a in Figure 4.2. This is because the number of BSD representations of the first

group—recall how the integer is subdivided into groups—has increased by one. Since all

representations of a group, except for the original binary representation, end with a 1, the

added representation would generate two alternatives when, for the next group, t = 0.

If we increase n to 7, another subtree like the one having as root a will be added to the

tree. The same subtree is repeated with every 0 prepended to the binary representation

of k. It is easy to verify that this is true for any integer k.

As was mentioned before, the subtree having as root the node a is the tree explored

for k = 5 and n = 4. In general, the subtree that is repeated is the one formed for

the integer with the binary representation having the same groups as k except for the

leftmost group, i.e., with the most significant 1 removed. This integer can be expressed

as k−2blog2 kc for any k that is not a power of 2. A 0 should replace the most significant 1

that was removed in order to ensure a correct number of branches at the first level, that

is to compensate for the other branch corresponding to the case when t = 0 and last = 1.

Hence, the bit length of k − 2blog2 kc should be blog2 kc+ 1. That is

∆(k) = λ(k, n+ 1)− λ(k, n),

= λ(k, n+ i+ 1)− λ(k, n+ i) for any i ≥ 0,

= λ(k − 2blog2 kc, blog2 kc+ 1). (4.30)

where ∆(k) is the number of leaves in the repeated subtree. Based on (4.30), we have

the following theorem.
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Theorem 4.2 If ∆n is the number of 0s prepended to the binary representation of an

integer k, then the number of its BSD representations increases by ∆n ·∆(k).

4.4 Experimental Results

In this section, we present experimental results related to the speed and usage of Al-

gorithm 4.2. We consider an application where we need to choose long integers, e.g.,

n = 160, having a large number of BSD representations, e.g., more than 240.

First, we have shown in Section 4.2 that Algorithm 4.1 runs in O(n). As a simple illus-

tration, for n = 160, the integer that has the maximum number of BSD representations

is kmax1,160 = (〈0 1〉80)2 and the number of these representations is

δ(kmax1,160, 160) = (9E449CF5F9D5F28B6248B9097ED8)hex.

This result was computed in approximately 0.38µs on a 1.5 GHz Pentium M processor

(Centrino technology), using the BN (big numbers) library1. This is an empirical indi-

cation of how much time this algorithm can take when executed on a concurrent laptop

platform. As we mentioned previously, the algorithm could be modified to run iteratively

rather than recursively. Each iteration would then consist of simple operations such as

copy/move, shift right, increment/decrement and addition operations.

In Section 4.3.2, we have shown that δ(kmax1,n, n) is O(ϕn). As we have mentioned in

the example above, for n = 160, this number is a 111-bit integer. Using this information,

one can proceed as follows in order to choose an integer with a large number of BSD

representations:

1Provided by Eric Young as part of his implementation of SSL, known as openssl. Available from

http://www.openssl.org/source/openssl-0.9.7d.tar.gz

http://www.openssl.org/source/openssl-0.9.7d.tar.gz
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Step 1: Specify the minimum number of BSD representations that an integer should

have, that is a selection threshold T .

Step 2: Choose at random an integer k of length n.

Step 3: Use that integer as an input to Algorithm 4.1 to compute the number of its BSD

representations, δ(k, n).

Step 4: If δ(k, n) ≥ T , then accept the integer k. Otherwise, reject it and go to Step 2.

From the theory of runs [Kal85, Sec. 2.7], if k is an n-bit integer with n
2 0s and n

2

1s, then the most probable number of runs in k is between n
2 and n

2 + 3, that is the

probability that k would have several long runs of 0s and 1s—and hence fewer runs—is

small. Moreover, from the same theory, we can calculate the probability of having h runs

for such an integer for any h. For example, for n = 160, an integer with 80 0s and 80 1s

has the following probabilities of having h runs.

Pr(h = 20) = 9× 10−25,

P r(h = 40) = 1.7× 10−11.

Based on this theory and the last note in Section 4.3.1, it is expected that the percentage

of integers that would be rejected by the above selection procedure is negligible for large

n. We can illustrate this fact experimentally as follows.

Let α = log(δ(k, n))/ log(δ(kmax1,n, n)). For n = 160, let the selection threshold be

T = 240, then we would like to know the percentage of integers in the range [0, 2n − 1]

having α < 40/111 = 0.36036. For large n, it is computationally infeasible to calculate

this percentage in a deterministic way. However, for small n (n < 32), our experiments

show that this percentage is negligible and is strictly decreasing as n increases. For
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example, this percentage is 0.00132%, 0.00093% and 0.00065% for n = 29, 30 and 31,

respectively. If we set T = 280, then the percentage of rejected integers, i.e., those having

α < 80/111 = 0.72072 is 10.09%, 9.62% and 9.17% for n = 29, 30 and 31, respectively.

The actual value of T will depend on the application and, as mentioned in Step 1 on page

86, it can be set based on the minimum number of BSD representations that an integer

should have.

4.5 Conclusion

In this chapter, we have presented some interesting issues related to the number of binary-

signed digit (BSD) representations of an integer k ∈ [0, 2n − 1], such as the average

number of representations among integers of the same length and the bit patterns of

kmax1,n and kmax2,n, i.e., the integers of length n bits that have the maximum number

of BSD representations. We have presented the recurrence that governs the number of

representations of such integers and have, hence, proved that it is a Fibonacci number

and is O(ϕn), where ϕ ≈ 1.618 is the golden ratio [Kos01]. To the best of our knowledge,

there has been no precedence to our results in regard to these issues.

We have introduced an algorithm that calculates in O(n) the exact number of BSD

representations of k that are of length n sbits, and have illustrated the algorithm’s ef-

ficiency for n = 160, which is of interest for elliptic curve cryptographic applications.

We have also introduced an algorithm that generates in O(n) a random BSD represen-

tation of k by scanning its bits starting from the most significant end, and outputs the

sbits in their correct order one at a time. In addition, we have presented an algorithm

that can generate all BSD representations of an integer, which has helped us provide an-

other expression for the number of representations of kmax1,n. We have also proved that
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prepending 0s to the binary representation of an integer results in only a linear increase

in the number of its BSD representations and presented a way to compute this increase.

We have also presented some experimental results that show that the percentage

of integers of a certain length having a relatively small number of representations is

negligible.

Moreover, the formula we have provided for kmax1,n is considered an alternate formula

for Fibonacci numbers that can be computed without using floating point arithmetic, or

the first few terms of which used as an approximation. It is interesting to study how

many terms are necessary for a good approximation.



Chapter 5

τ-adic Representations of Integers

Koblitz curves [Kob92], Ea where a ∈ {0, 1}, are elliptic curves defined over F2 (cf. Sec-

tion 2.1.4). Their advantageous characteristic is the Frobenius mapping which can be

exploited to replace the point doubling operation with a simple squaring of the under-

lying field elements, i.e., the point coordinates [Sol00]. Hence, the scalar multiplication

algorithm of a point P ∈ E(F2m) can be executed in a much shorter time. This technique

is generally not as efficient when using an arbitrary endomorphism. In order to use this

mapping efficiently, Solinas [Sol00] has shown how to represent the scalar k in a number

system of base τ , that is

k =

l−1∑

i=0

κiτ
i, (5.1)

where κi ∈ {−1, 0, 1} and τ is a complex number representing the squaring map and

satisfying

τ2 + 2 = µτ, µ = (−1)1−a. (5.2)

His representation is also characterized by being a non-adjacent form (NAF) where no

two adjacent symbols are non-zeros, i.e., κiκi+1 = 0 for i ≥ 0 in order to minimize the

89
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number of point additions—abusing the notation, we will refer to κi as a signed bit or

sbit.

In this chapter, we first present our experimental results on an open problem proposed

by Solinas. This problem questions the uniform distribution of points resulting from

multiplying a randomly chosen τ -adic NAF (τNAF) by an input point.

We then present an efficient algorithm that takes as input the τ -adic NAF representa-

tion and produces a random τ -adic representation for the same scalar value. The symbols

of the randomized τ -adic representation are output one at a time from right to left which

allows the execution of the right-to-left scalar multiplication along with the randomization

algorithm without the need to store the new representation. The model of our algorithm

has enabled us to derive a number of interesting results with regard to τ -adic representa-

tions that we present subsequently. Our results include the characteristics of τNAFs that

have the maximum number of representations and formulas describing that number, the

average Hamming density of the representations. We then present deterministic methods

for determining both the average and the exact number of representations of τNAFs of a

certain length.

5.1 τNAFs of length m + a and their Distribution

In [Sol00], Solinas has first shown how to represent k as in (5.1) as a τNAF. However,

the direct recoding method results in l ≈ 2m. Therefore, he proposed a reduced τ -adic

non adjacent form (RTNAF) for k where k is first reduced modulo δ = (τm − 1)/(τ − 1)

resulting in l = m+ a. He has proved that in a τNAF representation the number of 0s is

2
3 on average. He also mentioned that 1 and -1 are equally likely on average.

To obtain a key k represented in a reduced τNAF, we can choose k ∈ [1, u− 1] where
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u is the prime order of the main subgroup, and apply Solinas’ method to produce its

RTNAF. Alternatively, as Solinas suggests [Sol00], we can directly choose a τNAF of

length m+ a as follows: the first sbit is generated according to the following probability

distribution

κi =







0 Pr(0) = 1/2

1 Pr(1) = 1/4

1 Pr(1) = 1/4.

(5.3)

We follow each 1 or 1 with a 0, and after each 0 the subsequent sbit is generated according

to the distribution in (5.3).

This method can be verified as follows. We can consider the sequence of sbits in a

random τNAF as a Markov chain of three states, namely 0, 1 and 1. We have the limiting

probabilities as follows [Sol00]

π0 = 2/3 and π1 = π1 = 1/6. (5.4)

Also, from the properties of the NAF representation, we know that a 1 or a 1 must be

followed by a 0. Hence we have the following transition probabilities

P10 = P10 = 1 and P11 = P11 = P11 = P11 = 0. (5.5)

It remains to determine P00, P01 and P01, which we can calculate by solving the equation

πP = π, (5.6)

where π = (π0 π1 π1) and P is the transition matrix

P =









P00 P01 P01

1 0 0

1 0 0









(5.7)
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We obtain a unique solution to (5.6) which is

P00 = 1/2 and P01 = P01 = 1/4. (5.8)

The sequence obtained by this method is selected from the set of all τNAFs of length

m + a. As stated by Solinas [Sol00], their number is the integer closest to 2m+a+2/3,

whereas the order of the main subgroup is u ≈ 2m−2+a. That is the average number of

sequences that, when multiplied by a given point P , would lead to the same point in the

main subgroup is 16/3. The deviation from this average is an open problem. We have

calculated this deviation experimentally for E1 over small fields as follows.

We have generated all τNAFs of length m + a for small m. We have then reduced

each of them modulo δ, and stored how many times each of the u lattice point λ0 + λ1τ

(λi ∈ Z) in V, which is the region spanned by the elements of Z[τ ]/δZ[τ ], is mapped. The

mean and standard deviation of the distribution of the number of mappings for E1(F2m)

for small m are shown in Table 5.1.

Table 5.1: The mean and standard deviation of the number of times the lattice points of

the region V are mapped by all τNAFs of length m+ 1.

m 7 11 17 19 23

u 71 991 65587 262543 4196903

mean 4.803 5.511 5.329 5.325 5.330

standard

deviation
0.721 0.734 0.523 0.502 0.482

As we can see from Table 5.1, the mean approaches 16
3 as m increases. Moreover, the

deviation is small and is decreasing starting from m = 11. Also, in our experiments the

number of times a lattice point was mapped was at most 8. Hence, if these results can

be generalized to larger fields, then we can provide an affirmative answer to the question



5.2. Randomizing the τ-adic Representation of an Integer 93

whether it is cryptographically secure to choose a point multiplier (key) by choosing a

random τNAF.

5.2 Randomizing the τ-adic Representation of an Integer

Now, having the key k represented as a τNAF, we will present a randomization algorithm

to obtain a different τ -adic representation of the key. The technique used in this algorithm

is similar to the one used by Ha and Moon [HM02a] (cf. Chapter 3) to randomize the

binary representation of the key. The difference is in the state representation which is

similar to the one we used in Figure 3.4. We presented the underlying idea of the HM

algorithm as follows. A carry bit is initialized to 0 and the input binary representation

is scanned, one bit at a time, starting from the least significant one. Whenever the sum

of the current scanned bit and the carry is 0 (mod 2), the output sbit is 0, otherwise, if

the sum is 1, a random decision is drawn as to whether send a 1 or a -1 to the output.

In all cases the carry bit is updated properly. For example, if the current sum is 1 and

the output is chosen to be -1, then 2 should be added to the remaining input bits, this is

ensured by setting the carry bit to 1.

Similarly, the underlying idea of our τ -adic randomization algorithm is as follows. The

sbits of the input τNAF are scanned starting from the least significant end. Whenever the

scanned bit value, added to the current carry sbit, is 1, a random decision is drawn based

on which the current output sbit is determined. If the latter was chosen to be 1, no change

occurs in the carry sbits and the following sbit of the input as well as that of the carry

are scanned. On the other hand, if the output sbit was chosen to be 1, this is equivalent

to subtracting 2 from the current τNAF and should be compensated by adding 2 back to

it. For the curve E0, 2 = −τ2 − τ = (110)τ and for the curve E1, 2 = −τ2 + τ = (110)τ .
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Hence, the addition of 2 to the remaining sbits of the τNAF is handled by adding the

τ -adic representation of 2 to the carry sbits. Since whenever the candidate output bit

is ±1, a random decision is taken, then all possible τ -adic representations of length up

to l + 2, as will be explained, for the input τNAFcan be output by this algorithm. This

idea is captured in the following pseudocode where the subscript τ is omitted since it is

implied. The length of the output representation, the prepending of three 0s to the input

as well as the number of carry sbits needed will be explained in the subsequent discussion

of the algorithm implementation.

Algorithm 5.1. Randomization of the τ -adic representation

Input: k = (κl−1, . . . , κ1, κ0) where k is a τNAF.

Output: k′ = (dl+1, . . . , d0), a random τ -adic representation of k.

1. Prepend (κl+2, κl+1, κl) = (0, 0, 0) to k.

2. (c2i
, c1i

, c0i
)← (0, 0, 0). // carry sbits.

3. for i from 0 to l + 2 do

3.1 bi ← κi + c0i
; ri ←R {0, 1}. // ri is random bit

3.2 if (bi = 0) then

di ← 0; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
).

3.3 else if (bi = ±2) then

di ← 0; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
)± 2/τ .

// for E0, 2/τ = (11) and for E1, 2/τ = (11).

3.4 else // bi = ±1

3.4.1 if (ri = 0) then

di ← bi; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
).
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3.4.2 else

di ← −bi; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
) + bi ∗ 2/τ .

As an illustration of the algorithm outcome, let k = (101)τ be the input τNAF,

then the algorithm would output one of the following representations for the curve E0:

(101)τ , (11101)τ , (11011)τ , (1111)τ . Note that the τNAF is a possible output if the input

sbits are sent to the output unchanged and the carry remains 0. Moreover, since the τNAF

of an element of the ring Z[τ ] is unique [Sol00, Theorem 1], the other representations have

adjacent non-zero sbits, i.e., are not τNAFs.

The algorithm can be implemented as a look-up table as in Table 5.2 for the curve E1.

It is also best described as a nondeterministic finite automaton (NFA) as in Figure 5.1,

which is discussed in Section 5.5.2. As mentioned above, the sbit sequence of the key is

scanned from the least significant end to the most significant end. The current state si

is the combination of the current sbit κi and the carry sbits (c2i c1i c0i)τ . Based on the

next sbit κi+1 and the random decision bit ri, the output sbit di and the next state si+1

are determined. Depending on whether κ0 is 1, 0 or 1 the first state S0 will be s4, s12

or s20 respectively where the carry sbits are initialized to 0. Note that only the states

in Table 5.2 are reachable, that is, not all combinations of the carry sbits occur in the

algorithm. Moreover, by verifying the different states of the algorithm, we can observe

that only three carry sbits are needed.

We will illustrate the calculation of the carry sbits and the state transitions using the

following example. Let k = (100101)τ . Then, κ0 = 1 and c20 = c10 = c00 = 0 (S0 = s4).

If r0 = 0, d0 = κ0 = 1, the carry sbits do not change and the next state S1 = s12.

Otherwise, d0 = 1; to change the value of κ0 from 1 to 1, we should add (−2) to the

remaining sbits of k. For the curve E1, −2 = τ2 − τ = (110)τ . This results in the carry
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sbits being c21 = 0, c11 = 1, c01 = 1, and the next state S1 = s14.

The output sbit di is determined by κi + c0i . If the latter is 0 or ±2, then di = 0,

and the carry sbits are adjusted accordingly, e.g., as in the states s2 and s3 in Table 5.2.

Otherwise, if κi + c0i = ±1, then if ri = 0, then di = κi + c0i , else di = −(κi + c0i) and a

±(11)τ is added to (c2i , c1i)τ . Note that the output di is determined along with the next

state Si+1. In other words, when the algorithm is in state Si, the last sbit that was sent

to the output is di−1.

In Figure 5.1, the arrows are labeled with κi+1/di. Solid arrows correspond to transi-

tions where ri is ×, i.e., only one transition per value of κi+1 is possible. Dashed arrows

correspond to ri = 0 and dotted arrows correspond to ri = 1.

Table 5.2: State transition table for the randomized τ -audic representation for the

curve E1.

State Input Output
Next

state

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s1 1 0 1 0 0 0 1 0 0 1 s11
0 1 1 1 0 0 s16

s2 1 0 1 1 0 × 0 0 0 1 s11

s3 1 0 0 1 0 × 0 0 1 1 s14

s4 1 0 0 0 0 0 1 0 0 0 s12
0 1 1 0 1 1 s14

s5 1 0 0 1 0 × 0 0 0 0 s12

s6 1 0 1 1 0 × 0 0 1 0 s15

s7 1 0 1 0 0 0 1 0 0 1 s13
0 1 1 0 1 0 s15

s8 0 1 0 0 1 × 0 0 1 0 s1
0 × 0 0 1 0 s9
1 × 0 0 1 0 s17

s9 0 0 1 0 1 × 0 0 0 1 s3
0 × 0 0 0 1 s11
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Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

1 × 0 0 0 1 s19

s10 0 0 1 1 1 0 1 0 0 1 s3
1 1 1 0 1 0 s1
0 0 1 0 0 1 s11
0 1 1 0 1 0 s9
1 0 1 0 0 1 s19
1 1 1 0 1 0 s17

s11 0 0 0 1 1 0 1 0 0 0 s4
1 1 1 0 1 1 s6
0 0 1 0 0 0 s12
0 1 1 0 1 1 s14
1 0 1 0 0 0 s20
1 1 1 0 1 1 s22

s12 0 0 0 0 1 × 0 0 0 0 s4
0 × 0 0 0 0 s12
1 × 0 0 0 0 s20

s13 0 0 0 1 1 0 1 0 0 0 s4
1 1 1 0 1 1 s2
0 0 1 0 0 0 s12
0 1 1 0 1 1 s10
1 0 1 0 0 0 s20
1 1 1 0 1 1 s18

s14 0 0 1 1 1 0 1 0 0 1 s5
1 1 1 0 1 0 s7
0 0 1 0 0 1 s13
0 1 1 0 1 0 s15
1 0 1 0 0 1 s21
1 1 1 0 1 0 s23

s15 0 0 1 0 1 × 0 0 0 1 s5
0 × 0 0 0 1 s13
1 × 0 0 0 1 s21

s16 0 1 0 0 1 × 0 0 1 0 s7
0 × 0 0 1 0 s15
1 × 0 0 1 0 s23

s17 1 0 1 0 0 0 1 0 0 1 s11
0 1 1 0 1 0 s9

s18 1 0 1 1 0 × 0 0 1 0 s9

s19 1 0 0 1 0 × 0 0 0 0 s12

s20 1 0 0 0 0 0 1 0 0 0 s12
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Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

0 1 1 0 1 1 s10

s21 1 0 0 1 0 × 0 0 1 1 s10

s22 1 0 1 1 0 × 0 0 0 1 s13

s23 1 0 1 0 0 0 1 0 0 1 s13
0 1 1 1 0 0 s8

The algorithm keeps scanning the l sbits of the input τ -adic NAF, starting from the

least significant end, moving from a state to another according to the look-up table.

When the most significant sbit κl−1 is reached, the algorithm is in state Sl−1, with the

last output bit dl−2.

To exit the algorithm from the state Sl−1, the value of the current input sbit κl−1

should be added to the carry (c2l−1
c1l−1

c0l−1
)τ and sent to the output. We can see

from Table 5.2 that, for all states, the result of this addition cannot exceed three sbits.

Hence, the output τ -adic representation can be of length at most l + 2. This exit step

is equivalent to prepending at most three 0s to the τNAF and continuing the algorithm

as before with all subsequent random decisions ri = 0. The algorithm then stops when

the state s12 is reached, since in this state κi = c2i = c1i = c0i = 0. As with adding

the carry to the current sbit, it can be verified from Table 5.2 that the paths from all

states to s12 are at most three transitions long. We will refer to those paths as exit paths.

However, from some states, there exist two exit paths that satisfy this length restriction.

For example, if Sl−1 = s4, then Sl = s12 and dl−1 = 1. Alternatively, Sl = s14, Sl+1 = s13,

and Sl+2 = s12, with the respective output dl−1 = 1, dl = 1, dl+1 = 1. Other states that

have two possible exit paths are s7, s10, s11, s13, s14, s17 and s20.

The same randomization technique can be applied to the τ -adic representation of

integers when the points are on the curve E0. In this case, 2 = −τ2 − τ = (110)τ , which
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will produce different carry sbits than for the curve E1, and hence different states. Those

states and the transitions between them are listed in Table 5.3. For this curve, the states

that have two possible exit paths are s2, s4, s9, s11, s13, s15, s20 and s22. We have included

the representations of the τNAFs of length 1 ≤ l ≤ 6 on the curve E0 in Appendix D.1.

As can be seen in this appendix, the number of representations is not uniform among the

τNAFs, which is expected to be true for any length l. Hence, it is not favorable to choose

a key by choosing a random τ -adic expansion.

Table 5.3: State transition table for the randomized τ -adic representation for the

curve E0.

State Input Output
Next

state

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s1 1 0 1 1 0 × 0 0 1 0 s14

s2 1 0 1 0 0 0 1 0 0 1 s11
0 1 1 0 1 0 s14

s3 1 0 0 1 0 × 0 0 1 1 s15

s4 1 0 0 0 0 0 1 0 0 0 s12
0 1 1 0 1 1 s15

s5 1 0 0 1 0 × 0 0 0 0 s12

s6 1 0 1 0 0 0 1 0 0 1 s13
0 1 1 1 0 0 s8

s7 1 0 1 1 0 × 0 0 0 1 s13

s8 0 1 0 0 1 × 0 0 1 0 s2
0 × 0 0 1 0 s10
1 × 0 0 1 0 s18

s9 0 0 1 1 1 0 1 0 0 1 s3
1 1 1 0 1 0 s6
0 0 1 0 0 1 s11
0 1 1 0 1 0 s14
1 0 1 0 0 1 s19
1 1 1 0 1 0 s22

s10 0 0 1 0 1 × 0 0 0 1 s3
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Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

0 × 0 0 0 1 s11
1 × 0 0 0 1 s19

s11 0 0 0 1 1 0 1 0 0 0 s4
1 1 1 0 1 1 s7
0 0 1 0 0 0 s12
0 1 1 0 1 1 s15
1 0 1 0 0 0 s20
1 1 1 0 1 1 s23

s12 0 0 0 0 1 × 0 0 0 0 s4
0 × 0 0 0 0 s12
1 × 0 0 0 0 s20

s13 0 0 0 1 1 0 1 0 0 0 s4
1 1 1 0 1 1 s1
0 0 1 0 0 0 s12
0 1 1 0 1 1 s9
1 0 1 0 0 0 s20
1 1 1 0 1 1 s17

s14 0 0 1 0 1 × 0 0 0 1 s5
0 × 0 0 0 1 s13
1 × 0 0 0 1 s21

s15 0 0 1 1 1 0 1 0 0 1 s5
1 1 1 0 1 0 s2
0 0 1 0 0 1 s13
0 1 1 0 1 0 s10
1 0 1 0 0 1 s21
1 1 1 0 1 0 s18

s16 0 1 0 0 1 × 0 0 1 0 s6
0 × 0 0 1 0 s14
1 × 0 0 1 0 s22

s17 1 0 1 1 0 × 0 0 1 1 s11

s18 1 0 1 0 0 0 1 0 0 1 s11
0 1 1 1 0 0 s16

s19 1 0 0 1 0 × 0 0 0 0 s12

s20 1 0 0 0 0 0 1 0 0 0 s12
0 1 1 0 1 1 s9

s21 1 0 0 1 0 × 0 0 1 1 s9

s22 1 0 1 0 0 0 1 0 0 1 s13
0 1 1 0 1 0 s10
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Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s23 1 0 1 1 0 × 0 0 1 0 s10

The Ha-Moon randomization algorithm [HM02a] was proposed as a countermeasure

to differential power analysis (DPA) attacks on ECCs. The output of the algorithm was

a random binary signed-digit (BSD) representation of the input binary representation

of the key. The resulting BSD representation is then used by the binary algorithm (cf.

Section 2.1.3) allowing negative digits. Later on, it was shown in [FMPV04; SPL04], that

this randomization method does not serve its purpose since the number of intermediate

points possibly computed at any iteration of the binary algorithm is only two. Guessing

the value of an intermediate point is at the core of a conventional DPA attack. The

reason behind this limited number of intermediate points is that the following relation

always hold for some key k = (kn−1, . . . , k0)2 with BSD representation k′ = (k′n, . . . , k
′
0)2,

where k′i ∈ {−1, 0, 1}
j−1
∑

i=0

ki2
i =

j−1
∑

i=0

k′i2
i + cj2

j , (5.9)

for any 0 < j ≤ n, where cj ∈ {0, 1} is the carry bit in the Ha-Moon algorithm. The

carry takes only one of two values, and so does the intermediate point computed by the

binary algorithm using the BSD representation of the key.

Similar arguments apply to the τ -adic representation. However, from Tables 5.2 and

5.3, we can see that the carry sbits can take one of 9 possible values. Hence, the adequacy

of this randomization method as a DPA countermeasure depends on the application and

the life length of the key. It is interesting to study the probability of occurrence of a

certain intermediate value of the representation in relation to the sbits values of the

original τ -NAF similar to the study presented by [FMPV04] on the BSD representation.

It is also interesting to investigate the number of carry patterns that would result if the
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input is the shortest τ -adic representation of an element of Z[τ ] [Sta93]. Note that in this

case, the number of carry sbits may be more than 3 and it is not guaranteed that the

number of states is finite.

Algorithm 5.1 is a right-to-left randomization algorithm. It could be investigated

whether the left-to-right randomization approach we presented in Section 4.3.1, or a

similar one, is applicable to the τ -adic representations.

5.3 τNAF with the Maximum Number of Representations

Let k be a τNAF of length l sbits, possibly having 0(s) as the leading sbit(s), and let

ϑ(k, l) be the number of τ -adic representations of k. Note that those representations are

of length at most l+ 2 as in Section 5.2. In the following, we will focus our discussion on

“positive” τNAFs, i.e., those having κl−1 = κl−2 = . . . = κi = 0 and κi−1 = 1 for some

0 < i ≤ l. Since −k is obtained from k by interchanging the 1s with the 1s, in the same

way, the representations of −k can be obtained from those of k, hence, ϑ(k, l) = ϑ(−k, l).

Let kmax,l be the τNAF of length l that has the maximum number of representations

among other τNAFs of the same length (cf. Table D.7 in Appendix D.2). Also, let α(k, l)

be the number of representations of k that are of length at most l sbits. Then, we can

prove the following theorem.

Theorem 5.1 Let l ≥ 1 and w = b l−1
2 c. For l odd, kmax,l = τ2w +

∑w−1
i=0 (−1)w−1−iτ2i.

For l even, kmax,l =
∑w

i=0(−1)w−iτ2i. And for any τNAF k of length up to l + 3,

α(k, l + 2) ≤ ϑ(kmax,l, l). Moreover, for l ≥ 3,

ϑ(kmax,l, l) = ϑ(kmax,l−1, l − 1) + ϑ(kmax,l−2, l − 2).

In order to prove the theorem, we will need the following lemmas.
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Lemma 5.1 If k is divisible by τ e then ϑ(k, l) = ϑ( k
τe , l − e).

Proof. Looking at Table 5.2 and Table 5.3, we find that random decisions are made at

the states where κi + c0i = ±1. In this case, there are two possible transitions emerging

from these states, that is there are two possible paths that can be followed, each yielding

a family of representations where the sbit di is either 1 or 1.

When the least significant sbit(s) is (are) 0, the algorithm enters state s12 and does

not exit this state until the first 1 or 1 is encountered. Until then, there are no new

representations that are formed, and the least significant 0s are sent to the output as

they are. Any other representation formed thereafter will have the same number of least

significant 0s as k.

In other words, if k is divisible by τ e, so are its representations. That is, they will all

have e least significant 0s. Therefore, the possible representations for k when represented

in l sbits will be the same representations for k
τe when represented in l − e sbits with e

0s appended to each of the latters. �

Lemma 5.2 If k is a τNAF of length l and k ≡ (−1)b (mod τ) where b ∈ {0, 1}, then the

τNAF of k + (−1)b is of length at most l + 3.

Proof. To convert a number in a τ -adic form into a τNAF, we can use the transformations

given by Gordon [Gor98] for the curve E1. The following transformations (and their

negatives) are the equivalent ones for the curve E0.

τ + 1→ −τ2 − 1 (11→ 101), (5.10)

τ − 1→ −τ3 + 1 (11→ 1001), (5.11)

2→ τ3 + τ (2→ 1010). (5.12)
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Now, consider the following cases for the least significant sbits of k ≡ 1 (mod τ) when

1 is added, where the transformation (5.12) is used after the addition. Other cases are

recursions of the following ones. The subscript τ was removed since it applies to all of

the following representations.

(. . . 1001) + 1 = (. . . 0010),

(. . . 1001) + 1 = (. . . 2010),

(. . . 0101) + 1 = (. . . 1110) = (. . . 0010), using (5.10)

(. . . 10101) + 1 = (. . . 11110) = (. . . 01010), using -(5.11) (i.e., the negative of (5.11))

(. . . 10101) + 1 = (. . . 11110) = (. . . 21010), using -(5.11)

(. . . 100101) + 1 = (. . . 101110) = (. . . 111010) = (. . . 001010), using -(5.11) and (5.10)

(. . . 100101) + 1 = . . . = (201010), using -(5.11) and (5.10).

When any of the transformations (5.10) to (5.12) is used, the resulting carry will either

cancel an existing sbit, be added to a 0 or result in a 2 or -2. We can see from the above

cases that the absolute result of adding a carry to an sbit will not exceed 2. Thus, the

resulting τNAF of k + 1 is at most 3 sbits longer than k. The same argument applies to

k ≡ −1 (mod τ). �

Lemma 5.3 For any τNAF k ≡ (−1)b (mod τ) of length l, where b ∈ {0, 1}, we have

ϑ(k, l) = ϑ(
k − (−1)b

τ2
, l − 2) + α(

k + (−1)b

τ
, l + 1).

Proof. We will consider here the case of k ≡ 1 (mod τ) but the same arguments apply

to k ≡ −1 (mod τ). Recall that ϑ(k, l) is the number of representations of k that are of

length at most l+2. Since k mod τ 6= 0, this is also true for the τ -adic representations of

k. That is, their least significant sbit (LSSB) will be either 1 or 1. For those representa-

tions that have 1 as the LSSB, if this 1 is replaced with 0, they will become representations

of k − 1. Since k is a τNAF, then k − 1 is a τNAF divisible by τ2. From Lemma 5.1,
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we know that the number of representations of k − 1 is ϑ(k − 1, l) = ϑ(k−1
τ2 , l − 2) and

that those representations will have their 2 LSSBs equal to 00. Therefore, they can all

be used as representations of k by replacing the least significant 0 with 1.

On the other hand, for those representations that have 1 as their LSSB, if this 1 is

replaced with 0, they will become representations of k + 1. Since 2 = (110)τ for the

curve E1 and 2 = (110)τ for the curve E0, we can see that k + 1 ≡ 0 (mod τ), hence

all the representations of k + 1 have 0 as their LSSB. Those representations that are of

length l+ 2, with their least significant 0 replaced with 1, are counted among the ϑ(k, l)

representations of k and their number is α(k + 1, l + 2) = α(k+1
τ , l + 1). �

The following lemmas are carried on E0 but there exists corresponding lemmas on E1.

Lemma 5.4 For l odd and w = l−1
2 , if k = τ2w +

∑w−1
i=0 (−1)w−1−iτ2i, then

∑w−1
i=0 (−1)w−iτ2i+1 + (−1)w is among the representations of k. In other words,

k−(−1)w

τ = k+(−1)w−1

τ =
∑w−1

i=0 (−1)w−iτ2i.

Proof. Without loss of generality, let w be odd, then k = (1 0 1 0 1 0 . . . 1 0 1 0 1)τ .

When the least significant 1 is replaced by 1, 2 = (110)τ is added to k. Hence,

k = (1 0 1 0 1 0 . . . 1 0 2 1 1)τ

= (1 0 1 0 1 0 . . . 2 1 0 1 1)τ

= . . .

= (1 0 1 0 2 1 . . . 0 1 0 1 1)τ

= (1 0 2 1 0 1 . . . 0 1 0 1 1)τ

= (0 1 0 1 0 1 . . . 0 1 0 1 1)τ . �

Lemma 5.5 For l even and w = b l−1
2 c = l

2 − 1, if k =
∑w

i=0(−1)w−iτ2i, then τ2w+3 +

τ2w+1 +
∑w−1

i=0 (−1)w−1−iτ2i+1 + (−1)w−1 is among the representations of k. In other
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words, k−(−1)w−1

τ = k+(−1)w

τ = τ2w+2 + τ2w +
∑w−1

i=0 (−1)w−1−iτ2i

Proof. Without loss of generality, let w be odd. Then k is of the form (0 1 0 1 0 . . . 1

0 1)τ . As before, the least significant 1 can be replaced by 1 and −2 = (110)τ added to

k. Hence, we obtain the following

k = (0 1 0 1 0 . . . 2 1 1)τ

= . . .

= (0 1 0 2 1 . . . 0 1 1)τ

= (0 2 1 0 1 . . . 0 1 1)τ

= (1 1 0 1 0 1 . . . 0 1 1)τ

= (1 0 1 0 1 0 1 . . . 0 1 1)τ . �

Lemma 5.6 Let k be τNAF of length l with κl−1 = 1 (1). Then, the representations of

k that are of length l + 2 will have dl+1 = 1 (1), where di are the sbits output from the

algorithm as in Table 5.3. Moreover, if dl−1 = 1 in any of the representations of k, then

the length of this representation is l + 2.

Considering Table 5.3, when the most significant sbit κl−1 = 1 is read, the algorithm

will be in one of the states s17 to s23. Representations that are of length l+2 are resulting

from those states that have exit paths consisting of three transitions as single exit paths

(s21 and s23) or as alternate paths (s20 and s22). It can be easily checked from the table

that the last output sbit in all such paths is 1. It can be also checked that dl−1 = 1 occurs

only on the alternate exit paths from s20 and s22, hence the second part of the lemma is

proved. The same arguments applies for κl−1 = 1. �
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Now we employ the previous lemmas to prove Theorem 5.1 by induction.

Proof. From the algorithm using Table 5.3, we can verify the following (cf. Tables D.1

to D.6 in Appendix D.2):

• ϑ((1)τ , 1) = 2, those two representations are (1)τ , (111)τ . kmax,1 = 1.

• ϑ((1)τ , 2) = 3, those representations are (1)τ , (111)τ , (1011)τ . From Lemma 5.1, we

have ϑ((10)τ , 2) = ϑ((1)τ , 1) = 2. So, kmax,2 = 1.

• ϑ((101)τ , 3) = 5. kmax,3 = 101. The 5 representations are (101)τ , (11101)τ ,

(11)τ , (1111)τ , (10111)τ . The first 2 representations are the same representa-

tions of (100)τ for l = 3, with 1 as the least significant sbit instead of 0. From

Lemma 5.1, we have ϑ((100)τ , 3) = ϑ((1)τ , 1) = 2. The remaining 3 representations

are the same representations of (1)τ for l = 2 shifted left by τ with 1 added. Note

that the representations of 1 are the negative of the representations of 1. Hence,

ϑ((101)τ , 3) = ϑ((1)τ , 2) + ϑ((1)τ , 1).

• For all τNAFs k of length up to l+3 = 6, α(k, 5) ≤ ϑ(kmax,3, 3). It is also true that

α(k, 3) ≤ ϑ(kmax,1, 1) and α(k, 4) ≤ ϑ(kmax,2, 2), not only for τNAFs of lengths up

to 4 and 5, respectively but also for those up to length 6.

We see that Theorem 5.1 is true for l = 1, 2 and 3. Now assume that it is true up to

some length l − 1. We first prove that

ϑ(kmax,l, l) = ϑ(kmax,l−1, l − 1) + ϑ(kmax,l−2, l − 2)

From Lemma 5.1, kmax,l ≡ (−1)b (mod τ), for b ∈ {0, 1}. From Lemma 5.3, we know

that

ϑ(kmax,l, l) = ϑ(
kmax,l − (−1)b

τ2
, l − 2) + α(

kmax,l + (−1)b

τ
, l + 1),
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where at least one of the following conditions is true:

• kmax,l−(−1)b

τ2 = kmax,l−2.

• α(
kmax,l+(−1)b

τ , l + 1) = ϑ(kmax,l−1, l − 1), since, from Lemma 5.2,
kmax,l+(−1)b

τ will

be of length at most l+2 and we assume that for any τNAF k of length up to l+2,

α(k, l + 1) ≤ ϑ(kmax,l−1, l − 1) is true.

If there exists a τNAF k of length l for which both conditions are simultaneously true,

then this k is kmax,l.

Let l be odd and k of length l be equal to τ2w+
∑w−1

i=0 (−1)w−1−iτ2i where w = l−1
2 , that

is k ≡ (−1)w−1 (mod τ). Then, we have k−(−1)w−1

τ2 = τ2(w−1) +
∑w−2

i=0 (−1)w−2−iτ2i =

kmax,l−2 (from our assumption that Theorem 5.1 is true up to τNAFs of length l −

1). Also, from Lemma 5.4, we have k+(−1)w−1

τ =
∑w−1

i=0 (−1)w−iτ2i = −kmax,l−1. Since

α(−kmax,l−1, l + 1) = ϑ(−kmax,l−1, l − 1) = ϑ(kmax,l−1, l − 1), then k = kmax,l.

Now, let l be even and k of length l be equal to
∑w

i=0(−1)w−iτ2i where w = b l−1
2 c =

l
2 − 1, that is k ≡ (−1)w (mod τ). Then, we have k−(−1)w

τ2 =
∑w−1

i=0 (−1)w−1−iτ2i =

kmax,l−2. Also, from Lemma 5.5, k+(−1)w

τ = τ2w+2 +τ2w +
∑w−1

i=0 (−1)w−1−iτ2i = τ2w+2 +

kmax,l−1. According to Lemma 5.6, the representations of kmax,l−1 that are of length

l+1 have their most significant term equal to −τ2w+2. Therefore, all the representations

of τ2w+2 + kmax,l−1 will be of length at most l + 1 and can be used as representations

for k by shifting them to the left by one sbit and adding to them (−1)w−1. Hence,

α(τ2w+2 + kmax,l−1, l + 1) = ϑ(kmax,l−1, l − 1), and k = kmax,l.

Now, it remains to prove that for all τNAFs k of length up to l + 3, α(k, l + 2) ≤

ϑ(kmax,l, l). We have already assumed that for any τNAF k of length up to l+2, α(k, l+

1) ≤ ϑ(kmax,l−1, l − 1) < ϑ(kmax,l, l) is true. Now, let k be a τNAF of length l + 3. If
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k ≡ 0 (mod τ), from Lemma 5.1 we have,

α(k, l + 2) = α(
k

τ
, l + 1)

≤ ϑ(kmax,l−1, l − 1),by assumption

< ϑ(kmax,l, l).

Otherwise, if k ≡ (−1)b (mod τ), then some of the representations of k will have 1 as their

LSSB and the others will have 1. Without loss of generality, let b = 0. From Lemma 5.3,

the representations that end with 1 and are of length l + 2, are those of k−1
τ2 that are

of length l with an appended 01. Hence, their number is α(k−1
τ2 , l) ≤ ϑ(kmax,l−2, l − 2).

On the other hand, the representations of k that end with 1 and are of length l + 2 are

those of k+1
τ that are of length l + 1 with an appended 1. Their number is α(k+1

τ , l +

1) ≤ ϑ(kmax,l−1, l − 1). Note that k−1
τ2 and k+1

τ are τNAFs of length l + 1 and l + 2,

respectively. Hence, we have

α(k, l + 2) = α(
k − 1

τ2
, l) + α(

k + 1

τ
, l + 1)

≤ ϑ(kmax,l−2, l − 2) + ϑ(kmax,l−1, l − 1)

≤ ϑ(kmax,l, l). �

It is important to notice that the recurrence relation of ϑ(kmax,l, l) in Theorem 5.1 is

identical to the recurrence we obtained for the maximum number of binary signed digit

(BSD) representations of an integer in Theorem 4.1. Since the values ϑ(kmax,1, 1) = 2 and

ϑ(kmax,2, 2) = 3 agree with the values of δ(kmax,n, n) for n = 1, 2 in the BSD system, then

the expressions we derived for δ(kmax,n, n), namely (4.27), (4.28) and (4.29), are directly

applicable to ϑ(kmax,l, l) by replacing n with l. Hence we can conclude that ϑ(kmax,l, l)

is O(ϕl), where ϕ ≈ 1.618 is the golden ratio [Kos01].
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5.4 Average Hamming Density of the Representations

We assume that the τNAF k has been randomly chosen among all τNAFs of length

m + a as was suggested by Solinas [Sol00]. Since the decision bit ri is also randomly

chosen, the transition from a state Si to the next state Si+1 does not depend on the

previous states Si−1, Si−2, . . .. Thus, this process is an irreducible ergodic Markov chain

(cf. Appendix B). Therefore, the limiting probabilities of all states can be calculated

using (B.1).

We can write the transition matrix for the states of Table 5.2 as follows

T =



















































0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 1

2
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

2
0 1

2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 1

2
0 0 0 0 0 0 0 0

1

4
0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1

4
0 0 0 0 0 0

0 0 1

4
0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1

4
0 0 0 0

1

8
0 1

8
0 0 0 0 0 1

4
0 1

4
0 0 0 0 0 1

8
0 1

8
0 0 0 0

0 0 0 1

8
0 1

8
0 0 0 0 0 1

4
0 1

4
0 0 0 0 0 1

8
0 1

8
0

0 0 0 1

4
0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1

4
0 0 0

0 1

8
0 1

8
0 0 0 0 0 1

4
0 1

4
0 0 0 0 0 1

8
0 1

8
0 0 0

0 0 0 0 1

8
0 1

8
0 0 0 0 0 1

4
0 1

4
0 0 0 0 0 1

8
0 1

8

0 0 0 0 1

4
0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1

4
0 0

0 0 0 0 0 0 1

4
0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1

4

0 0 0 0 0 0 0 0 1

2
0 1

2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

2
0 1

2
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

2
0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0



















































.

Let η = (η0 . . . η22) be the vector of limiting probabilities of the states of Table 5.2.
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We can calculate the values in that vector by solving the following equations for Markov

chains

ηT = η,

22∑

j=0

ηj = 1.
(5.13)

This yields the following

η = (
13

1152
,

1

144
,

43

2304
,

107

1152
,

43

2304
,

1

144
,

13

1152
,

13

2304
,

9

256
,

91

1152
,

1

18
,

91

288
,

1

18
,

91

1152
,

9

256
,

13

2304
,

13

1152
,

1

144
,

43

2304
,

107

1152
,

43

2304
,

1

144
,

13

1152
).

The average Hamming density of the randomized representation can be obtained by

summing the limiting probabilities of the states that have as output di = 1 or 1.

Pr(di = 1 or di = 1) = η0 + η3 + η6 + η9 + η10 + η12 + η13 + η16 + η19 + η22

= 0.5

Similarly, the transition matrix for the states of Table 5.3, which is for curve E0, can

be formed. By solving (5.13) for the matrix obtained, the vector of limiting probabilities

is found to be

η = (
1

144
,

13

1152
,

43

2304
,

107

1152
,

43

2304
,

13

1152
,

1

144
,

13

2304
,

91

1152
,

9

256
,

1

18
,

91

288
,

1

18
,

9

256
,

91

1152
,

13

2304
,

1

144
,

13

1152
,

43

2304
,

107

1152
,

43

2304
,

13

1152
,

1

144

Hence, we have

Pr(di = 1 or di = 1) = η1 + η3 + η5 + η8 + η10 + η12 + η14 + η17 + η19 + η21

= 0.5

We can see that for both curves the average Hamming density for the randomized

representation is 0.5.
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5.5 Average and Exact Number of Representations

In this section, we first show how to obtain the average number of representations for a

τNAF of length l by finding the total number of representations for all τNAFs of length

l and dividing it by the number of those τNAFs. Then, we show how the exact number

of representations for a τNAF can also be found.

5.5.1 Number of τNAFs of Length l

We first prove that the number of τNAFs of length l is the integer closest to 2l+2/3 as

was stated by Solinas [Sol00]. That is, this number is

2l+2 − 1

3
=

l
2∑

i=0

22i, for l even, (5.14)

and

2l+2 + 1

3
=

l+1
2∑

i=0

22i+1 + 1, for l odd. (5.15)

The number of non adjacent sequences of length l is the number of ways of placing i

non-zero symbols in l + 1 − i possible positions, such that no two non-zero symbols are

adjacent, where 0 ≤ i ≤ d l
2e. Each of the i nonzero symbols can be 1 or -1, yielding 2i

choices for their values. Hence, the number of sequences can be expressed as

dl/2e
∑

i=0

(
l + 1− i

i

)

2i. (5.16)

Now we will prove by induction that (5.16) is equivalent to (5.14) and (5.15). It can

be easily verified that this is the case for l = 0 and 1. Now assume that it is true up to

some l = t− 1 where t is even. We will use the following identity [Kal85]

(
a+ 1

e

)

=

(
a

e− 1

)

+

(
a

e

)

, (5.17)



5.5. Average and Exact Number of Representations 113

for any real number a and integer e, where by definition
(
a

e

)

= 0 for e < 0. (5.18)

If a is an integer,
(
a

e

)

= 0 for e > a. (5.19)

We have

t/2
∑

i=0

(
t+ 1− i

i

)

2i =

t/2
∑

i=0

(
t− i
i− 1

)

2i +

t/2
∑

i=0

(
t− i
i

)

2i. (5.20)

The second term of (5.20) evaluates to

d t−1
2

e
∑

i=0

(
(t− 1) + 1− i

i

)

2i =
2t+1 + 1

3
(5.21)

by using (5.15).

As for the first term of (5.20), let j = i−1. Note that the first term of the summation

is 0 from (5.18). Hence, the summation becomes

t/2
∑

j=0

(
t− j − 1

j

)

2j+1 = 2

t−2
2

+1
∑

j=0

(
(t− 2) + 1− j

j

)

2j

= 2





t−2
2∑

j=0

(
(t− 2) + 1− j

j

)

2j +

( t
2 − 1

t
2

)

2
t
2





= 2 [
2t − 1

3
+ 0]

=
2t+1 − 2

3
, (5.22)

using (5.14) and (5.19).

The sum of (5.22) and (5.21) yields

t/2
∑

i=0

(
t+ 1− i

i

)

2i =
2t+2 − 1

3
. (5.23)

The proof can be similarly carried for t odd. �



114 τ-adic Representations of Integers

5.5.2 Number of Possible Representations for all τNAFs of Length l

In the following, we will consider the representations of τNAFs on the curve E1, though

the procedure we followed applies to those on the curve E0. The states of the algorithm

in Table 5.2, together with an initial state s0 form a nondeterministic finite automaton

(NFA) Γ with alphabet {1, 0, 1} as illustrated in Figure 5.1. Three directed edges labeled

1, 0 and 1 begin at s0 and end at s4, s12 and s20, respectively. The final state of Γ is s12.

Γ accepts the language described by the regular expression (ε|1|1)(0|01|01)∗(000). This

regular expression represents non-adjacent forms when scanned from the least significant

end. Three zeros are prepended in order to ensure that the final state s12 is reached for

any input NAF string as was explained in Section 5.2.

Since an NFA is a directed graph (cf. Appendix E), it can be described by an adjacency

matrix M = (mij) for 0 ≤ i, j ≤ 23, such that mij = 1 if there is a directed edge from

vertex i to vertex j in Γ and 0 otherwise. The number of directed paths of length l from

vertex i to vertex j is the ij-th entry of the matrix M l.

We can also define an adjacency matrix for each input symbol. For example, M0 has

a 1 in the ij-th entry if there is a directed edge labeled 0 from vertex i to vertex j. Note

that since in the automaton considered, starting at some vertex i, there is only one edge

labeled with just one of the input symbols that ends at state j, for 0 ≤ i, j ≤ 23, and

there are no edges labeled with the empty string ε, we have

M = M1 +M0 +M1.

Therefore, in order to find all possible paths in Γ for input NAF strings of length l

with three prepended 0s, we compute

M lM3
0 (5.24)
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and retrieve its (0,12)th entry. By computing this entry for the different values of l

recommended by NIST [NIST] (163, 233, 283, 409, 571) using MAPLE, we have deduced

that it is the integer closest to

1.304812 · 3l. (5.25)

Hence, from (5.14), (5.15) and (5.25), the average number of representations of a

τNAF of length l in the range [163, 571] is the integer closest to

0.9786

(
3

2

)l

. (5.26)

The matrix multiplication in (5.24) can be performed by MAPLE in 0.41 seconds for

l = 163 and in 0.83 seconds for l = 571 on a Pentium M processor.

5.5.3 Exact Number of Representations for a τNAF

The use of adjacency matrices can also be extended to find the number of paths cor-

responding to a specific input string. That is for a τNAF k = (κl−1, . . . , κ1, κ0)τ , the

number of possible representations is

Mκ0Mκ1 · · ·Mκl−1
M3

0 (5.27)

We have included the adjacency matrices for the automaton in Figure 5.1 in Ap-

pendix E.

5.6 Conclusion

In this chapter, we have introduced a new method of randomizing the τ -adic representa-

tion of a key in ECCs using Koblitz curves. The input to the randomization algorithm

is a τNAF of length l. The output of the algorithm is a random τ -adic sequence of the
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same value as the input. The sbits of the resulting sequence are output one at a time

from the least significant to the most significant which allows the simultaneous execution

of the scalar multiplication operations. The length of the random representation is at

most l + 2. We have proved that the average Hamming density of all representations for

all τNAFs of the same length is 0.5.

We have also presented the pattern of τNAFs with maximum number of represen-

tations and the recurrence governing that number which shows that it is a Fibonacci

number and, hence, is O(ϕl). By modeling our algorithm as a nondeterministic finite

automaton and by using adjacency matrices, we have presented a deterministic method

to determine the average and the exact number of representations of a τNAF, where the

average number is very close to
(

3
2

)l
for l ∈ [163, 571]. It is interesting to note the similar-

ity of the results obtained here to those obtained for the BSD representation of integers in

Chapter 4 such as the average Hamming density and the average and maximum number

of representations. To the best of our knowledge, this randomization approach to the

τ -adic representations and the results we derived from applying it are the first of their

kind [Has01; Joy03].

Also of interest is to investigate how this randomization method and the associated

properties of the representation can be carried to any complex radix with norm 2 or any

arbitrary norm. Note that this complex number should satisfy an equation such as (5.2),

in order to be able to recursively replace digits with a larger absolute value than those in

the digit set with the latter ones during the randomization procedure.





Chapter 6

On Key Splitting Methods

From the important conclusion we have drawn in Appendix A, we know that key ran-

domization is essential in protecting a cryptographic algorithm from DPA attacks in their

different forms. That is, the actual value of the key that is processed—either on a bit

level or a digit level—to compute the elliptic curve scalar multiplication (ECSM) should

be randomized; not just the key representation. The randomization is performed before

the ECSM execution, for which an efficient SPA-resistant algorithm is used. A candidate

key value randomization method is the key splitting (cf. Section 2.2.2).

In this chapter, we study different forms of key splitting along with their strengths

and weaknesses. We also discuss the candidate SPA-resistant algorithms and compare the

resulting performance when combined with each form of key splitting. At the end of the

chapter, we present countermeasures to DPA attacks on the ECDSA and the ECMQV

algorithms. Our contributions are summarized in Section 7.

119
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6.1 Additive Splitting Using Subtraction (scheme I)

This approach was suggested by Clavier and Joye in [CJ01] and revisited by Ciet [Cie03]

as follows. In order to compute the point kP , the n-bit key k is written as k = k1 + k2,

such that k1 = k − r and k2 = r, where r is a random integer of length n bits. Then kP

is computed as

kP = k1P + k2P. (6.1)

It is important to note that each of the terms of (6.1) should be evaluated separately

and their results combined at the end using point addition. That is the multiple-point

multiplication methods that use a common accumulator to save doubling operations such

as Algorithms 2.3 and 2.4—whether at the bit level (w = 1) or window level (w > 1)—

should not be used, even when a countermeasure against SPA is employed (cf. Sec-

tion A.2). This observation is based on the following lemma. Let kb→a denote b(k

mod 2b+1)/2ac or, simply, the bits of k from bit position b down to bit position a, with

b ≥ a.

Lemma 6.1 Let splitting scheme I in (6.1) be evaluated using Algorithm 2.3 with w = 1

(d = n). Then, at the end of some iteration j, 0 < j ≤ n− 1, there are only two possible

values for Q, those are [kn−1→j ] P or [kn−1→j − 1] P .

Proof. Algorithm 2.3—and similarly Algorithm 2.4—computes the required point by

scanning k1 = (k1n−1 , . . . , k10)2 and k2 = (k2n−1 , . . . , k20)2 from the most significant end

down to the least significant end. Hence, at the end of iteration j, the accumulator Q

contains the value

Q = k1n−1→jP + k2n−1→jP, (6.2)

= [k1n−1→j + k2n−1→j ] P.
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We can write k, k1 and k2 as

k = kn−1→j2
j + kj−1→0, (6.3)

ki = kin−1→j2
j + kij−1→0 , i ∈ {1, 2}. (6.4)

Since k = k1 + k2, we have

k1j−1→0 + k2j−1→0 = kj−1→0 + b 2j , where b ∈ {0, 1} (6.5)

and

k1n−1→j + k2n−1→j = kn−1→j − b. �

Therefore, this evaluation method would still be vulnerable to DPA attacks as de-

scribed in Section A.3. The attack would proceed in the same way, whether the algorithm

processes a single bit or a digit per iteration, though it would be more involved in the

latter case depending on the digit size. The attacker can double the number of traces

gathered and compute the necessary intermediate points as if there was no countermea-

sure in place.

Hence each term of (6.1) should be computed separately using a SPA-resistant algo-

rithm such as the Montgomery ladder algorithm or fixed-sequence window method as on

pages 161 and 164, respectively, in Section A.2.1. A point addition operation is performed

at the end. Note that if a window method is used, the precomputed multiples of the input

point are calculated once and used with both scalar multiplications k1P and k2P .

As we mentioned before, the splitting of the key k into k1 and k2 is performed before

every ECSM execution. If the key splitting process, e.g., the subtraction in this case, is

processing the key every time, then an attacker can obtain less noisy information about

the key words such as their Hamming weights by averaging the side-channel trace obtained

from the key splitting process [MS00]. Moreover, if it is difficult for the attacker to locate
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the instances where the key is manipulated, then by correlating different traces, he can

detect where the same data is processed. Therefore, it is desirable to use a previously split

version of the key to generate the new one. Hence in (6.1), k1 and k2 can be refreshed as

k1 ± rt, k2 ∓ rt,

before the t-th execution of the ECSM, where the addition/subtraction is modulo the

group order of the points on the elliptic curve and rt is an n-bit random integer.

6.2 Additive Splitting Using Division (scheme II)

As an alternative to the previous splitting, Ciet and Joye [CJ03] suggest that a random

divisor r be chosen and the key k written as k = g ∗ r + h, where g = bk/rc and

h = k mod r. Let S = rP , then kP can be computed as

kP = gS + hP. (6.6)

We choose the bit length of r to be l = dn/2e. That is, r is chosen uniformly at random

from the range [2l−1, 2l − 1]. Hence, the bit length of g is at most bn/2c+ 1 ≤ l + 1 and

at least l and that of h is at most l [JV02].

An ECSM is first performed to compute the point S, where the scalar is of size half

that of k. Then, unlike splitting scheme I, a multiple point multiplication method can be

safely used. In the following, we will justify this assertion.

Let the representations of k, g and h to the base 2w, for some w ≥ 1, be (K2z−1, . . . ,

K1,K0)2w , (Gz, . . . , G1, G0)2w and (Hz−1, . . . , H1, H0), respectively, where z = dl/we,

that is l ≤ zw ≤ l+w− 1. If l < zw, then Gz = 0, otherwise, if l = zw, then Gz ≤ 1. As

before, let Kb→a denote b(k mod 2bw+1)/2awc or, simply, the w-bit digits of k from digit

position b down to digit position a, with b ≥ a. Let (6.6) be evaluated using Algorithm 2.3
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or Algorithm 2.4, replacing d by z + 1 in these algorithms and setting Hz = 0. Then at

the end of some iteration j, 1 < j ≤ z, the accumulator Q contains the value

Q = Gz→j S +Hz→j P,

= (Gz→j ∗ r +Hz→j)P. (6.7)

Let kj = Gz→j ∗ r + Hz→j , which is of length 2z − j w-bit digits1. In general—

exceptions follow—, kj 6= K2z−1→j . This is true since K2z−1→j = Gz→j ∗ r+hj , where hj

is the l-bit remainder of the division of K2z−1→j by r. Since K2z−1→j 6= k, then from the

division theorem, the pair (Gz→j , hj) is not equal to (g, h), hence, in general, hj 6= Hz→j .

Major Collisions

A major collision is defined as the occurrence of kj = K2z−1→j at some iteration j ∈

[1, z − 1]. The intermediate point computed at this value of kj is the same value that

would be computed when no countermeasure is in place. The condition of this collision

is provided by the following lemma.

Lemma 6.2 For some j ∈ [1, z − 1], kj = K2z−1→j iff Gj−1→0 = 0.

Proof. We have

k = g ∗ r + h,

= (Gz→j ∗ 2jw +Gj−1→0) ∗ r + (Hz→j ∗ 2jw +Hj−1→0),

= kj ∗ 2jw +Gj−1→0 ∗ r +Hj−1→0. (6.8)

1In the case where l = zw and Gz = 1, the bit length of Gz→j is (z − j)w + 1. Though the bit length

of r is l, for all j ∈ [0, z], the bit length of Gz→j ∗ r is at most (2z− j)w and not (2z− j)w +1. Otherwise,

the bit length of Gz→0 ∗ r = g ∗ r would be 2zw + 1, which is one bit longer than that of k.
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But k = K2z−1→j ∗ 2jw + Kj−1→0. Hence, if Gj−1→0 = 0, we have kj = K2z−1→j and

Kj−1→0 = Hj−1→0. On the other hand, if kj = K2z−1→j , then b(Gj−1→0 ∗ r)/2jwc = 0.

However, r ≥ 2l−1, that is, r ≥ 2(z−1)w. Hence, Gj−1→0 = 0 2. �

The probability of the occurrence of this collision is around 2−jw. That is, it increases

with the iterations of a multiple-point multiplication ECSM algorithm. It is negligible

in the first iterations that are critical for the attacker in a DPA attack as explained in

Section A.3.

Moreover, these collisions can be avoided when evaluating (6.6) for all j as follows.

After performing the division of k by r, the quotient g is inspected. If the least significant

w bits are found to be 0, another r is chosen. Note that this incurs a negligible reduction

in the choice space of r from 2l−1 to approximately 2l−1 − 2l−w−1.

Another way to avoid these collisions is to make the quotient g always odd. That is if

g is even, it is decremented by one and h is updated by adding r to it. This may increase

the bit length of h to l + 1.

Minor Collisions

A minor collision occurs when at some iteration j ∈ [1, z], for two values of r: r1 and r2,

such that r1 6= r2, we have kj
1 = kj

2 6= K2z−1→j .

The conditions favoring these collisions are not straightforward to analyze. Some of

them occur when h1 = h2, but also many of them occur with g1 6= g2 and h1 6= h2. Also

in some cases, collisions occur when gcd(r1, r2) 6= 1, where gcd is the greatest common

divisor.

In the following we refer to φ as a t-time collision value, if at iteration j, kj = φ for

2If l = zw and Gz = 1, then for j = z, a major collision occurs if Gz−1→0 = 0 or 1, since then

r ≥ 2l−1 = 2zw−1.
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t different values of r. We have conducted some experiments to study the probability of

happening of these collisions for n = 40 and 50 when divided by all divisors of length 20

and 25 bits, respectively, with window width w = 4. We found that for different values

of j, after excluding the values of g with w least significant bits, about 63% of the values

of kj on average were collision-free. About 25.6% were two-times collision values. The

maximum number of collisions t for some value varied with the iteration; it was higher

towards the middle iterations than the first and last iterations. For example, in the middle

iterations, some 40-bit integers exhibited kj values with up to 132-times collision and up

to 1735-times for 50-bit integers. The density of values that have the higher number of

collisions is usually 1 or 2. On the other hand, after the first iteration, the maximum

number of collisions we obtained was 12 for 40-bit integers and 23 for 50-bit integers.

Our goal was to prove experimentally the insignificance of these collisions, especially

in the first iterations. Moreover, any doubt about these collisions can be eliminated by

randomizing once the projective coordinates of the accumulator Q after the initialization

step (e.g., step 3 of Algorithm 2.4 on page 18) as explained in Section A.3.2.

6.2.1 Computing New Quotients and Remainders From Old Ones

As mentioned at the end of Section 6.1, it is desirable to perform the splitting without

involving the key every time. That is, given g1, r1, h1 and r2, we would like to compute

g2 and h2 without internally computing k or any part thereof. We provide the underlying

idea in the following. The implementation detailed steps are depicted in Algorithm 6.2.

g2 =

⌊
g1r1 + h1

r2

⌋

,

=

⌊
g1r1
r2

⌋

+

⌊
h1

r2

⌋

+

⌊
(g1r1) mod r2 + h1 mod r2

r2

⌋

. (6.9)
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⌊
g1r1
r2

⌋

=

⌊
(bg1/r2c r2 + g1 mod r2)(br1/r2c r2 + r1 mod r2)

r2

⌋

,

=

⌊
g1
r2

⌋

r1 +

⌊
r1
r2

⌋

(g1 mod r2) +

⌊
(g1 mod r2) (r1 mod r2)

r2

⌋

. (6.10)

(g1r1) mod r2 = [(g1 mod r2)(r1 mod r2)] mod r2. (6.11)

h2 = (g1r1 + h1) mod r2,

= [(g1r1) mod r2 + h1 mod r2] mod r2. (6.12)

Since ri ∈ [2l−1, 2l − 1], then gi is in the range [2l−1, 2l+1 − 1] and hi is in the same

range as ri. Hence, we have

⌊
g1
r2

⌋

≤ 3,

⌊
h1

r2

⌋

≤ 1 and

⌊
(g1r1) mod r2 + h1 mod r2

r2

⌋

≤ 1.

It is important to note that if g1 < r2 and r1 < r2, the multiplication (g1 mod

r2)(r1 mod r2) will result in computing a value very close to the upper half of the bits of

k. Therefore, in this case, we add the following modification

⌊
(g1 mod r2) (r1 mod r2)

r2

⌋

=

⌊
g1r1
r2

⌋

=

⌊
(g1 + r2)r1

r2

⌋

− r1, (6.13)

that is, we add r2 to g1 before performing the multiplication by r1 and the division by r2

and we subtract r1 from g2. Note that this modification does not affect the computation

of h2 since

(g1 + r2) r1 ≡ g1r1 (mod r2).

6.3 Multiplicative Splitting (scheme III)

This splitting was proposed by Trichina and Bellezza [CQS03] where r is a random integer

invertible modulo u, where u is the order of P . The scalar multiplication kP is then
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evaluated as

kP = [kr−1 (mod u)](rP ). (6.14)

This splitting involves two scalar multiplications, first R = rP is computed, then

kr−1R is computed. In this case, the length of r needs not be n bits as k but can be, say

80 bits, so that the first scalar multiplication is not as expensive as the second one.

However, if it is desirable that the key k be not involved in the computation of kr−1

(mod u) before every scalar multiplication execution, then the chain of multiplied ri is

stored from the first up to the t-th scalar multiplication; rt = rt · rt−1 · · · r1 (mod u)

for 1 ≤ i ≤ t, and the key is stored as kt = k · r−1
1 · · · r−1

t−1 · r−1
t (mod u). Before

the following scalar multiplication kPt+1, rt+1 is chosen, then rt+1 = rt+1 · rt (mod u),

Rt+1 = rt+1Pt+1, kt+1 = kt · r−1
t+1 (mod u) and, finally, kt+1Rt+1 are computed. In this

case, the length of ri will reach n bits after a few executions.

In the following section, we present modular inversion and multiplication algorithms

that are SPA-resistant.

6.4 Implementation Details

In this section, we provide details on our implementation of the different splitting meth-

ods. The implementation was targeting a handheld device with a not very constrained

memory. Therefore, our priority was reducing first the computational cost then the stor-

age cost.

6.4.1 Fixed-Sequence Window Method

This is the method we have employed as an SPA countermeasure. The recoding of the key

to the base 2w was performed with a method similar to the one suggested by Thériault
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in [Thé06] and by Lim in [Lim04]. The digit set used is {±1,±3, . . . ,±(2w − 1)} as in

[Thé06; Lim04; OT03]. That is, only the odd multiples of the input point are computed.

Moreover, we have made use of the available storage to also store the negatives of those

multiples for the following reason. Though in the literature point addition and subtraction

are used interchangeably without incurring a side-channel leakage, there is some minor

cost involved with performing the point subtraction (a modular subtraction for prime

fields or an XOR operation for binary fields, cf. Section 2.1). In order not to reveal the

sign of the bit or digit involved, the negation of the required point in an iteration can

be always performed and either the point or its negative chosen for addition. Another

solution could be to modify the point addition operation to take as input the sign of the

point to be added and perform the required operation if the point is negative or a dummy

one if it is positive.

We have found that storing the negatives of the precomputed points was a simpler

solution since we have preferred not to modify the existing efficient doubling and addition

operations using Jacobian coordinates and Jacobian-affine coordinates, respectively (cf.

Section 2.1).

We have adopted the idea presented by Thériault [Thé06, Section 5.2] for the fixed

left-to-right recoding of the scalar into signed odd digits. We refer the reader to the

author’s paper for details on the recoding and its correctness. We show explicitly how

the precomputed points are stored at contiguous locations and how the recoding serves

as a mapping from the scalar current window to the required multiple of the input point.

In [Thé06], an n-bit integer e = (en−1, . . . , e0)2, which is to be multiplied by an input

point P is recoded to the base 2w as follows. First, it is assumed that e0 = 1. If e0 = 0,

the order of P , which is a prime for curves used in cryptographic applications, can be

added to e. Let d = dn/we. Padding e with dw−n 0s, the recoding of e is (εd−1, . . . , ε0)2w
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such that

εd−1 = 1 +
w−1∑

i=1

e(d−1)w+i 2i = 1 + 2 ∗ edw−1 → (d−1)w+1, (6.15)

εj = 1− 2w +
w∑

i=1

ejw+i 2i = 1− 2w + 2 ∗ e(j+1)w → jw+1, 0 ≤ j ≤ d− 2. (6.16)

Note that the bits needed to form a digit εj are not those of the corresponding digit

Ej = e(j+1)w−1 → jw but they include the least significant bit of the digit Ej+1 and

exclude the least significant bit of the digit Ej . Therefore, in our algorithm we first shift

right (SHR) e by 1 bit, where the least significant bit is known to be always 1. Note that

this also has the benefit that if dw = n, the addition of the group order—which is an n-bit

prime—will not result in an extra digit Ed. Let e′ = SHR(e) and E′
j = e′(j+1)w−1 → jw,

the mapping from a digit E′
j to εj is

εd−1 = 2 ∗ E′
d−1 + 1,

= 2 ∗ (E′
d−1 + 2w−1)− (2w − 1), (6.17)

εj = 2 ∗ E′
j − (2w − 1), 0 ≤ j ≤ d− 2. (6.18)

Hence, we define a mapping

R : [0, 2w − 1]→ {−(2w − 1),−(2w − 3), . . . , (2w − 3), (2w − 1)}

such that

R(x) = 2x− (2w − 1).

This mapping is used to build the table, T , of precomputed multiples of P , such that

T [E′
j ] = R(E′

j)P = εjP for 0 ≤ j ≤ d − 2 and T [E′
d−1 + 2w−1] = R(E′

d−1 + 2w−1)P =

εd−1P . For example, for w = 4, T [0] = −15P , T [1] = −13P , . . . , T [7] = −P , T [8] = P ,

. . . , T [14] = 13P , T [15] = 15P . The following is the ECSM algorithm using this fixed

left-to-right recoding.
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Algorithm 6.1. Fixed-sequence window method

Input: Window width w, d = dn/we, an n-bit odd integer e and P ∈ E(Fp).

Output: eP

1. Precomputation.

1.1 T [2w−1]← P .

1.2 T [2w − 1]← 2P .

1.3 for i from 2w−1 to 2w − 2 do

T [i+ 1]← T [i] + T [2w − 1].

1.4 for i from 2w−1 − 1 down to 0 do

T [i]← −T [2w − 1− i].

2. e′ = SHR(e) = (E′
d−1 . . . E

′
0)2w .

3. Q← T [E′
d−1 + 2w−1].

4. for i from d− 2 down to 0 do

4.1 Q← 2wQ.

4.2 Q← Q+ T [E′
i].

5. Return(Q).

Storage: 2w points.

Precomputation: 1 D + (2w−1 − 1) A.

Running time: (d− 1)w D + (d− 1) A.

Coordinate selection: As we mentioned in the window method in Section 2.1.3, page 15,

for prime fields, it is more efficient to represent the precomputed points using affine coor-

dinates and the accumulator Q using Jacobian coordinates. Hence, the doubling opera-

tion is performed using Jacobian coordinates and the addition operation using Jacobian-

affine coordinates [HMV04]. In the precomputation step, the doubling can be performed
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on affine coordinates to obtain 2P , which is then used in all the subsequent additions.

Therefore, these additions can be performed using Jacobian-affine coordinates and then

all the points can be converted to affine coordinates, the cost of each conversion being

1I+3M+1S (cf. Section 2.1). Using simultaneous inversion technique [Mon87; HMV04],

we can save 2w−1−2 inversions by replacing them by 3(2w−1−2) multiplications. This is

particularly useful for prime fields where 1I ≈ 80M [HMV04]. The cost of this conversion

is 1I + 3(2w−1 − 2)M + (2w−1 − 1)(3M + 1S) = 1I + 3(2w − 3)M + (2w−1 − 1)S. This

technique is also useful for binary fields if the computational cost of an inversion exceeds

that of three multiplications. Note that for binary fields, the Lopez-Dahab coordinates

are more efficient than the Jacobian coordinates [HMV04].

Combining the fixed-sequence window method with splitting scheme II

Algorithm 6.1 can be used to compute rP that is used in both (6.6) and (6.14). In this

case, r can be chosen to be always odd. It can also be combined with Algorithm 2.4—or

Algorithm 2.3— to compute (6.6). In this case, if g and/or h is even, which is each of

bit length half that of k, we should not resolve to adding the order of P which would

result in loosing the efficiency provided by this splitting method. Hence, we suggest the

following.

We have k0 = g0r0 + h0. If k0 = 0, we can chose r such that r0 = 1. In this case,

if g0 = 1, then h0 = 1 and if g0 = 0, h0 = 0. In the latter case, g can be decremented

by one, as suggested previously to avoid major collisions, and r added to h; as a result,

we obtain g0 = h0 = 1. Similarly, if k1 = 1, we can force r0 = 0, in which case h0 = 1

irrespective of g0 and even if g is decremented and r is added to h when g0 = 0.

Another generic solution when e in Algorithm 6.1 is not necessarily odd is to keep the

value of the least significant bit, e0, that is shifted out by step 2. After the main loop in
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step 4, if e0 = 0, we subtract P from Q, that is we perform Q+ T [2w−1 − 1], otherwise,

we can perform a dummy point addition. Hence we can write

e = (εd−1, . . . , ε0)2w − (1− e0).

For example, we would need to use this method when computing rP if r is forced to be

even. If we use this method when computing (6.6), we do not need to force g and h to be

odd. However, major collisions will reappear associated with slightly different patterns

of g as explained in the following lemma.

We use the following notation for the recoding of g and h.

g′ = SHR(g), h′ = SHR(h),

= (G′
z−1, . . . , G

′
0)2w , = (H ′

z−1, . . . , H
′
0)2w ,

γj = R(G′
j), ηj = R(H ′

j),

where z = dl/we, l = dn/2e and 0 < j < z − 1. When (6.6) is evaluated using

Algorithm 2.4 combined with the recoding in Algorithm 6.1, then at some iteration

j ∈ [0, z − 1], the accumulator point Q = κjP , where κj = γz−1→j ∗ r + ηz−1→j .

Lemma 6.3 For some j ∈ [1, z− 1], κj = K2z−1→j + b, where b ∈ {0, 1}, iff gjw→0 = 2jw.

Moreover, b = 1− hjw.

Proof. We have

k = κj ∗ 2jw + (γj−1→0 − (1− g0)) ∗ r + (ηj−1→0 − (1− h0)). (6.19)

Also

k = K2z−1→j ∗ 2jw +Kj−1→0. (6.20)
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From [Thé06], we know that

ηj−1 = Hj−1 − (1− hjw)2w + (1− h(j−1)w). (6.21)

Hence, (6.19) becomes

k = (κj − (1− hjw)) ∗ 2jw + (γj−1→0 − (1− g0)) ∗ r

+ (Hj−1 + (1− h(j−1)w)) ∗ 2(j−1)w + (ηj−2→0 − (1− h0)).

(6.22)

From Lemma 6.2, κj − (1− hjw) = K2z−1→j iff

(γj−1→0 − (1− g0)) = 0 (6.23)

If g0 = 1, there is no collision since, due to the recoding properties, γj−1→0 6= 0. Hence,

when g0 = 0, the condition becomes

γj−1→0 = 1 (6.24)

It can be easily verified that this condition holds when

γi =







1 i = j − 1,

−15 0 ≤ i < j − 1.

(6.25)

This is particularly true since γi cannot be 0. By doing the inverse mapping R−1(γi), we

obtain

G′
i =







2w−1 i = j − 1,

0 0 ≤ i < j − 1.

(6.26)

from which we deduce gjw→0 = (10 . . . 0)2 = 2jw. �

Since the condition of major collision depends on the value of the least significant

jw + 1 bits of g the probability of the occurrence of this collision is around 2−jw+1 for

both values of hjw which are expected to be equally likely.
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As suggested in Section 6.2, these collisions can be avoided for all j by excluding the

g values having w least significant 0s. Though this method will also exclude values that

cause no collisions, it is easier than checking for every j ∈ [1, z − 2] whether (6.26) is

satisfied.

This recoding had also positive effects on minor collision. We observed the following

• The average number of collision-free intermediate values, after excluding the g values

as mentioned, had increased to 80%. About 16% were two-times collision values.

The maximum number of collisions for a value had also decreased.

• We have noticed that collisions that occurred when using even divisors were un-

correlated to those that occurred when using odd divisors. That is, when all the

divisors space is used with some integer k, the number of values for each type of

collision (collision free, two-times, three-times, . . . , maximum number of collision)

was the sum of the corresponding numbers gathered for the odd divisors and the

even divisors separately for the same k.

• If major collisions are avoided by making g always odd, then when the recoding

is used, collisions tend to be less occurring when larger integers k are divided by

smaller divisors r.

6.4.2 Successive Division

We have described in Section 6.2.1 the underlying idea of computing a new quotient and

remainder from old ones knowing the old divisor and the new one. In this section, we

provide the corresponding algorithm.

Algorithm 6.2. Successive Division

Input: r1, g1 = bk/r1c, h1 = k mod r1 and r2.
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Output: g2 = bk/r2c, h2 = k mod r2.

1. g← g1; r← r1. // (g1 mod r2) and (r1 mod r2) will be computed in g and r, resp.

2. g2 ← 0; h2 ← h1.

3. if (g ≤ r2) AND (r < r2) then

g← g + r2; g2 ← g2 − r1.

4. else

4.1 while (g > r2) do // This loop is executed at most three times.

g← g− r2; g2 ← g2 + r1.

4.2 if (r > r2) then

r← r− r2; g2 ← g2 + g.

5. b = g ∗ r.

6. g2 ← g2 + bb/r2c ; h2 ← h2 + b mod r2.

7. while (h2 > r2) do // This loop is executed at most twice.

g2 ← g2 + 1; h2 ← h2 − r2.

8. Return(g2, h2).

Note that the SPA information leaked from Algorithm 6.2 is not critical. However, in

our implementation we have balanced all the paths in order to prevent any information

leakage. We have employed the idea of replacing comparisons with subtractions and

sign verification. Also, because of the available storage, we computed once the two’s

complements and the doubles of some values and stored them for subsequent use. Hence,

the only operations used in the algorithm were addition and sign check operations. For

example, the loop in step 7 is unfolded into two iterations one of which is inserted under

step 4.2. Each iteration is implemented as follows, where ONE = 1 and negR2 = −r2
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h2Sign = add(h2, negR2);

if (h2Sign == 1) // h2 < 0

add(h2, r2);

else

add(g2, ONE);

Few dummy operations were inserted in some branches of the algorithm to balance

the operations in each branch.

Integer division

The division algorithm used in step 6 is a non-restoring division algorithm [HVZ02; JV02].

The algorithm in [JV02] assumed that the dividend and the divisor were not signed and

kept track of the sign change separately. In our algorithm, the dividend and the divisor are

each internally represented by an array of w-bit digits that contains at least one sign bit.

After the division is performed the dividend array contains the remainder concatenated

with the quotient.

Also, Joye and Villegas [JV02] had proposed their algorithm for a memory constrained

environment. Therefore, in their algorithm, the two’s complement of the divisor array

was computed and stored in the same array when needed, otherwise, this operation was

performed on a dummy array. The address of the target register was determined by

the sign bit and the carry bit from the operations in the previous iteration. Hence,

while trying to save space, their algorithm still required an extra array for the dummy

operation as well as an extra array negation in the main loop. Instead, in our algorithm,

we stored both the divisor and its two’s complement, then, in the main loop of the division

algorithm, the carry of the current addition operation, whether 0 or 1, determines whether

the divisor or its complement, respectively will be added in the following iteration.
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We have also modified the algorithm such that the initial condition is that, when

the most significant w-bit digit of the dividend and that of the divisor are aligned, the

most significant bit of the divisor is at a bit position at least as high as that of the most

significant bit of the dividend. In the original algorithms, the condition is that it should

be at least one position higher. By doing that we saved in some cases the need to prepend

an extra 0 digit to the dividend array, which translates into a saving of unnecessary w

addition and shift left operations.

We use the following notation in the algorithm. ADDx(a, b) adds x digits from the

array b to x digits of the array a, when they are aligned at their most significant digit.

The operation SHLx(a) (SHRx(a)) shifts left (right) by one bit the most significant x digits

of a, the carry from this operation is the bit shifted out. Note that the SHR operation

here includes a sign extension, that is, the sign of the shifted array is preserved. lsb(a)

(msb(a)) denotes the least (most) significant bit of a.

Algorithm 6.3. SPA-resistant division

Input: a, the array containing the dividend of length u w-bit digits, and b, the array containing

the divisor of length v w-bit digits, u > v.

Output: q = ba/bc, r = a mod b.

1. d[0]← b; d[1]← −b.

2. δ ← 1.

3. for i from 0 to (u− v) ∗ w do

3.1 a←ADDv(a, d[δ]); δ ← carry.

3.2 SHLu(a).

3.3 lsb(a)← δ.

4. q ← the least significant u− v digits of a.

5. SHRv(a); msb(q)← carry. // only the first v digits of a are shifted right
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6. if (δ = 0) then // final restoration

a←ADDv(a, d[δ]).

7. r ← most significant v digits of a.

8. Return(q, r).

6.4.3 Modular Division

As discussed in Section 6.3, in order to use splitting III as in (6.14), we need to perform

a modular division, kr−1 (mod u) or kt+1 = kt · r−1
t+1 (mod u), and possibly a modular

multiplication, rt+1 = rt+1 · rt (mod u). We focused our attention on prime fields.

We have chosen to use Montgomery arithmetic due to the reason that the Montgomery

inversion algorithm [ScKK00] was less expensive to protect against SPA attacks than

to protect other inversion algorithms such as the extended Euclidean and the binary

algorithms [HMV04]. For binary fields, the almost inverse algorithm [HMV04] has almost

identical steps to the almost Montgomery inverse algorithm [ScKK00] that we modified

below and can be modified in the same way.

In the following algorithm, a and b are integers internally represented each by an

array of w-bit digits. The length of each array is d = dn/we digits. Note that for the

modular inversion, as mentioned by Savas and Koç [ScKK00], b needs not be less than

the modulus u, but be in [1, 2m−1], where m = dw. Also note that the values R2 mod u,

where R = 2m, and u′ are computed once per modulus, i.e., per curve.

Algorithm 6.4. Modular division

Input: u: a n-bit prime, d = dn/we, m = dw, R2 (mod u) = (2m)2 (mod u), u′ = u−1 mod 2w,

a ∈ [1, p− 1] and b ∈ [1, 2m − 1].

Output: ab−1 (mod u).
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1. Compute b−1R (mod u) using Algorithm 6.6.

2. Compute x = a(b−1R)R−1 (mod u) using Algorithm 6.5.

3. Return(x).

The following algorithm is Algorithm 14.36 in [MvOV96]. We include it here for the

sake of completeness.

Algorithm 6.5. Montgomery multiplication [MvOV96]

Input: u: a n-bit prime, d = dn/we, m = dw, u′ = u−1 mod 2w, x = (xd−1, . . . , x0)2w and

y = (yd−1, . . . , y0)2w .

Output: xy2−m (mod u).

1. A← 0. // A = (ad, ad−1, . . . , a0)2w

2. for i from 0 to d− 1 do

2.1 ui ← (a0 + xiy0) mod 2w.

2.2 A← (A+ xiy + uim)/2w

3. if (A > u) then

A← A− u.

4. Return(A).

The following algorithm was presented by Savas and Koç in [ScKK00] as the modified

Kaliski-Montgomery Inverse.

Algorithm 6.6. Montgomery inversion

Input: u: a n-bit prime, d = dn/we, m = dw, R2 (mod u) = (2m)2 (mod u), u′ = u−1 mod 2w

and b ∈ [1, 2m − 1].

Output: b−1R (mod u).

1. Compute f and x = b−12f (mod u) using Algorithm 6.7, where n ≤ f ≤ m+ n.
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2. if (f ≤ m) then

2.1 x← xR2R−1 (mod u) using Algorithm 6.5. // x = b−12m+f (mod u)

2.2 f ← f +m. // f > m, x = b−12f (mod u)

3. x← x22m−fR−1 (mod u) using Algorithm 6.5.

// x = b−12f22m−f2−m = b−12m (mod u)

4. Return(x).

We modified the almost Montgomery inverse algorithm of [ScKK00] to be resistant

to SPA attacks as in the following algorithm. SwapAddress(c, d) denotes interchanging

the memory addresses of the integers c and d. This is an inexpensive operation, hence its

usage as a dummy operation to balance the branches of the main loop. We implemented

the “if” statement in steps 3.4 and 3.5 such that the number of conditions checked per

loop iteration is always three. In assembly language, this can be easily ensured. Written

in Java, step 3.4 is implemented as

if( ( xLSb == 0 ) && ( xLSb == 0 ) && ( xLSb == 0 ) ).

If the condition is false, due to short-circuit evaluation, the flow control will move to the

following “if” after the first check, otherwise, it will perform the check three times. The

following “if”—step 3.5—is similar but with the condition checked only two times

if( ( yLSb == 0 ) && ( yLSb == 0 ) ).

Algorithm 6.7. Almost Montgomery inverse

Input: u: a n-bit prime, d = dn/we, m = dw and b ∈ [1, 2m − 1].

Output: f and b−12f (mod u), where n ≤ f ≤ m+ n.

1. x← u; y ← b; r ← 0; s← 1.
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2. f ← 0.

3. while (v > 0) do

3.1 U ← x− y; V ← −U .

3.2 T ← r + s.

3.3 f ← f + 1.

3.4 if (((lsb(x) = 0))) then // This “if” is special

SwapAddress(x,U); SwapAddress(x,U) // dummy

SHR(x); SHL(s).

3.5 else if ((lsb(y) = 0)) then // This “if” is special

SwapAddress(y,V); SwapAddress(y,V) // dummy

SHR(y); SHL(r).

3.6 else if (V >= 0) then

SwapAddress(y,V); SwapAddress(s, T )

SHR(y); SHL(r).

3.7 else

SwapAddress(x,U); SwapAddress(r, T )

SHR(x); SHL(s).

4. T ← u− r; V ← u+ T .

5. if (T > 0) then

Return(f, T )

else

Return(f,V).

The drawback of this algorithm is that an SPA of the number of iterations of the

main loop directly leaks the value of f . If f is uniformly distributed, the search space of
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b is reduced from 2m to 2m−log2 m, which is not a significant reduction. It is interesting

to study how f is actually distributed.

6.5 Performance Comparison

In this section, we compare the performance of the three different methods of key splitting

when combined with a SPA-resistant method. Among the described SPA countermeasures

in Section A.2, we have chosen the Montgomery ladder and the fixed-sequence window

methods to compare. The former is the most efficient method that processes the key on

the bit level provided that the point addition and doubling operation are performed using

the x-coordinate only as explained in Section A.2.1 on page 161. When storage is available

for precomputation, the latter performs better and makes use of existent efficient point

doubling and mixed coordinate addition operations. Its performance also exceeds that of

the modified comb method (page 165) for w > 2 and it is simpler to implement. Both the

Montgomery ladder and the fixed-sequence window methods do not contain dummy field

or point operations—except possibly for the last bit in the latter method as mentioned

in Section 6.4.1.

The comparison is shown in Table 6.5. We note the following:

• For the Montgomery ladder,

– (D + A)x denotes the encapsulated point addition and doubling using the

x-coordinate only evaluation.

– For both splitting schemes I and II, the two terms are evaluated separately,

each yielding a point in projective coordinates (based on the idea in [IT02]),

which are finally added using projective coordinates point addition denoted by
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AP
3.

• For the fixed-sequence window method,

– the first term in square brackets is the operation count of the precomputation

step and the second term is that of the running time. DA and DJ denote

point doubling using affine and Jacobian coordinates, respectively. AJA and

AJ denote point addition using Jacobian-affine and Jacobian coordinates, re-

spectively. X = 1I + 3(2w − 3)M + (2w−1 − 1)S as explained in Section 6.4.1.

For binary fields, the usage of the Jacobian coordinates can be replaced by

that of the Lopez-Dahab coordinates.

– For splitting scheme I, the precomputation step is done once and used for the

evaluation of each of the terms of the splitting. A Jacobian coordinate point

addition is performed at the end.

– For splitting scheme II, both terms are evaluated simultaneously using inter-

leaving (cf. Algorithm 2.4 on page 18), hence the precomputation used to

compute rP is reused in computing (6.6). Note that both tables of precom-

puted multiples of P and rP need to coexist in memory during the evaluation

of (6.6). This is not the case for scheme III since there is no simultaneous

evaluation.

• For splitting scheme II, recall that d = dn/we, l = dn/2e and z = dl/we. Hence, it

is easy to show that z = dd/2e.
3Montgomery ladder can be combined with simultaneous multiplication to evaluate scheme II in (6.6)

based on the idea in [IT02, Theorem 5], by replacing 2bn/2cP with rP , but it would be less efficient

than evaluating each term separately, since each iteration consists of three point additions and one point

doubling.
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• For splitting scheme III, v is the bit length of r and µ = dv/we. v can be a

relatively small integer, e.g., 80, in case the actual key k is used to compute kr−1

before every ECSM execution. However, if a divisor chain rt is stored as mentioned

in Section 6.3, then v = n.

• It is assumed that the resulting point in all cases is represented in standard or

Jacobian projective coordinates, hence, an inversion and some field multiplications

and or squaring operations are needed to convert the point to affine coordinates.

Table 6.1: Performance comparison of the key splitting methods combined with Mont-

gomery ladder or fixed-sequence window method

Scheme Montgomery ladder fixed-sequence window

I 2(n− 1) (D +A)x +AP [1 DA + (2w−1 − 1) AJA + X ]+

[2w(d− 1) DJ + 2(d− 1) AJA +AJ ]

II 3(l − 1) (D +A)x +AP 2[1 DA + (2w−1 − 1) AJA + X ]+

[2w(z − 1) DJ + 3(z − 1) AJA]

III ((v − 1) + (n− 1))(D +A)x 2[1 DA + (2w−1 − 1) AJA + X ]+

[w((µ− 1) + (d− 1)) DJ + ((µ− 1) + (d− 1)) AJA]

Depending on the value v, splitting scheme III may be more efficient than the other

two e.g., if v < 66 for n = 521 and w = 4, which may not be adequate for the required

security of the curve P-521 [NIST]. However, if v = n, then scheme I would perform

better and is simpler than scheme III; and scheme II would be the most efficient. Note

that the latter requires an extra precomputation phase and z−1 extra additions compared

with the ECSM using Algorithm 6.1.

We should also note that, scheme III requires finite field operations, e.g., inversion

and modular multiplication, which are different for computation over prime fields than
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for binary fields. Also some curve specific constants need to be precomputed and stored.

This is not the case for the first two splitting schemes where the computation involves

integer arithmetic operations.

6.6 Countermeasures to the DPA attack on ECDSA and

ECMQV

In Section A.4.2, we mentioned Messerges’ attack on the ECDSA signing algorithm

[Mes00], where the step that has been attacked is

s = k−1(m+ dr) mod g. (6.27)

More precisely, the attack targets the result of the integer multiplication dr where d is

the signer’s private key and r is part of the signature which is known to the attacker.

We first want to draw the attention that this attack is also applicable to the ECMQV

key agreement algorithm [HMV04, Algorithm 4.51]. In this algorithm, A and B aim to

establish a shared key. Hence, A—and similarly B—computes

sA = (kA +RAdA) mod u, (6.28)

where kA is a secret random value used once (a nonce), RA = f(RA) where RA is a point

computed by A and sent to B and f(.) is a known function, dA is A’s private key and u

is the group order. It is clear that RA is known to the attacker; hence, Messerges’ attack

is applicable to the step where the multiplication RAdA is performed.

As a countermeasure to the attack on ECDSA, Messerges suggested multiplying both

m and d by a random value ω and, after computing (6.27), multiplying s by ω−1. This

method requires 1I+3M additional operations. Note that ξ = dω mod g is computed first
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then ξr mod g. That is, due to the modulo operation, no intermediate value combining

r with d is computed. Hence, a second-order DPA attack as described in [JPS05] (cf.

Section A.4.3) is not applicable.

As an alternative countermeasure, we suggest using the same idea as in splitting

scheme III by computing ξ = dω mod g and ψ = ω−1r mod g and then ξψ mod g. Then

this would require 1I + 2M additional operations. Again, no intermediate values can

be computed for the partitioning required by Messerges’ attack or a second-order DPA

attack, since the value ξψ is uncorrelated to dr due to the modulo operation.

A more efficient alternative is, since k in (6.27) is a nonce, to compute ξ = k−1d mod g

then s is computed as

s = (mk−1 + ξr) mod g,

requiring only 1M additional operation.

Similarly, to protect the ECMQV key agreement algorithm, (6.28) can be modified as

follows

sA = (kAd
−1
A +RA)dA mod u, (6.29)

where d−1
A can be precomputed, this requires only an additional 1M . If it is not desirable

to store both the key dA and its inverse, then multiplicative splitting can be used here as

well by choosing a random integer ω and computing ξ = RAω mod u and ψ = ω−1dA mod

u and then ξψ mod u, requiring 1I + 2M additional operations.

6.7 Conclusions and Future Work

In this chapter, we have dealt in detail with key splitting schemes as a countermeasure

to DPA attacks. We have identified the weaknesses and strengths of each scheme. For
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the first scheme, we have proved by a lemma that it should not be evaluated using

simultaneous point multiplication methods.

For the second scheme, we have identified the occurrences of collisions on intermediate

points computed during a simultaneous point multiplication. We have classified these

collisions into major and minor ones. The former type of collision is directly related to

the key bits while the latter is not. We have proved by lemmas the conditions associated

with the occurrence of major collisions and have shown how to effectively avoid them.

We have also distinguished minor collisions and studied them experimentally on small

numbers in an attempt to quantify their probability. We have suggested ways to overcome

them in spite of their small likelihood. We have also recognized the effect of the fixed-

sequence recoding on both the major and minor collisions. We have introduced the

notion of splitting a dividend with a new divisor, given the old quotient, remainder and

divisor, without computing internally any part of the dividend; we have presented and

SPA resistant algorithm to carry this operation. We have as well presented an SPA-

resistant integer division algorithm that is more space and time efficient than what has

previously appeared in the literature.

For the third scheme, we have discussed the required finite field algorithms and pre-

sented our modifications to the almost Montgomery inverse algorithm in order to make

it SPA-resistant.

We have compared the performance of the three schemes when combined each with

the Montgomery ladder algorithm or the interleaving algorithm.

Finally, we have demonstrated the applicability of Messerges’ ECDSA attack to

the ECMQV algorithm and have presented efficient countermeasures to first-order and

second-order DPA attacks on both algorithms.

It is interesting to pursue the study on minor collisions and to provide an analytical
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result for their probability of occurrence as well as the effect of the fixed-sequence recoding

on them. It is also desirable to know the distribution of f resulting from the almost

Montgomery inverse algorithm over the integers in the range [1, 2m − 1] and its relation

to the modulus.

One of the examiners suggested combining splitting schemes I and II to avoid the

collisions in both schemes. An effort to such combination should carefully assess its effect

on the performance of the ECSM algorithm.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have dealt with key randomization countermeasures to DPA attacks.

We have discovered interesting statistical properties of the number of binary signed digit

representations (BSD) and τ -adic representations of integers. We have also studied in

detail the employment of key splitting techniques.

In Chapter 3, we have dealt with the randomized algorithms proposed by Oswald and

Aigner (OA) and by Ha and Moon (HM) along with the NAF generating algorithms on

which they were based. We have demonstrated that the HM algorithm can generate any

possible BSD representation of an integer while this is not the case for the OA algorithm.

We have also shown how the random decision proposed by Ha and Moon can be simply

inserted in Solinas NAF generating algorithm. We have also provided a new analytical

result for the average case complexity of the OA algorithm, that is it requires 3.5% more

point additions/subtractions on average than the binary algorithm. We have confirmed

this result using both the Markov chains and the grammatical specification methods.

149



150 Conclusions and Future Work

In Chapter 4, we have answered a number of questions related to the number of binary-

signed digit (BSD) representations of an integer k ∈ [0, 2n − 1], such as the average

number of representations among integers of the same length and the bit patterns of

kmax1,n and kmax2,n, i.e., the integers of length n bits that have the maximum number

of BSD representations. We have presented the recurrence that governs the number of

representations of such integers and have, hence, proved that it is a Fibonacci number and

is O(ϕn), where ϕ ≈ 1.618 is the golden ratio [Kos01]. We have presented an algorithm

that calculates in O(n) the exact number of BSD representations of k that are of length

n sbits. We have also presented an algorithm that generates in O(n) a random BSD

representation of k by scanning its bits starting from the most significant end, unlike

the HM algorithm, and outputs the sbits one by one in their correct order. In addition,

we have presented an algorithm that can generate all BSD representations of an integer,

which has helped us provide an alternate expression for the Fibonacci number that can be

computed without using floating point arithmetic, or the first few terms of which used as

an approximation. We have also proved that prepending 0s to the binary representation

of an integer results in only a linear increase in the number of its BSD representations.

In Chapter 5, we have introduced a new method of randomizing the τ -adic represen-

tation of a key in ECCs using Koblitz curves. The input to the randomization algorithm

is a τNAF of length l. The symbols of the resulting sequence are output one at a time

from the least significant to the most significant which allows the simultaneous execution

of the scalar multiplication operations. The length of the random representation is at

most l + 2. We have proved that the average Hamming density of all representations for

all τNAFs of the same length is 0.5. We have also presented the pattern of τNAFs with

maximum number of representations and the recurrence governing that number which

was identical to the recurrence found in Chapter 4. By modeling our algorithm as a
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nondeterministic finite automaton and by using adjacency matrices, we have presented a

deterministic method to determine the average and the exact number of representations

of a τNAF, where the average number is very close to
(

3
2

)l
. There is an obvious similarity

between the results of this chapter and the corresponding ones in Chapter 4.

In Chapter 6, we have dealt in detail with the key splitting schemes as a countermea-

sure to DPA attacks and identified the weaknesses and strengths of each scheme. We

have proved that scheme I should not be evaluated using simultaneous point multiplica-

tion methods.

When those methods are used with scheme II, we identified the occurrence of some

collisions on intermediate points. We have classified these collisions into major and minor

ones. The former type of collision is directly related to the key bits while the latter is

not. We have proved by lemmas the conditions associated with the occurrence of major

collisions and have shown how to effectively avoid them. We have also distinguished

minor collisions and studied them experimentally on small numbers in an attempt to

quantify their probability. We have suggested ways to overcome them in spite of their

small likelihood. We have also recognized the effect of the fixed-sequence recoding as an

SPA countermeasure on both the major and minor collisions. We have introduced a new

algorithm that performs a new splitting from an old one without computing internally

any part of the private key. And we have presented an SPA-resistant integer division

algorithm.

As for scheme III, we have discussed the required finite field algorithms and presented

our modifications to the almost Montgomery inverse algorithm in order to make it SPA-

resistant. We have compared the performance of the three schemes when combined each

with the Montgomery ladder algorithm or the interleaving algorithm. Finally, we have

demonstrated the applicability of Messerges’ ECDSA attack to the ECMQV algorithm
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and have presented efficient countermeasures to DPA attacks on both algorithms.

7.2 Future Work

In Section 4.3.2, we have provided an alternate formula for Fibonacci numbers that can be

truncated and used as an approximation when floating point arithmetic is not available.

It is interesting to study how many terms are necessary for a good approximation. Also,

to investigate the conversion of this formula to the closed form expression for Fibonacci

numbers which is known as Binet’s formula [Kos01].

Also of interest is to investigate how the randomization method we applied to the

τNAFs in Chapter 5 and the associated properties of the representation can be carried to

any complex radix with norm 2 or any arbitrary norm. This complex number should sat-

isfy an equation such as (5.2), in order to be able to recursively replace digits with a larger

absolute value than those in the digit set with the latter ones during the randomization

procedure.

It is interesting to pursue the study we started in Chapter 6 on minor collisions in

the second splitting scheme and to provide an analytical result for their probability of

occurrence as well as the effect of the fixed-sequence recoding on them.

It is desirable also to know the distribution of f resulting from the almost Montgomery

inverse algorithm over the integers in the range [1, 2m−1] and its relation to the modulus.



Appendix A

Overview of Side Channel Attacks

on ECCs and Known

Countermeasures

In this appendix, we first provide a brief background on other ECSM algorithms that

were not included in Section 2.1.3, but that are the base for some subsequently described

countermeasures. We then discuss the SPA and DPA attacks and their variants along

with many of the countermeasures that appeared in the literature. Finally, we draw a

comprehensive conclusion on the applicability of each type of attack and the principles

of resisting it.

Our discussion is mostly focused on elliptic curves defined over fields with prime

modulus since those are the ones adopted in suite B [NSA]. However, many of the

countermeasures are generic or have corresponding application on curves defined over

binary fields.
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A.1 Elliptic Curve Scalar Multiplication Algorithms

In this section, we provide other ECSM algorithms that are essential in understanding

some of the SPA and DPA countermeasures in this appendix.

Fixed-base windowing method

This is also known as Yao’s method [Ber01; Yao76]. It was presented in a different form

with precomputation by Brickell et al. [BGMW93]. In this method, k is recoded to the

radix 2w as (Kd−1, . . . ,K1,K0)2w where d =
⌈

n
w

⌉
. Let β be the largest absolute digit in

the digit set. The digit set can be formed of only positive digits (β = 2w−1) or can contain

both positive and negative digits (β = 2w−1). Let Qj =
∑

i:Ki=j 2wiP −∑i:Ki=−j 2wiP

for 1 ≤ j ≤ β. Then

kP =
d−1∑

i=0

Ki(2
wiP ) =

β
∑

j=1

j




∑

i:Ki=j

2wiP −
∑

i:Ki=−j

2wiP



 =

β
∑

j=1

jQj .

= Qβ + (Qβ +Qβ−1) + · · ·+ (Qβ +Qβ−1 + · · ·+Q1).

The right-to-left version of this method is illustrated in Algorithm A.1 (cf. [Möl02]).

Algorithm A.1. Yao’s method, right-to-left version

Input: Window width w, d = dn/we, k = (Kd−1, . . . ,K0)2w and P ∈ E(Fp).

Output: kP .

1. Q1, . . . , Qβ ← O; R← P .

2. for i from 0 to d− 1 do

2.1 if (Ki > 0) then

QKi
← QKi

+R.

else

Q|Ki| ← Q|Ki| −R.
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2.2 R← 2wR.

3. for i = β − 1 down to 1 do

Qi ← Qi +Qi+1.

4. for i = 2 to β do

Q1 ← Q1 +Qi.

5. Return(Q1).

Note that the number of additions in Algorithm A.1 is d + 2β − 2, but because the

accumulators are initialized to O, there are β additions saved (other additions are also

saved for the digits, if any, that did not appear in the representation of k.)

Storage: β + 1 accumulators (1 for R).

Precomputation: none

Expected running time: w(d− 1)D + (d+ β − 2)A.

Coordinate selection: We suggest to use Chudnovsky coordinates for the accumulators

Qi and Jacobian coordinates for R. If it is preferred to limit the space taken by the

accumulators, then they can be represented in Jacobian coordinates.

The Brickell et al. version of the method is illustrated in Algorithm A.2.

Algorithm A.2. Brickell et al. version of Yao’s method

Input: Window width w, d = dn/we, k = (Kd−1, . . . ,K0)2w and P ∈ E(Fp).

Output: kP .

1. Precomputation. Compute Pi = 2wiP, 0 ≤ i ≤ d− 1.

2. A← O; B ← O.

3. for j from β down to 1 do
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3.1 For each i for which |Ki| = j do

if Ki > 0 then B ← B + Pi. //Add Qj to B.

else B ← B − Pi.

3.2 A← A+B.

4. Return(A).

Storage: d points.

Precomputation: w(d− 1) D.

Expected running time: (d+ β − 2) A.

Coordinate selection: If the base point P is fixed, the precomputed points are stored

in affine coordinates, B in Chudnovsky coordinates and A in Jacobian coordinates. But

if P is unknown point, we suggest using Jacobian coordinates for the precomputed points

and A, and Chudnovsky coordinates for B.

In both versions of the algorithm the total number of addition and doubling operations

is the same. Moreover, if we take a closer look, we will find that this method and the

window method perform the same total number of group operations for the same key and

the same 2w-ary recoding of that key [Ber01; Ava].

Comb method

This method is attributed to Lim and Lee [LL94]1. In this method the key k is written as

a matrix of w rows and d =
⌈

n
w

⌉
columns. The bits of the key are processed one column

at a time. The precomputed points are

[aw−1, . . . , a2, a1, a0]P = aw−12
(w−1)dP + · · ·+ a2d

2 P + a12
dP + aoP

1But according to Bernestein [Ber01], Lim-Lee’s method is a special case (single-level recursion) of

Pippenger’s algorithm [Pip76].
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for all possible bit strings (aw−1, . . . , a1, a0). The algorithm is as follows.

Algorithm A.3. Comb method

Input: Number of rows w, d = dn/we, k = (kn−1, . . . , k0)2 and P ∈ E(Fp).

Output: kP .

1. Precomputation. Compute [aw−1, . . . , a2, a1, a0]P for all bit strings (aw−1, . . . , a1, a0) of

length w.

2. By padding k on the left with 0s if necessary, write k = Kw−1|| · · · ||K1||K0, where each

Kj is a bit string of length d, i.e., a row of the matrix. Let Kj
i denote the ith bit of Kj .

3. Q← [Kw−1

d−1
, . . . ,K1

d−1,K
0
d−1]P .

4. for i from d− 2 down to 0 do

4.1 Q← 2Q.

4.2 Q← Q+ [Kw−1
i , . . . ,K1

i ,K
0
i ]P .

5. Return(Q).

Storage: 2w − 1 points.

Precomputation: (w − 1)d D + (2w − 1− w) A.

Expected running time: (d− 1) D +
(

2w−1
2w d− 1

)
A.

Coordinate selection: as in the window method.

The savings of this method are more evident for fixed point P . Yet, if P is unknown, the

number of doubling operations is n− 1 including precomputation and the savings in the

addition operations are comparable to window methods.
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A.2 Countermeasures Against SPA and Timing attacks

As explained by Avanzi in his survey [Ava05], SPA attacks are based on observing a single

trace of power consumption or leaked emissions. By doing so, one can infer the sequence

of group operations since they typically take many clock cycles. If the trace of the

point doubling is distinguishable from that of the point addition and the latter operation

is performed depending on the secret key bit value, the bits of the secret key can be

revealed. Some of the timing attacks also exploit the irregularity of the ECSM execution.

In this section, we summarize the different countermeasures that were proposed to defeat

these attacks.

A.2.1 Fixed Sequence of Point Operations

The same sequence of point operations, point adding and point doubling, is executed

independent of the key bits.

Double-and-Add-Always

This technique was suggested by Coron [Cor99] (Algorithm A.5 appeared in [IT02]). In

order to make the sequence of doubling and adding independent of the key bit, a point

addition is performed whether the key bit is 0 or 1. The point addition is dummy if the

bit is 0.
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Algorithm A.4. Left-to-Right Double-and-

Add-Always

Input: k and P ∈ E(Fp).

Output: kP .

1. Q[0]← O.

2. for i from n− 1 down to 0 do

2.1 Q[0]← 2Q[0].

2.2 Q[1]← Q[0] + P .

2.3 Q[0]← Q[ki].

3. Return(Q[0]).

Algorithm A.5. Right-to-Left Double-and-

Add-Always

Input: k and P ∈ E(Fp).

Output: kP .

1. Q[0]← O; Q[2]← P .

2. for i from 0 to n− 1 do

2.1 Q[1]← Q[0] +Q[2].

2.2 Q[2]← 2Q[2].

2.3 Q[0]← Q[ki].

3. Return(Q[0]).

Drawbacks:

• This countermeasure is vulnerable to safe-error attack [YJ00]. The safe-error is

an adaptive fault-analysis attack (hardware attack). It induces a fault during an

operation to know whether it is dummy or not. If it is a dummy operation, the fault

does not change the output. If not, the output is incorrect. Thus, the attacker can

distinguish whether it is dummy or not and reveal the secret key. The algorithm

needs to be repeated several times (at least n times) with a single fault induced

each time until all of the key bits are revealed. Hence, the attack applies if the key

is not randomized.

• Algorithm A.4 is prone to Fouque-Valette doubling attack [FV03]. This is a variant

of SPA attack, in which an attacker inputs the points P and 2P to the algorithm

and collects the corresponding traces SP and S2P , respectively. Let SPD
(i) be the
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portion of the trace SP corresponding to the doubling in iteration i. If SPD
(i) is

highly correlated with S2PD
(i + 1), then ki+1 = 0, otherwise, ki+1 = 1. Table A.1

gives an example of the attack. The attack applies as long as neither the key nor

the intermediate points are randomized.

Table A.1: Example of Fouque-Valette doubling attack

i ki comput. of kP comput. of k(2P )

6 1 2×O 2×O
O + P O + 2P

5 0 2× P 2× 2P

2P + P 4P + 2P

4 0 2× 2P 2× 4P

4P + P 8P + 2P

3 1 2× 4P 2× 8P

8P + P 16P + 2P

2 1 2× 9P 2× 18P

18P + P 36P + 2P

1 1 2× 19P 2× 38P

38P + P 76P + 2P

0 0 2× 39P 2× 78P

78P + P 156P + 2P

return 78P return 156P

• Another similar attack was proposed by Yen et al. [YLMH05]. This is an SPA

attack that uses as input a point of order 2. It was presented on RSA with the

message n− 1 as input, where n here is the modulus. This attack is not applicable

to the curves in the standards that have prime order, but we mention it for the sake

of completeness.

Let P0 be a point of order 2. If P0 is an input to Algorithm A.4, then the interme-
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diate point computed at the end of each iteration i, is O if ki = 0 or P0 if ki = 1.

Hence, collisions between the iteration intervals in a single trace can reveal the key

bits. If the attack is applied to window-based or comb methods, as will follow, it

can reveal whether the digit at iteration i is odd or even, that is dn/we bits can be

revealed.

To resist this attack, we can check whether the input point P belongs to the main

subgroup before starting the ECSM execution. This is done by verifying whether

hP is equal to O where h is the cofactor. Also this attack is not possible if the base

point is blinded as we suggest in Section A.3.2 or as in Section A.3.2.

• Performance penalty: the algorithm performs nD + nA. Using Jacobian and

Jacobian-affine coordinates, the operation count is

12nM + 7nS + (1I + 3M + 1S).

Montgomery ladder

The Montgomery ladder has been first used for the Montgomery form of an elliptic curve

defined over a prime field [Mon87]. The following is the algorithm as it appears in [Gou03].

Algorithm A.6. The Montgomery Ladder

Input: k and P ∈ E(Fp).

Output: kP .

1. Q[0]← P ; Q[1]← 2P .

2. for i from n− 2 down to 0 do

2.1 Q[1− ki]← Q[0] +Q[1].

2.2 Q[ki]← 2Q[ki].



162 Overview of Side Channel Attacks on ECCs

3. Return(Q[0]).

Another version of the algorithm appeared in [IT02], making use of a third register to

remove the register dependence between the addition and the doubling so that the two

operations can be executed in parallel.

Algorithm A.7. The Montgomery Ladder (parallelizable)

Input: k and P ∈ E(Fp).

Output: kP .

1. Q[0]← P ; Q[1]← 2P .

2. for i from n− 2 down to 0 do

2.1 Q[2]← 2Q[ki].

2.2 Q[1]← Q[0] +Q[1].

2.3 Q[0]← Q[2− ki].

2.4 Q[1]← Q[1 + ki].

3. Return(Q[0]).

Note that in steps 2.3 and 2.4, the addresses of the registers rather than their contents

can be swapped [IIT02].

In the Montgomery ladder, the doubling (ECDBL) and addition (ECADD) are per-

formed in every iteration and there are no dummy operations. The algorithm takes

(n− 1) D + (n− 1) A.

The remarkable characteristic of this algorithm is that, regardless of the value of ki,

Q[1] − Q[0] = P = (x, y). This enabled the execution of the algorithm by computing

only the x-coordinate of Q[0] and Q[1] and recovering the y-coordinate at the end. The
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doubling and addition formulas needed for this purpose were introduced for a Weierstrass

curve over Fp by Brier and Joye in [BJ02] and by Izu and Takagi in [IT02]. They proposed

the use of standard projective coordinates which yields the following operation count,

assuming that the base point P has the Z-coordinate = 12.

Addition: 8M + 2S. 3 of the multiplications are by constants a, b and x.

Doubling: 6M + 3S. 2 of the multiplications are by constants a and b.

To obtain x(kP ), i.e., to convert back to affine coordinates: 1I.

To recover y(kP ): 1I + 4M + 1S.

We can assume that a = −3 as in Section 2.1.1. Also, the intermediate result of the

multiplication by b from the doubling can be used in the addition. Hence, we can deduct

1M from the doubling and 2M from the addition. The total operation count is therefore

11nM + 5nS + (2I + 4M + 1S).

Using the same idea—but not the same formula—as in [IT02], the projective coordi-

nate Y (kP ) can be first computed, then the point converted into affine coordinate. This

has the benefit of obtaining the point in projective coordinates first if it is to be used

in another point addition as in the case of the additive key splitting countermeasure (cf.

Section 6.5). The cost of these two computations in this order is less than the previous

order. We found the cost that the total cost becomes

11nM + 5nS + (1I + 10M + 2S).

2This is our operation count based on [BJ02], whereas the authors did not distinguish between M

and S. It agrees with the operation count for ECADDm (using multiplicative formula to compute the

x-coordinate) and ECDBL in [IT02], but the formulas for the y-recovering are different. Also, the encap-

sulation of ECADD and ECDBL in [IT02] yields 12M + 4S per iteration, if we assume a = −3 and we

do not count multiplication by a.
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Fixed-Sequence Window Method

This SPA countermeasure is based on recoding the key k to the base 2w, where w is

the window width [Möl01; OT03; Thé06] and performing the scalar multiplication using

left-to-right window method as in Section 2.1.3. The difference is that the digit 0 is not in

the digit set. Hence, the sequence of additions and doubling is fixed which is w doubling

operations followed by one addition. The recoding of k can be carried from right to left

and stored to be used in the scalar multiplication [Möl01; OT03] or from left to right and

interleaved with the scalar multiplication [Thé06].

Storage: 2w−1 points, when using the digit set {±1,±3, . . . ,±(2w − 1)}, this is the

smallest proposed set [OT03; Thé06].

Precomputation: 1 D + (2w−1 − 1) A.

Running time: n D + n
w A.

NAF-based Scalar Multiplication with Dummy Point Operations

In this countermeasure, the NAF of the key k is used with the left-to-right double-and-

add algorithm as in Section 2.1.3. The difference is that 2 digits are processed at a time

and depending on their value, dummy point addition and/or doubling are inserted to

unify the sequence DDAD [CJ03].

Expected running time: 3n
2 D + n

2 A.

Another similar countermeasure proposed in [HM02b] unifies the sequence DDA, but

there is a recoding step prior to the scalar multiplication that recodes the w-NAF of k

into another “SPA-resistant” sequence. This recoding step was removed in [CJ03].

Expected running time: 10n
9 D + 5n

9 A.
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Drawbacks:

• Since dummy operations are inserted, this countermeasure is vulnerable to safe-error

attack [YJ00] as in Section A.2.1. This attack applies if the key is not randomized.

Replacing Digit 0 in the Comb Method

This countermeasure was proposed in [HPB04]. It deals with the occurrence of 0 digits

in the comb method. Recall from Section A.1 that in this method, the bits of the key k

are arranged in a w×d matrix and are processed one column at a time from left to right.

Therefore, recoding methods that avoid the 0 digit as in Section A.2.1 are not applicable.

The following is our interpretation of the proposed idea: if at iteration i = a of

Algorithm A.3, the current column Ca = [Kw−1
a , . . . ,K1

a ,K
0
a ] is all 0, the value of the

next non-zero column Cb = [Kw−1
b , . . . ,K1

b ,K
0
b ], where b < a, replaces the value of Ca.

Then, in subsequent iterations where a > i ≥ b, the point CbP is subtracted. This yields

the correct result since after iteration i = b

Q =

d−1∑

i=a+1

2i−bCiP + 2a−bCbP −
a−1∑

i=b

2i−bCbP,

=
d−1∑

i=a+1

2i−bCiP + CbP,

=
d−1∑

i=b

2i−bCiP.

We can see that this column processing can take place while the algorithm is executing.

Yet, in the proposed countermeasure, the columns of the key are first processed from right

to left and a sign is assigned to every column. The zero columns are replaced and the

signs of the less significant columns adjusted. After that, the scalar multiplication is

performed with the new column-sign representation.
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A.2.2 Unified Addition and Doubling Formulas

Brier and Joye [BJ02] rewrote the addition of points on the general Weierstrass form of

elliptic curves so that it can be used for adding two different points as well as doubling a

point. For curves over Fp, the field operations count for affine and projective coordinates

is

coordinates operations count

A 1I, 3M, 2S

P 13M, 4S

We did not include in the count one multiplication by a for each of the coordinate sys-

tems, assuming a = −3 as before. Also we separated the squaring from the multiplication

count as opposed to the authors’ count.

Drawbacks:

• Let P1 and P2 be two point on E, such that P1 6= ±P2. To obtain P3 = P1 + P2 in

affine coordinates, the unified formula requires the inversion of y1+y2. If y1+y2 = 0

(note that x1 6= x2), an error occurs if those two points are processed [AT03].

This can happen if at iteration i = a of the left-to-right scalar multiplication algo-

rithm, there is an attempt to calculate mP + P , where P is the input point and

m =
∑n−1

i=a di2
i−a and P is chosen such that y(P ) + y(mP ) = 0, P is called in

this case an m-th self-collision point. Such points could be found for small m and

thus this attack can reveal few bits of the key. This attack applies if the key is not

randomized.

If projective coordinates are used, the formula contains M = Y1Z2 + Y2Z1, which

will yield 0 if the attack condition is met. This in turn will result in Z3 = 0, that

is the point O which is not the correct result for P3. We suggest to change the
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addition formula so that M is not computed explicitly at the expense of two extra

field multiplications. Similar changes to other addition formulas were suggested by

Akishita and Takagi in [AT03].

• Another attack was presented by Walter [Wal04b] when the unified formula is used

with Algorithm 2.1. The attack exploits the use of a modular multiplier that con-

tains a conditional subtraction at the end such as the Montgomery modular multi-

plier (MMM). It is assumed that this subtraction can be detected with a side-channel

leakage. The unified formula contains the following intermediate multiplications

U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1.

When the unified formula is used for point doubling, the operands for the first two

multiplications are the same as well as for the second two multiplications. This is

not the case for point addition. Hence, if the attacker observes a subtraction in

the first multiplication and not in the second, he is certain that this operation is a

point addition.

The attack uses one trace of side-channel leakage, but in order to obtain a good

trace with sufficient point additions identifiable, the attacker needs to set some

sample space. For example to attack a key in the field P-192, a sample size of 512

can reduce the key search space to 217.6. The author asserts that blinding the key,

blinding the input point and/or randomizing the input point will not defeat the

attack, but may actually help it. Yet, the attack is not feasible if Algorithm 2.2 or

a window method are used.
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A.2.3 Inserting Dummy Field Operations

Inserting Dummy Field Multiplications

Gebotys and Gebotys [GG02] showed how to insert dummy field operations in the ad-

dition and doubling formulas using Jacobian coordinates for Weierstrass curves over Fp

(assuming a = −3). The point addition was split into two modules, and the point dou-

bling was kept as a single module. The field arithmetic operations were arranged so that

their sequence in each module is exactly the same. The dummy operations are:

In doubling: 1 M (also 2 multiplications were used to perform squaring).

In addition: 1 M + 3 modular additions/subtractions (A/S) + 10 shift left operations

(ShL).

(The authors’ implementation of Jacobian coordinates addition formula used 1M more

than in [HMV04].)

Operations count:

Addition: 14M + 4S + 12A/S + 10ShL.

Doubling: 7M + 2S + 6A/S + 5ShL.

Drawbacks:

• Since dummy field operations are inserted, this countermeasure can be attacked

by safe-error attack [YJ00] as in Section A.2.1. Though the attack will need more

precision, since the fault should be inserted in a precise field multiplication rather

than anywhere in a point doubling/addition operation. The attack applies if the

key is not randomized.

• Performance penalty compared with using mixed coordinates for point addition.
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Common Side-Channel Atomicity

This approach introduced by Chevallier-Mames et al. [CMCJ04] can be considered a

refinement of the previous countermeasure. In this case, both the addition and doubling

operations are split into elementary basic blocks called side-channel atomic blocks. Hence,

even if the addition is performed depending on the current key bit, the sequence of

doubling and addition would appear as a repetitive sequence of field operations that does

not reveal the boundaries between the point operations.

They also use Jacobian coordinates for Weierstrass curves over Fp assuming a is

random. In this case the atomic block is formed of 1M + 2A+ 1N , where A is modular

addition and N is negation. All the squarings are performed as multiplications and

multiplication by 2 is performed as modular addition (no shift operations are used).

Dummy A and N operations are inserted in different blocks, but there are no dummy

multiplications.

The main loop of the algorithm consists of those 4 operations, where the addresses of

the input and output registers for each operation is stored in a look-up table.

Operations count:

Addition: 16 blocks = 16M + 32A+ 16N .

Doubling: 10 blocks = 10M + 20A+ 10N .

Drawbacks:

• The safe-error attack is still applicable to this countermeasure but the precision

needed is more than with the previous one since there are no dummy multiplications.

Also allocating a dummy operation will not directly lead to the knowledge of the

key bit, since the boundaries between addition and doubling are not apparent. A
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minimum number of blocks need to be identified in order to reveal whether the

current point operation is an addition or a doubling. The attack applies if the key

is not randomized.

• Performance penalty compared with using mixed coordinates for point addition.

A.3 Countermeasures Against DPA attacks

Even when SPA countermeasures are employed, if the sequence of key bits is the same in

every scalar multiplication execution, the internal state of the device is correlated with

the bit value. The typical scenario where DPA attacks are applicable is when a long-term

key is processed by the ECSM of an arbitrary point on the elliptic curve. Differential

attacks can be explained as follows [Cie03; Cor99].

The attacker has access to a device that performs ECSM using a left-to-right binary

algorithm with some SPA countermeasure (with no precomputation) e.g., Algorithm A.4.

The attacker’s goal is to reveal the key k that is kept secret in the device. The attacker

can input different points P1, P2, . . . , Pe to the device and make it perform a scalar multi-

plication of each point by k. During each execution, the attacker collects the side-channel

information associated to the computation of kPi e.g., power consumption trace. Let this

information be Ci(t), which is a function of time t. Note that this is a known-plaintext

attack, since the attacker needs only to know the input points and not necessarily choose

them. Once the attacker collects all the side-channel traces, he does not need the device

to perform his statistical analysis. Let kb→a denote b(k mod 2b+1)/2ac or, simply, the

bits of k from bit position b down to bit position a, with b ≥ a.

Now the attacker will guess the key bits starting from the most significant bit. Assume

the key is n bits long and kn−1 = 1. If kn−2 = 0 then 4P is computed in iteration i = n−3,
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otherwise, 4P is never computed. The following table shows the value of Q[0] in step 2.2

in the first 3 iterations of Algorithm A.4.

i

kn−2 n− 1 n− 2 n− 3

0 O 2P 4P

1 O 2P 6P

The attacker computes 4Pi for i = 1, . . . , e, and specify a decision boolean function si

e.g., a specific bit value of 4Pi
3. Then, the following function g(t) is computed

g(t) = 〈Ci(t)〉i=1,2,...,e|si=0 − 〈Ci(t)〉i=1,2,...,e|si=1, (A.1)

where 〈·〉 denotes the average operator. If kn−2 = 0, then the points 4Pi were computed

by the device and a peak will be observed in g(t) at t = t1, where t1 is the time when

the point 4P is processed. Otherwise, no peak will be observed. This peak is sometimes

called a differential signal.

Suppose that no peak was observed, then kn−2 = 14. Now to find kn−3, the attacker

repeats the previous procedure by computing 12Pi for 1 ≤ i ≤ e [Cie03], repartitioning

the traces and computing g(t) where si is now a decision function of 12P . If kn−3 = 0,

then 12P is computed by the device, otherwise, 12P is never computed. We can conclude

that, if the bits recovered by the attacker are kn−1→t = (kn−1, kn−2, . . . , kt), then the at-

tacker recovers the bit kt−1 by computing the intermediate point 4kn−1→tP and repeating

the partitioning procedure. This point would be computed during the execution of the

algorithm only if kt−1 = 0.

Now we consider the case where the attacked algorithm uses precomputed points, that

is the key is represented in w-bit digits k = (Kd−1, . . . ,K1,K0)2w , where d = dn/we. let

3Gebotys et al. [GHT05] found that the most significant bit of the x-coordinate was the best choice.
4To be certain the attacker can repeat the procedure with 6Pi.
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Kb→a denote b(k mod 2bw+1)/2awc or, simply, the w-bit digits of k from digit position

b down to digit position a, with b ≥ a. Then, the attack can be modified as follows.

Assume that the attacker knows the key digits Kd−1→j+1. For every possible guess for

the key digit Kj , he computes the corresponding result in the accumulator and partitions

the traces into two sets as before. The correct guess will result in a peak in g(t). This is

similar to the attack by Kocher et al. on DES [KJJ99], to reveal the 8-bit subkey of the

last round. The attack gets more involved as w increases.

The decision boolean function here was a bit in the intermediate point. This function

is also called partitioning function [MDS99a]. Other partitioning functions were proposed

by Messerges et al. [MDS99a] when attacking DES in order to increase the peak that

appears in g(t). Examples of those functions are:

• d bits in the intermediate result being either all 0 or all 1. They called the DPA

attack in this case all-or-nothing d-bit DPA.

• The Hamming weight of n bits of the intermediate result being less than n − d or

greater than d. Also the number of bits that were toggled, the transition count,

can be used instead of the Hamming weight. This is referred to as generalized d-bit

DPA attack.

• The number of address bus transitions being maximum or minimum. In DES, the

address used for the S-box lookup is resulting from the XORing of the subkey with

part of the ciphertext. The latter is known to the attacker. Hence, this partitioning

is helpful if the target address depends on the key bits. The authors refer to the DPA

attack that uses this partitioning as address-bit DPA. Other forms of address-bit

attacks that do not use partitioning are in Section A.4.5.

In our discussion of the various DPA countermeasures, we will mention the attacks,
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if any, that were reported on each one. If it is a good candidate, we will assess the

performance of the proposed method, the storage it requires and the amount of protection

it provides. To measure the amount of protection provided by the method, most of

the authors provide the number of random choices that can be taken in the method

[CQS03; IIT02]. They sometimes call the inverse of this number attenuation ratio (AR)

[IIT02], since it means the amount by which the differential signal will be attenuated.

We will mention the AR if it was calculated by the authors. If not, we will try to assess

it as the inverse of the number of random choices.

A.3.1 Randomizing the Key

Randomizing the Key Representation

The following countermeasures aim at changing the key representation so that the se-

quence of doubling and adding operations is different for every ECSM execution. The

main objective, though, is to randomize the intermediate points computed in a certain

iteration among several ECSM executions that use the same secret key. This objective is

not always met as we will explain.

Randomized binary signed digit representation The idea is to insert random

decisions in Algorithm 2.2 when ki = 1 whether to perform the point addition or not

and adjust the value of the remainder of the key bk/2ic accordingly. This approach is

equivalent to generating a random binary signed digit (BSD) representation for k with

every ECSM execution of the algorithm. The BSD representation of an integer is a

redundant representation with radix 2 where the digits used are {0,±1}.

Two countermeasures were proposed in this direction, one by Oswald and Aigner

[OA01] and the other by Ha and Moon [HM02a]. The second one can generate one of
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all possible BSD representations of the key while this is not the case for the first one

[EH03a]. Also, the sequence of additions and doubling (the AD sequence) generated by

the first one made its cryptanalysis easier.

Drawbacks:

• Assuming that no SPA countermeasures are in place, and that the addition and dou-

bling operations could be distinguished from their side-channel trace, the Oswald-

Aigner algorithm cryptanalysis was reported in [OS02a; KW03; Wal04a].

• With the same assumptions, the Ha-Moon algorithm cryptanalysis was reported

in [OH03]. The idea was that the AD sequence can reveal whether two successive

digits of the representation are equal or not. Using this information the original bit

sequence of the key is obtained. This is due to the fact that no matter which BSD

representation is chosen for k, the intermediate points computed by a left-to-right or

right-to-left binary algorithm will be one of two possible values. This is a property

of the BSD representation itself.

• Even when an SPA countermeasure is employed such as in Section A.2.1, exploiting

the previous property is still possible using collision attacks [FMPV04]. In a collision

attack, the attacker compares two traces of, say, a point doubling, where the device

computes 2×A and 2×B. He is not able to discover the value of A nor B, but he

is able to check whether A = B or not. For each digit k′i of the BSD representation,

by detecting the collisions on—two successive—intermediate points, the attacker

can subdivide the traces into three groups each corresponding to one of the digits

{0,±1}, but he does not need to know which digit corresponds to which group. If

the number of traces in one group is more than half the traces, then k′i = 0 and

ki = ki+1, otherwise, if the traces are fairly distributed among the three groups,
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then ki 6= ki+1.

Window method with random window size Liardet and Smart [LS01] proposed a

DPA countermeasure where the idea is to recode k as in window method, but the window

size is randomly selected from the range [1, R] for each recoded digit, and negative digits

are included in the digit set. The key k is first recoded from right to left into pairs (bi, ei)

where bi is the digit and ei is the window size. This recoded key is then used in the

window method scalar multiplication where the number of precomputed points is 2R−2.

Drawbacks: The number of consecutive point doubling operations depends on the win-

dow size. Hence, an attack on this method was presented by Walter in [Wal02a] exploiting

the irregularity of the AD sequence. With 18 collected traces, the computational effort

to recover a 192-bit key is O(210).

Another similar algorithm was proposed by Ahn et al. [AHLM03] where R = 3, with

the following probabilities: p(w = 3) = 1
2 , p(w = 3) = 1

3 and p(w = 3) = 1
6 . The digit

set is {0, 1, . . . , 7}. In order to make the method resistant to SPA attacks and to the

afore mentioned attack by Walter, point doubling is performed 3 times in every iteration

irrespective of the window size.

Drawbacks:

• The presence of dummy doubling operations make the method susceptible to safe-

error attack as before. If the dummy operations are identified, then Walter’s attack

[Wal02a] becomes applicable.

• Performance penalty. According to the authors, for n = 160, the algorithm’s ex-
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pected running time is

(1.29n+ 3)D + (0.43n+ 3)A

We should note that in both methods the number of additions is not constant, which

may not directly reveal any information, but may not be desirable.

Overlapping window method (O-WM) This method and the following two were

proposed by Itoh et al. [IYTT02]. In this method, a window width, w, and an overlapping

between windows, h, are selected. The overlapping between windows can vary throughout

the key recoding but the authors advise to fix it in order to resist SPA attacks. Also they

advise to choose h ≥ w
2 to prevent a bias in the distribution of the windows.

The exponent windows are recoded from left to right and the digit set is {0, 1, . . . ,

2w−1}. In the recoding procedure, the value of the current window is replaced by another

random value and their difference is added the next window—which is overlapping the

current window by h bits. Hence, the difference between the original value and the new

value must be in the range [0, 2h−1]. If the overlapping is small, the range of the random

values is small. Otherwise, if it is large, the number of recoded windows, and hence,

the number of point additions is large. The precomputation amount is the same as the

ordinary window method.

Storage: 2w−1 points.

Precomputation: (w − 1) D + (2w − w − 1) A.

Running time: (n− 1) D + n
w−h A.

Randomized table window method (RT-WM) In this method, a random b-bit

positive integer r is subtracted from all overlapping windows. The overlapping amount
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is b−w. The precomputed points are P [i] = (i× 2b + r) P . The precomputation amount

involves more additions than ordinary window methods and needs to be performed at the

beginning of every ECSM execution as well as the key recoding.

Storage: 2w−1 points.

Precomputation: b D + (2w − 1) A (this count differs from the authors’ count.)

Running time: (n− b) D + n
w A.

Hybrid randomization window method (HR-WM) This method combines the

previous two methods. There is no constraint on the overlapping amount h.

The authors analyzed the AR for ECC with n = 160:

For affine coordinates, the authors suggest using RT-WM with AR = 2−b (for b = 20,

279 additions are needed).

In the case of projective coordinates, assume that cP is an intermediate point that was

computed twice by the device, but the windows that were used in the first computation

contain different values than those that were used in the second one. In this case, it

is very unlikely that the point will be internally represented with the same coordinates

in both cases. Therefore the authors recommend the O-WM in this case with AR =

2−hn/(w−h) when h is fixed.

Self-Randomized Exponentiation This algorithm was presented by Chevallier-Ma-

mes [CM04] to protect RSA-like systems. It can be also applied to ECC keys. Let

k(ij) = kn−1→ij = (kn−1 . . . kij )2, 1 ≤ j ≤ t and i1 > i2 > · · · > it. Then, we have

kP = k(0)P,

= (k(0) − k(i1))P + k(i1)P,

= (k(0) − k(i1) − k(i2))P + k(i1)P + k(i2)P,
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= . . .

= (k(0) − k(i1) − k(i2) − · · · − k(it))P + k(i1)P + k(i2)P + · · ·+ k(it)P.

That is, as the key bits are processed from left to right in the ECSM algorithm,

at a randomly chosen iteration ij , the value of the upper bits of the key, kn−1→ij is

subtracted from kij−1→0, i.e., from the lower bits. The current point in the accumulator

Q[0] = kn−1→ijP is added to another register, say, Q[2] (initialized with O). This process

is repeated as long as kij−1→0 ≥ kn−1→ij . At the end, Q[2] is added to Q[0].

The previous idea is Algorithm I by the authors, it randomizes only the lower half of

the key bits. They improve it in Algorithm II by subtracting kn−1→ij from the adjacent

block of bits of the same length c = n − ij , that is perform kij−1→ij−c − kn−1→ij if

it will not yield a negative value. In this case, at iteration ij , the accumulator point

Q[0] = kn−1→ijP is stored in Q[2] which is added back to Q[0] at iteration ij − c. In

Algorithm III, the length of the adjacent block c can be chosen at random from the range

[n− ij , ij ].

Because of the extra addition that occur occasionally in the three algorithms, the

authors show how to combine their algorithms with the side-channel atomicity concept.

This is based on considering the multiplication and the squaring the same operation in

RSA systems (multiplicative groups). This means that to use this concept, the adding

and doubling in ECC should be indistinguishable from a side-channel point of view.

According to the authors, in Algorithms II and III, the maximum number of extra

point additions will be log2 n. They also conclude that the number of possible random-

izations (AR−1) is
( n/2
log2 n

)
. For example, for n = 160, AR = 2−28 and for n = 256, AR =

2−33.
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The MIST Algorithm This algorithm was presented by Walter [Wal02b] to protect

RSA-like systems, but can be adapted to any group-based cryptographic system. The

basic idea is to recode the key from right to left with a mixed radix number system,

where, at each recoding step, the radix is chosen at random. The possible radices are

2, 3 and 5 and they are selected according to a non-uniform distribution. At the same

time, small addition chains are selected for the different part of the computation which

are composed from similar sub-blocks of group operations.

Drawbacks:

The security analysis of the algorithm was also presented by Walter [Wal02c]: if point

addition and point doubling are distinguishable, then the key search space is about 23n/5.

If operand reuse can be detected, the key search space is about 2n/3. Another adaptive

chosen ciphertext attack by Sim et al. [SPL04] decreases the search space to 20.0756n.

Randomizing the Order of the Key Bits

Random Starting Point This method was proposed by Messerges et al. [MDS99b].

The idea is to randomly choose a bit position j in the key. Then, the ECSM is executed

from right-to-left starting with the bit kj and ending at the most significant bit kn−1.

Using the result of this calculation as initial point in the accumulator, the ECSM is then

executed from left-to-right starting at the bit kj−1 and ending at the least significant bit

k0. In this method AR = 1/n, which may not be small enough for ECCs.

Random Permutation of the Key Bits This method was suggested by Trichina and

Bellezza [CQS03], if the device is not memory constrained. The idea is to precompute

the points 2iP, 0 ≤ i < n. Before each ECSM execution, the key bits are permuted, by

recursive split-and-rotate method, along with the indices of the precomputed points. We
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note that AR = 1/n! if it is a pure permutation.

Randomizing the Key Value

This approach is also called key blinding technique. In the context of ECC cryptosystems,

this countermeasure is referred to as Coron’s first countermeasure [Cor99]. Before every

scalar multiplication operation, the key is blinded as follows

k′ = k + r#E(Fp),

where r is a random random number of length, say, 20 bits, as suggested by Coron.

Hence, AR = 2−20

Drawbacks:

• It was found by Okeya and Sakurai [OS00] that the bits of k′ exhibit some bias that

depends on the original bits of k which is a leakage of information.

• It was observed by Ciet [Cie03, Section VIII.6.2] that a part of the bits of the secret

scalar may still be in the clear after the randomization. This is due to the following

observation. Elliptic curves defined over Fp that are recommended in the standards

have p a generalized Mersenne prime, that is, a prime of the form 2n ± 2l ± 1,

where l is relatively small, for efficiency reasons. From Hasse theorem we have

|#E − p− 1| ≤ 2
√
p. Hence, the binary representation of #E(Fp) is likely to be a

1 followed by a long run of 0s. For example, the curve “secp160k1” [SEC2] has

#E(Fp) = (0100000000000000000001B8FA16DFAB9ACA16B6B3)16.

As for the curves recommended in [NIST], #E(Fp) has long runs of 1s for most

of them except for P-256, which has a run of 32 0s. However, many of the binary

curves orders satisfy this criteria.
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• Performance penalty since the length of the key increases by the number of bits of

r.

Key Splitting

For details on this method, we refer the reader to Chapter 6.

A.3.2 Randomizing the Base Point

The countermeasures proposed in this section focus on directly randomizing the inter-

mediate points by randomizing the base point that is input to the ECSM algorithm or

the point computed in the first iteration. We present them along with their applicable

attacks. We will see that most of the attacks are not possible if the key is randomized.

All methods in this section have AR = 2−n, unless otherwise stated.

Random Projective Coordinates (RPC)

This countermeasure is known as Coron’s third countermeasure [Cor99]. It relies on the

idea that the representation of a point using projective coordinates is redundant. That

is, in standard (homogeneous) coordinates,

(X,Y, Z) = (rX, rY, rZ),

for any r ∈ Fp, r 6= 0. The randomization requires 3M . In Jacobian projective coordi-

nates,

(X,Y, Z) = (r2X, r3Y, rZ),

for any r ∈ Fp, r 6= 0. The randomization requires 4M+1S. Hence, the base point P can

be stored in projective coordinates and randomized in this manner before every ECSM

execution. Better yet, as was noted by Ciet and Joye in [CJ03], the point P can be kept
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in affine coordinate—this is equivalent to saying that its Z-coordinate remains equal to

1—and randomize the coordinates of the first intermediate point computed by an ECSM.

This first intermediate point is 2P if a ECSM method with no precomputation is used.

They call this method 2P ∗. This enables the use of mixed Jacobian-affine coordinates in

the addition operation. The same observation was made by Izu etal [IMT02] when using

Montgomery ladder.

Random Elliptic Curve Isomorphisms (RC)

The idea of this countermeasure is to transfer the base point P = (x, y) ∈ E to a

randomly selected isomorphic curve E′, execute the ECSM on that curve and bring the

result Q′ = (xk, yk) back to the original curve. The transferred point is P ′ = (r2x, r3y)

and the parameters of the curve E′ are a′ = r4a and b′ = r6b (b′ is not needed in the ECSM

algorithm). To bring the result to the original curve we compute Q = (xk/r
2, yk/r

3). The

randomization takes 4M + 2S at the beginning and 1I + 3M + 1S at the end.

Drawbacks: Goubin-type attacks (GRA and ZPA) An attack by Goubin [Gou03]

was mounted on both this countermeasure and the previous one when combined with

either the double-and-add-always or the Montgomery algorithms (Algorithms A.4 and

A.6, respectively). This attack is referred to in the literature as Goubin’s refined attack

(GRA). It is an adaptive chosen ciphertext attack where the attacker chooses as input to

the device a multiple of a special point P0 ∈ E. P0 has one of its coordinates equal to

0, hence, the randomization methods proposed do not affect this coordinate. The attack

discovers the bits of the key starting from the most significant bit as follows.

Assume that the attacker knows the most significant bits of the key kn−1→j , and he is

trying to know kj−1. In both algorithms, at iteration i = j−2, the point (4kn−1→j +1)P
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will be computed by ECADD if kj−1 = 0 and (4kn−1→j + 3)P will be computed by

ECADD if kj−1 = 1. Let c0 = 4kn−1→j + 1 and c1 = 4kn−1→j + 3. The attacker guesses

that kj−1 = 0 and computes the point

P = c−1
0 P0

He inputs P to the device e times and collects the corresponding traces Ci(t), 1 ≤ i ≤ e.

He then computes the mean of the traces

M(t) =
1

e

e∑

i=1

Ci(t).

If his guess is incorrect, then M(t) ' 0, since the intermediate points are correctly

randomized. But if his guess is correct, there will be noticeable peaks in M(t) at the

time corresponding to the iteration i = j− 2 due to the processing of the zero coordinate

in the device.

The points (x, 0) have order 2 and, hence, do not exist on the curves recommended in

the standards. However, the point (0, y) was found on four of the curves recommended

in [NIST] but not on the P-224 curve. This point was also found on curves recommended

in other standards (WTLS, ANSI X9.62, draft of ISO/IEC 15946-4).

Another similar attack was reported by Akishita and Takagi [AT03]. The attack is

referred to as the zero point attack (ZPA). The difference from the GRA attack is that

the set of special points includes points that cause zero values in the intermediate results

of the field operations performed in the ECDBL or the ECADD. For the ECDBL, the

points with 0 coordinates that were discussed by Goubin belong to this set. If the binary

algorithm is used with the Jacobian coordinates doubling formula, this set includes also

the points that satisfy the conditions 3x2+a = 0 or 5x4 +2ax2−4bx+a2 = 0. Otherwise,

if the Montgomery ladder [BJ02; IT02] is used with the x-coordinate only formulas, then

the set includes the points that satisfy the conditions x2 − a = 0 and x2 + a = 0.
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Those points that result in 0 in the intermediate values computed as part of the

ECADD at an iteration i = j depend on kn−1→j such as those discussed in Section A.2.2

and can only be found for small kn−1→j .

We should note that these attacks are not applicable if the key is randomized.

Randomized Linearly-transformed Coordinates (RLC)

This countermeasure proposed by Itoh et al. [IIT04] is based on offsetting the coordinates

of the points on the curve and accounting for this offset in the addition and doubling

formulas. They gave an example on how to do that for the x-coordinate using the addition

and doubling formulas of the Jacobian coordinate. This offset, combined with RPC, is

chosen at random with every execution. By doing that, the zero coordinates of the special

points of Goubin’s attack will not be computed in the device and will not be noticeable

from the side-channel trace. In their example formulas, AR = 2−2n.

Drawbacks:

Performance penalty; their example formulas have the following cost for addition and

doubling:

• When combined with Algorithm A.4, left-to-right double-and-add-always,

A = 14M + 4S and D = 8M + 7S. The cost for doubling is for arbitrary curve

parameter a. We believe that it can be optimized for a = −3.

• When combined with Algorithm A.5, right-to-left double-and-add-always,

A = 13M + 4S and D = 4M + 4S.

• When combined with Algorithm A.6, Montgomery ladder, with x-coordinate com-

bined adding and doubling formulas, the cost is 20M+5S per iteration for arbitrary

a (1M can be saved if a = −3).
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Random Initial Point (RIP)

This countermeasure was proposed by Itoh et al. [IIT04] in order to thwart Goubin-type

attacks. It is based on using Algorithm A.5 with the difference that Q[0] is initialized to

a random point R rather than O, then R is subtracted at the end. The authors mention

that the selection of a new point R before every ECSM execution may require some time.

Alternatively, they suggest that some point R0 be fixed and stored in the device and

randomize its projective coordinates using RPC as in Section A.3.2 with every execution.

Binary Expansion with RIP (BRIP, EBRIP, WBRIP)

This countermeasure, proposed by Mamiya et al. [MMM04], applies the random initial

point idea to the left-to-right algorithms. The basic countermeasure uses Shamir-Strauss

method (Sec. 2.1.3) to compute

R+ kP = (1 11 . . . 1
︸ ︷︷ ︸

n

)2 R+ (kn−1 . . . k0)2 P.

The accumulator is initialized with R and R is subtracted from it at the end.

The authors combine this idea with the comb method (Sec.A.1), which they call

extended-binary-based method with RIP (EBRIP). In this case, R is subtracted from all

precomputed points, the accumulator is initialized with R and R is subtracted from it at

the end. If k is written in a w × d matrix as in Section A.1, where d = dn/we, then we

have

Storage: 2w points.

Precomputation: (w − 1)d D + 2w A.

Running time: d D + d A.
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The authors show also how to combine the basic idea with the window method

(Sec.2.1.3) (WBRIP). In this case, the point (2w−1)R is subtracted from all precomputed

points. Let d = dn/we, then

Storage: 2w points.

Precomputation: w D + 2w A.

Running time: n D + d A.

Hence, the difference in performance, is w more doubling in the window method.

In [YLMH05], Yen et al. have shown that their attack—which we discussed in Sec-

tion A.2.1—is applicable to the BRIP method for curves that have a point P0 of order 2.

This is because the intermediate point computed at iteration i is −R if ki = 0 or P0 −R

if ki = 1. And as we noted before, this attack, when mounted on the EBRIP or WBRIP

method will reveal dn/we bits.

Blinding the Base Point

This method is referred to as Coron’s second countermeasure [Cor99]. It was proposed

before the Goubin-type and Yen’s attacks were published, but they do not apply to it.

The idea is to compute kP = k(P + R) − S, where S = kR. Coron suggested that the

points R and S be initially stored inside the device and refreshed before each new ECSM

execution as R← (−1)b2R and S ← (−1)b2S, where b is a random bit.

Drawbacks: Doubling Attacks There were two similar attacks reported on this

method when combined with Algorithm A.4. One of them is the doubling attack [FV03]

as in Section A.2.1. The other one is by Okeya and Sakurai [OS00]. Both attacks exploit

the doubling operation that is characteristic of binary algorithms. The input points in

the second attack are P , 2P , ... 2e−1P (the first attack uses only P and 2P as inputs).
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Since the random point R is doubled as well—with a positive sign half the times—before

every execution, the correlation between the doubling trace in iteration i of computing

kP and iteration i+ 1 of computing k(2P ) can reveal the value of the bit ki.

To avoid these attacks, Avanzi [Ava05] suggested that a set of secret pairs (Ri, Si) with

Si = kRi be stored in the device at initialization. Then, before every ECSM execution,

both elements of a randomly chosen pair are multiplied by the same small signed scalar

and added to the respective elements of another pair. The result is then used to blind

the base point.

Also we suggest that the random points be refreshed as R ← (−1)b3R and S ←

(−1)b3S. Then, there is no sequence of input points that can reveal a correlation between

their respective shifted traces.

Point Blinding Combined with Shamir-Strauss method

To thwart Goubin-type and Yen’s attacks, Kim et al. [KHM+05] proposed to compute

kP as

kP + #ER = k(P +R) + sR, (A.2)

where #E is the order of P , R is a random point and s = #E − k. They suggest

computing the right-hand side using the Shamir-Strauss method (Algorithm 2.3).

We noticed that the countermeasure contains the same blinding idea as Coron’s second

countermeasure, the only difference is the way to execute the ECSM. This is obvious since

adding sR is mathematically the same as subtracting kR.

Also, based on our reasoning in Lemma 6.1 concerning the additive splitting using

subtraction when combined with a multiple point multiplication method, we notice the

following. Let #E = (en−1 . . . e0)2. Then, en−1→j = kn−1→j − bj , where bj ∈ {0, 1}.
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Hence, at iteration i = j, the intermediate point computed is kn−1→jP +(en−1→j + bj)R.

Note that since k and e do not change across the ECSM executions, bj will also depend

only on j and the actual values of k and e. Therefore, it is arguable whether computing the

right-hand side of (A.2) using the Shamir-Strauss method is different from computing the

left-hand side with the same method when considering the value of intermediate points.

The actual difference is in the precomputed points (P , R and P + R for the left-hand

side and P + R, R and P + 2R for the right-hand side). That is, for the left-hand side,

the constant point P will be accessed whenever ki = 1 and ei = 0 which may contribute

to detecting operand reuse across ECSM executions as in Section A.4.4.

Yao’s method with Random Initialization

In order to make Yao’s method (cf. Algorithm A.1) resistant to both SPA and DPA

attacks, Möller [Möl02] proposed the following modifications:

• In Step 1 initialize the points Q2, . . . Qβ to random points rather than the point O,

and set Q1 ← −
∑β

j=2 jQj . The author provides an algorithm to compute Q1 with

one doubling and 3β−6 addition. For efficiency reasons, those points can be chosen

once and randomized with RPC (Section A.3.2) before every execution. This makes

the AR = 2n(β−1).

• Use a digit set that does not contain 0 to represent the key. This is instead of using

a dummy variable Q0 and include it in Step 2.1, since it is prone to safe-error attack

(Section A.2.1).

Drawbacks:

There are β RPC operations and β extra addition operations that are added to the
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original cost of the algorithm. However, the author proves that, for w ≤ 4, this algo-

rithm outperforms his proposed window method [IMT02] combined with RPC after each

addition (cf. Sections A.2.1 and A.4.3).

A.4 Variants of SPA and DPA Attacks

In this section, we will discuss other forms of SPA and DPA attacks.

A.4.1 Sommer’s SPA attack

In [MS00], Sommer provided an experimental evidence that the Hamming weight of secret

data can be found from a single power trace of a smart card. She studied an algorithm

written in the assembly language of the 8-bit processor. The algorithm consisted of a

loop, where in each iteration only the data value was changed and was then moved from

the accumulator to an internal register or written to output ports. She collected traces

of the power consumption of the card where the sampling rate was 50 samples per card

clock cycle. Then, for every sample k, she computed the Pearson correlation factor

rk =

∑

j(vk(j)− vk)(H(j)−H)
√
∑

j((vk(j)− vk)2(H(j)−H)2
, (A.3)

where vk(j) is the voltage measured over the probing resistor at the moment of the

k-th sample during execution of the loop with data argument j ∈ [0, 255], vk is the

average of vk(j) over all j, H(j) is the Hamming weight of j and H is the average

Hamming weight. The highest rk indicated the moment where the correlation between

the power consumption and the Hamming weight of the processed data is maximum.

This interesting moment occurred during the instruction that moved the data from the

accumulator to an internal register. At this moment, the values vk(j) varied almost
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linearly with H(j). The noise was not significant since the device was operated at a

sufficiently low frequency and a high supply voltage. Hence, the author could cluster

the measured vk(j) into nine clusters each corresponding to a specific Hamming weight.

The author obtained similar results when studying ∆H(j) = H(j ⊕ (j − 1)) which is the

difference in Hamming weight between the data j − 1 and j. Note that the transition in

Hamming weight did not occur in two successive clock cycles, which may be the reason

for which Avanzi [Ava05] considers this attack a second-order DPA attack as will be

explained in Section A.4.3, though only a single power trace is used. However, for a real

attacker, in order to obtain exact information about the Hamming weight of a processed

data or the difference in Hamming weight between this data and a previous one from

a single trace, the challenge is to find that appropriate sample where the correlation is

maximal. This means that he may need to know the characteristics of the device a priori

and to compute its correlation factors for known data and known algorithm.

A.4.2 Messerges DPA Attacks

Messerges et al. [MDS99b] have mounted the following DPA-like attacks on smart cards

running RSA exponentiation algorithms. Their attacks were based on monitoring the

power consumption leakage. They were mounted on left-to-right or right-to-left expo-

nentiation algorithms that processed the key one bit at a time, such as Algorithms 2.1

and 2.2, respectively with the doubling replaced by squaring and the addition replaced

by multiplication.

Single-exponent, multiple-data attack (SEMD) In this attack, it is assumed that

the attacker can make the card exponentiate several random inputs with the secret key

and with another known key. The attacker collects the power consumption traces of the
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exponentiations that use the secret key and computes their average. He repeats this

procedure again but with the known key—(111 . . . 1)2 in his attack. He then subtracts

the two averaged signals. The resulting signal will show spikes in the iterations where the

bits of the two keys differ. The portions of the averaged signals that are data dependent

or where the bits of the exponents agree will approach 0.

Messerges’ countermeasure to this attack is to blind the exponent before every expo-

nentiation as in Section A.3.1.

Multiple-exponent, single-data attack (MESD) In this attack it is assumed that

the card will exponentiate the same input, not necessarily known to the attacker, with

several keys of the attacker’s choice. The attacker first collects the average power trace

of the exponentiation of the input with the secret key.

Now, assuming that the attacker knows the first j − 1—most significant or least

significant, depending on the algorithm—bits of the key, he wants to attack the jth

bit. He guesses that this bit is 1 and sets a new key equal to the bits that he knows

concatenated with the guessed bit and arbitrary value for the remaining bits. He asks

the card to exponentiate several times the constant input with that key and collects the

average power trace. He repeats this step with the guessed bit reset to 0. He subtracts

each of the collected averaged traces from the original one. For the correct guess, the

resulting trace will approach zero through all iterations including iteration j, but for the

wrong guess, the resulting trace will depict differences in iteration j.

Zero-exponent, multiple-data attack (ZEMD) This attack is the same DPA attack

as explained in Section A.3. Hence, unlike the SEMD and the MESD attacks, it assumes

that the attacker knows how the exponentiation algorithm is performed and can simulate
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it to compute intermediate points.

The intermediate point computed by Messerges is the result of the multiplication in

the iteration processing the guessed bit rather than the result of the squaring of the

next iteration as was done by Coron (Section A.3). This is because his attack was on

a square-and-multiply algorithm where the multiplication was performed only when the

current bit of the key is 1. But Coron’s attack was on a double-and-add-always algorithm

where the addition was performed regardless of the value of the current bit and its result

collected if that bit was 1. Hence, the result of the doubling of the next iteration can

reveal the validity of the guess.

Also Messerges used as a partitioning function the Hamming weight of some byte in

the intermediate result being 8 or 0 (all-or-nothing 8-bit DPA, cf. Section A.3).

Messerges’ countermeasure to the MESD and the ZEMD attacks is to blind the input

before every exponentiation and unblind it at the end, as in Section A.3.2. He also

suggested the random starting point countermeasure that was mentioned in Section A.3.1.

Attacking the ECDSA Algorithm A.8 shows the steps of the signature generation

part of the elliptic curve digital signature algorithm (ECDSA). In the algorithm, a curve

E with public parameters is agreed upon, P ∈ E is a public base point of order g, d is

the private key of the signer where 0 < d < g and the function H(x) is a cryptographic

hash function.

Algorithm A.8. Signature Generation in the ECDSA

Input: d, P and a message M .

Output: (r, s), a signature on M .

1. m← H(M).

2. k ←R [1, g − 1]. //←R: choosing a random integer from that range.
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3. Q← kP .

4. r ← x(Q) mod g.

5. s← k−1(m+ dr) mod g.

6. Return(r, s).

If the attacker can reveal k, then the signer’s private key d is compromised. However,

since k is randomly chosen with every signature generation, it is hard to attack Step 3 of

the algorithm using DPA (assuming an SPA countermeasure is employed). Nevertheless,

Messerges [Mes00] has shown how to mount a DPA (ZEMD) attack on Step 5.

The attacker runs Algorithm A.8 several times and collects the corresponding power

traces and values of r. He does not need to change or know the input. Then, he starts

guessing the bits of d one by one starting from the least significant. For a certain guess for

the bit dj , assuming that the least significant bits of d up to the j−1st bit were correctly

revealed, the attacker computes the intermediate value X = dr and partitions the traces

into two sets according to the bit Xj being 0 or 1. This is possible since the attacker

knows r for every execution of the algorithm. If the attacker’s guess is correct, the actual

values of the least significant bits of X up to the bit Xj will be equal to those computed

by the attacker for each value of r and the partitioning would be correctly carried.

As a countermeasure to this attack, Messerges suggested random masking of both

m and d, before every signature generation. This is done by selecting an integer ω at

random from the range [0, g − 1] and multiplying it by each of m and d. At the end, the

result of Step 5, s, is multiplied by ω−1.
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A.4.3 Second-Order DPA Attack

The definition of a high-order DPA attack was first presented by Kocher et al. [KJJ99]

as a DPA attack that combines multiple samples from within a trace. The following is

the definition according to Messerges [Mes00]:

An nth-order DPA attack makes use of n different samples in the power consumption

signal that correspond to n different intermediate values calculated during the execution

of an algorithm.

The power leakage model proposed, and experimentally verified, by Messerges [Mes00]

assumes that the power consumption of an instruction, C (t), varies linearly with the

Hamming weight H(ω) of the data ω processed by this instruction at time t. That is

C (t) = εH(ω) + l, (A.4)

where ε and l are some hardware-dependent constants.

Messerges presented a second-order DPA attack on a typical algorithm of a public

key cryptosystem. He chose two instructions of the algorithm that are not necessarily

consecutive to monitor their power consumption every time the algorithm is executed.

The first instruction processes random data and the second one processes—a part of—the

secret key XORed with input data XORed with the random data of the first instruction.

To reveal bit j of the secret key, the attacker sets bit j of the input data to 0 and

the other ones to random values and gathers the power consumption traces of both

instructions with different input data. He repeats the same procedure but with setting

bit j of the input data to 1. By averaging the difference in power consumption between

these two instructions for both the 0 and 1 set of traces, the attacker could reveal the value

of the key bits. The attack here is based on the difference in the average Hamming weight

of the input data in the two cases. Messerges has experimentally shown the validity of
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his attack.

The concept of this attack was analyzed further by Joye et al. in [JPS05]. They define

ω = I(x, s), that is ω is an intermediate value that depends on some known input data

x and a small portion of secret data s, i.e., all possible values ŝ of s can be exhausted to

compute ω. g(ω) is some bit in ω chosen by the attacker to perform the partitioning of

x into one of two sets G0(ŝ) or G1(ŝ). That is,

Gb(ŝ) = {x | g(I(x, ŝ)) = b} for b ∈ {0, 1}.

Now let τ1 be the time when a random data ρ is manipulated and τ2 be the time when

a data v = f(ω, ρ) is manipulated, e.g., v = ω ⊕ ρ. If the attacker knows those two time

periods, he can evaluate

∆2(ŝ) = 〈|C (τ2)− C (τ1)|〉x∈G1(ŝ) − 〈|C (τ2)− C (τ1)|〉x∈G0(ŝ), (A.5)

where 〈·〉 denotes the average operator5. Under the power leakage model (A.4), if the

average of the absolute difference in Hamming weight between v and ρ—for all possible

values ω and ρ— is different when g(ω) = 1 from when g(ω) = 0, then the value ŝ for

which ∆2(ŝ) is maximal is likely ŝ = s.

If the attacker does not know exactly τ1 and τ2 but knows the offset δ = τ2 − τ1 he

can extend (A.5) as follows

∆2(ŝ, t) = 〈|C (t+ δ)− C (t)|〉x∈G1(ŝ) − 〈|C (t+ δ)− C (t)|〉x∈G0(ŝ). (A.6)

The authors have derived the peak values for ∆2 for v = ω ⊕ ρ and showed how to

maximize it by raising the difference in power consumption to the 3rd power. They also

5With the same notation, the first order DPA trace is evaluated as

∆1(ŝ, t) = 〈C (t)〉x∈G1(ŝ) − 〈C (t)〉x∈G0(ŝ),

which yields the same trace as (A.1), for the guess of the current key bit ŝ = 0.
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extended their analysis to other logical binary functions such as v = ω ∧ ρ and to other

power leakage models such as the Hamming distance model. Their experimental results

on an implementation of RC6 that is resistant to first-order DPA attacks confirmed their

analysis. The practicality of the attack decreases as the bit size of the word manipulated

by the algorithm at a time increases.

A.4.4 Operand Reuse DPA Attack

Another form of a second-order DPA attack was presented by Okeya and Sakurai [OS02b]

on the SPA-resistant method by Moller [Möl01] (Section A.2.1) with window size w = 4.

In order to be DPA-resistant, the precomputed points of the algorithm are represented

in projective coordinates and the representation of the input point is randomized at the

beginning of the precomputation step for every ECSM execution.

Their analysis shows that by making use of power consumption traces of two different

iterations, they can detect operand (precomputed point) reuse and, hence, digit repetition

in the key.

They use the same power leakage model proposed by Messerges. However, they cal-

culate the variance—rather than the mean—of the difference in power consumption in

two iterations. They prove that this variance will take value v1 if the precomputed point

that was loaded on the bus is the same in both iterations and v2 otherwise with v1 < v2.

For each iteration, they compute the variance with all the following iterations to find

which ones result in the value v1. This reveals the reuse of precomputed points, and,

hence, reduces the search space of the key. Note that this attack is neither a chosen- nor

a known-plaintext attack, since the attacker needs not to choose the base point or even

know it. Even if the attacker knows the input point, he cannot benefit from this knowledge

in computing intermediate points since the input point representation is randomized at
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the beginning of the ECSM. However, their attack is based on that the digits (or windows)

of the key are the same across executions and that many traces are obtained in order to

compute the variance accurately.

Their first proposed countermeasure was to increase the window size to w = 7, but

this incurred about 57% performance penalty. In [OT03], Okeya and Takagi suggested

the following countermeasure against a second-order DPA attack. In order to prevent

operand reuse detection, after each addition operation in the window method ECSM, the

coordinates of the precomputed point involved should be randomized as in Section A.3.2.

If the points are stored in Chudnovsky coordinates, then this would increase the cost of

the Jacobian-Chudnovsky addition operation by 5M + 2S, resulting in 16M + 5S per

addition. If the points are stored in Jacobian coordinates, the cost of the Jacobian-

Jacobian addition operation increases by 4M + 1S, resulting in 16M + 5S per addition,

as well. Note that the Chudnovsky coordinates store two more coordinates per point

than the Jacobian coordinates. The increase in the addition cost is

A−A0

A0
,

where A0 is the original cost of addition when Jacobian-affine coordinates are used. If

we consider the cost of squaring S = 0.8M as in [HMV04], then A0 = 8M + 3S = 10.4M

and A = 16M + 5S = 20M . Hence, the increase in the addition cost is about 92%. The

increase in the expected running time based on Section A.2.1 is

A−A0

wD +A0
,

where D = 4M + 4S = 7.2M for Jacobian coordinates. For w = 4, the increase in the

running time is about 24.5%.

Note that Avanzi [Ava05] considers that a second-order DPA attack can detect ope-

rand reuse from a single trace, especially that of an electromagnetic emanation. There-
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fore, he recommends that the precomputed data be relocated at some intervals during

the execution of the ECSM. This should be done in a way that prevents the attacker from

determining when the same operand is transferred more times from one memory location

to the other. He says that the optimal way to implement this is not clear.

A.4.5 Address-bit DPA attack

This attack exploits the fact that internal addresses of registers or memory locations are

another type of data processed by the CPU. Hence, power traces of two intervals of an

algorithm where the same instruction accesses different addresses will be less correlated

than if that instruction was accessing the same address. The attack is easier if the number

of registers or memory locations accessed during the algorithm depending on bits of the

secret key is small.

Itoh et al. [IIT02] mounted two address-bit DPA attacks on Montgomery ladder (Al-

gorithm A.7), where the Montgomery-form elliptic curve was used with the x-coordinate

only formulas for doubling and addition. The attacks are valid with any formulas since

it exploits the correlation between the key bits and addresses of registers in the steps

2.1, 2.3 and 2.4. It is assumed that input points are randomized using RPC as in Sec-

tion A.3.2, but this is not necessary since the attacker inputs random points, collects

their corresponding power traces, and averages them.

The first attack is similar to the SEMD attack in Section A.4.2. The attacker computes

the average power trace for a known key, e.g., (111 . . . 1)2, and that for the secret key.

The difference of the two traces shows spikes where the key bits do not agree. Note

that Messerges’ attack was demonstrated on a square-and-multiply algorithm where the

addition was performed in the iteration where the key bit was 1. Hence, his SEMD

attack showed the difference between the average power consumption of squaring and
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multiplying when the bits of the two exponents were different. This is not the case in

Montgomery ladder since the doubling and addition are performed in every iteration.

The authors say that their second attack is a ZEMD attack, but it involves no par-

titioning of traces, rather the technique used is very similar to the SEMD attack. The

attacker inputs random points to the algorithm, collects the corresponding power traces

and computes their average. He subdivides the obtained trace into intervals each corre-

sponding to an iteration of the algorithm. It is assumed that the most significant bit of

the key is 1. By subtracting from the average trace interval corresponding to the most

significant bit each of those corresponding to the other bits, the 0 bits of the secret key can

be identified by the spikes appearing in the difference trace. Even when the addresses of

the registers in steps 2.3 and 2.4 are swapped instead of their contents as was mentioned

after Algorithm A.7, the authors showed that a more sophisticated attack is still feasible.

The last attack is applicable to ECSM algorithms that use precomputed points pro-

vided that the number of such points is small. Digit reuse in the key representation can

be detected based on address reuse of the precomputed points.

In [IIT03], Itoh et al. proposed a randomized addressing countermeasure to address-

bit DPA attacks. The countermeasure is based on random masking of the key bits and

the addresses. The authors say that this countermeasure is not sufficient to resist data-

bit DPA (the original DPA attack as explained in Section A.3). Therefore, it should be

combined with RPC (Section A.3.2) or RC (Section A.3.2). The following algorithms are

the authors’ modified versions of Algorithms A.4 and A.7, where r = (rn−1 . . . r0)2 is an

n-bit random integer.

Algorithm A.9. Left-to-Right Double-and-Add-Always with Randomized Addressing

Input: r, k and P ∈ E(Fp).
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Output: kP .

1. Q[2]← RPC(P ).

2. for i from n− 2 down to 0 do

2.1 Q[ri+1]← 2Q[ri+1].

2.2 Q[1− ri+1]← Q[ri+1] +Q[2].

2.3 Q[ri]← Q[ki ⊕ ri+1].

3. Return(Q[r0]).

Algorithm A.10. The Montgomery Ladder with Randomized Addressing

Input: r, k and P ∈ E(Fp).

Output: kP .

1. Q[rn−1]← RPC(P ); Q[1− rn−1]← 2Q[rn−1].

2. for i from n− 2 down to 0 do

2.1 Q[2]← 2Q[ki ⊕ ri+1].

2.2 Q[1]← Q[0] +Q[1].

2.3 Q[0]← Q[2− (ki ⊕ ri)].

2.4 Q[1]← Q[1 + (ki ⊕ ri)].

3. Return(Q[r0]).

Their proposed randomized addressing for ECSM algorithms that use precomputed

points was explained by Avanzi [Ava05] as follows. The access to the table containing

the precomputed points is done via a base address and an index. In this case, a random

integer r of the same bit length as the highest index is chosen before every execution.

During both the table initialization phase and the scalar multiplication, the table index

is XORed with r.
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We argue that address-bit DPA attacks are not feasible if the key is randomized, since

then, the address accessed in a certain iteration will be different across executions.

A.5 Conclusion

From this overview over SPA, DPA attacks and their variants we conclude the following:

• SPA attacks (not including Sommer’s attack in Section A.4.1) can be prevented by

making the ECSM execution uniform over all iterations, preferably with no dummy

operations.

• First order DPA attacks are based on the fact that intermediate points computed

by the algorithm can be guessed by the attacker. Hence, to prevent them these

intermediate points should be randomized. However, randomizing the input point

or the intermediate points is not sufficient to resist safe-error, doubling, Goubin-

type, Yen et al., operand-reuse and address-bit attacks. To resist those attacks, the

key value should be randomized before the ECSM execution.

• If the ECSM method used involves access to precomputed values during the exe-

cution, even when the key is randomized, it is questionable whether from a single

trace, an operand reuse or an address reuse can be detected. The means to detect

such a reuse would probably be a collision indicator as in [FV03], which depends

on the number of clock cycles in which the power consumption should be identical

if the same operand or address is accessed. We argue that the clock cycles in which

an address is loaded on the bus would not be enough to indicate a collision. Other-

wise, we would need to implement Avanzi’s suggestion [Ava05] that the location of

a precomputed point should change after each access. As for the number of clock
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cycles in which the operand is loaded on the data bus, because of the length of the

operands, this number may be significant, in which case we would need to random-

ize the representation of a precomputed point after it is accessed as explained in

Section A.4.4.

• Second-order DPA attacks, as presented in Section A.4.3, require the attacker to

know some input to the algorithm, to be able to compute an intermediate value when

this input is combined with a part of the secret key, and to detect two instants in the

algorithm; one when a random data is processed and the other when this random

data is combined with the intermediate value he is guessing. Based on the value of

a bit in the representation of the intermediate value he is guessing, he performs the

partitioning of the traces and computes the second order DPA signal by computing

the average of the difference—or a higher power of that difference—of the power

consumption in the two instants for each partition, then computing the difference

between the two averages. A possible countermeasure would be to avoid directly

combining data that is known to the attacker with secret data, that is, to make it

difficult for the attacker to make a successful partitioning of the collected traces.
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Finite Markov Chains

A Markov chain is a discrete-time discrete-valued random process {Xn;n = 0, 1, 2, . . .}.

The process is said to be in state i at time n if and only if Xn = i, where i belongs to

some sample space S. The Markov property for a conditional probability mass function

(pmf) is

PXn+1|Xn,...,X0
(in+1|in, . . . , i0) = PXn+1|Xn

(in+1|in).

This means that the next state depends only on the present state, but does not depend

on the way in which the present state arose from previous states. This process is referred

to as a memoryless process.

The transition probability is defined as

Pij , P (Xn+1 = j|Xn = i) = PXn+1|Xn
(j|i); i, j ∈ S

and is said to be stationary since it does not depend on n.

203
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The transition probabilities are characterized by

Pij ≥ 0,

∑

j

Pij = 1.

They can be arranged in a matrix known as the transition matrix

P =









P00 P01 . . .

P10 P11 . . .

...
...

. . .









.

Also the n-step transition probability is defined as

Pn
ij , Pr(Xn = j|X0 = i),

and can be computed by multiplying the transition matrix by itself n times, i.e., Pn, and

retrieving the ith row and jth column.

The following properties apply to an important class of finite Markov chains

• It can be irreducible, this means that every state is reachable from every other state

in a finite number of steps.

• It can have ergodic states, those are recurrent (i.e., not transient) aperiodic states.

A state is said to be recurrent if it will be revisited an infinite number of times in

an infinite run of the process. A state is said to be aperiodic if it has a period 1,

where the period of a state is the greatest common divisor of the number of times

a chain, starting from that state, has a positive probability of returning to it.

The main theorem for Markov theory states that for an irreducible ergodic Markov

chain a steady state always exists. This is to say that every state in the chain has a
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limiting probability defined by

πj = lim
n→∞

Pn
ij ,

which does not depend on i or on n.

Also the vector π = (π1 . . . πw) for a chain with w states is the unique solution of

πP = π,

w∑

j=1

πj = 1.
(B.1)





Appendix C

Grammars, Automata and

Generating Functions

C.1 Grammars

A grammar G is a quadruple (T,N, S, P ) [Gre83; HMU01], where

• T is a terminal alphabet (usually small letters),

• N is a nonterminal alphabet (usually capital letters),

• S ∈ N is a start symbol,

• P is a set of productions (rewrite rules) of the form α → β, with α, β ∈ (T ∪ N)∗

and α including at least one nonterminal symbol.

When several productions have a common left hand side, they are conveniently

grouped into one production using vertical bars to separate the production possibili-

ties. For example A→ B and A→ C are grouped into A→ B|C. The symbol ε denotes

207
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the null string.

A grammar is a context-free grammar if α ∈ N , i.e., the left hand side of any pro-

duction is a single nonterminal symbol. A context-free grammar is a regular grammar

if β ∈ {γη|γ ∈ T ∗, η ∈ N ∪ {ε}}, i.e., the right hand side of any production is a string

containing at most one nonterminal as the rightmost symbol.

A derivation step consists of matching a substring with the left hand string of a

production and replacing it with the right hand string. A string is derived by a certain

grammar if it is possible to obtain the string from the start symbol of the grammar with

a finite number of derivation steps.

The set of acceptable strings derived from the productions of a grammar form a formal

language.

C.2 Deterministic Finite Automata

A deterministic finite automaton (DFA) A is a quintuple (Q,Σ, s, F, δ) [HMU01], where

• Q is a set of states,

• Σ is the alphabet of input symbols,

• s ∈ Q is the initial state,

• F ⊂ Q is the set of final states,

• δ : Q× Σ→ Q is the transition function.

DFAs are represented pictorially as directed graphs where the nodes represent the

states and the arcs are labeled by one or more symbols from the alphabet Σ. The initial

state is denoted by a short incoming arrow and the final (accepting) states are denoted
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by a cross as in [MO90]. For every symbol x ∈ Σ there is an arc labeled x emanating

from every state.

Every path in the graph spells out a string over Σ. A string is recognized by an

automaton if there exists a path beginning in the initial state and finishing in a final

state that spells out the letters of this string by reading the labels of the arcs that form

the path. The language of the automaton is the set of strings it recognizes.

A regular grammar G that generates the language recognized by a DFA A can be

specified by defining its terminal alphabet T as the alphabet Σ of A, its nonterminal al-

phabet N as the set of states Q, its start symbol S as the start state s and the productions

P are derived from the transition function δ as follows

q → xδ(q, x) ∀q ∈ Q,∀x ∈ Σ,

q → ε ∀q ∈ F.

C.3 Analysis of Algorithms using Generating Functions

In [Gre83], Greene has investigated an interesting property of formal languages. That

is the productions of a grammar can be treated as equations, with → replaced by =,

| replaced by +, ε by 1 and the terminal symbols replaced by a dummy variable z. If

these equations are solved for the start symbol, the result is a generating function for the

number of derivations of the grammar.

Generating functions are an essential tool of combinatorial mathematics; they are

used to study sequences of numbers an for n ≥ 0. The ais are implanted as the Taylor

coefficients of a function A of the dummy variable z

A(z) =
∑

n

anz
n,
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and then the properties of the sequence are studied through the properties of A(z). For

instance, let [zn]A(z) denote the coefficient of zn in the generating function A(z) obtained

for the grammar of a certain automaton language. This coefficient represents the number

of strings of length n in the language recognized by the automaton.

To compute the expected cost of an algorithm (studied in the form of an automaton),

another variable u can be inserted in the equations that represent the productions to

account for the cost of every transition. This is accomplished by making the exponent

of this variable in every term of the equations to reflect the cost of the corresponding

transition. Hence, a bivariate generating function A(z, u) is obtained

A(z, u) =
∑

n,m

an,mz
num,

where an,m, denoted as [znum]A(z, u), is the number of strings with n symbols and with

cost m.

When the terminal alphabet consists of two equally probable symbols as is the case

for Morain and Olivos’ automata, we can obtain what is referred to as the probability

generating function in the Bernoulli uniform case

Ap(z, u) = A(
z

2
, u),

from which we deduce the generating function for the expectation

ap(z) =
∂Ap

∂u

∣
∣
∣
∣
u=1

.

The coefficient of zn in the series ap(z), i.e., [zn]ap(z) is the expected cost of the

processing of a string of length n. This can be found using partial fraction decomposition

[HP] of ap(z) and Taylor expansion of each term in the resulting expression. For the

automata studied in this proposal, we assumed that the most significant bit of the integer
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k is 1, thus only n − 1 bits of k are involved in the processing. Therefore the expected

cost is [zn]2ap(z). Alternatively, let

a(z) =
∂A

∂u

∣
∣
∣
∣
u=1

,

then the expected cost is

1

2n−1
[zn]a(z) = [zn]2a(z/2),

where the last equality follows from the scaling property of generating functions [SF96]

A(λz) =
∑

n

λnanz
n.

For a deeper study of the use of generating functions in the average-case analysis of

algorithms, we refer the reader to Sedgewick and Flajolet’s book [SF96] and also to the

series they published as INRIA research reports which form the preliminary chapters of

their new book Analytic Combinatorics. These reports are available at http://algo.

inria.fr/flajolet/Publications/books.html.

http://algo.inria.fr/flajolet/Publications/books.html
http://algo.inria.fr/flajolet/Publications/books.html
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Examples on Chapter 5

D.1 Examples of Representations

The following tables present the different representations of the “positive” τNAFs on the

curve E0 and their number.

Table D.1: Representations of “positive” τNAFs of length 1.

τNAF k Representations ϑ(k, 1)

0 0 1

1 1, 111 2

Table D.2: Representations of “positive” τNAFs of length 2.

τNAF k Representations ϑ(k, 2)

0 0 1

1 1, 111, 1011 3

10 10, 1110 2
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Table D.3: Representations of “positive” τNAFs of length 3.

τNAF k Representations ϑ(k, 3)

0 0 1

1 1, 111, 11111, 1011 4

10 10, 1110, 10110 3

101 101, 11101, 11011, 1111 4

100 100, 11100 2

101 101, 11101, 11, 1111, 10111 5

Table D.4: Representations of “positive” τNAFs of length 4.

τNAF k Representations ϑ(k, 4)

0 0 1

1 1, 111, 11111, 101111, 1011, 111011 6

10 10, 1110, 111110, 10110 4

101 101, 11101, 101101, 11011, 101011, 1111, 111111, 100111 8

100 100, 11100, 101100 3

101 101, 11101, 101101, 11, 1111, 111111, 10111 7

1010 1010, 111010, 110110, 11110 4

1001 1001, 111001, 1111, 111111, 10111, 11 6

1000 1000, 111000 2

1001 1001, 111001, 1111, 111111, 100111, 110011 6

1010 1010, 111010, 110, 11110, 101110 5
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Table D.5: Representations of “positive” τNAFs of length 5.

τNAF k Representations ϑ(k, 5)

0 0 1

1 1, 111, 11111, 1111111, 101111, 1011, 111011, 1011011 8

10 10, 1110, 111110, 1011110, 10110, 1110110 6

101 101, 11101, 1111101, 101101, 11011, 1111011, 101011, 1111, 111111,

1011111, 100111

11

100 100, 11100, 1111100, 101100 4

101 101, 11101, 111101, 01101,11, 111, 111111, 011111, 10111, 110111 10

1010 1010, 111010, 1011010, 110110, 1010110, 11110, 1111110, 1001110 8

1001 1001, 111001, 1011001, 1111, 111111, 1011111, 10111, 1110111, 11 9

1000 1000, 111000, 1011000 3

1001 1001, 111001, 1011001, 1111, 111111, 1011111, 100111, 110011, 1010011 9

1010 1010, 111010, 1011010, 110, 11110, 1111110, 101110 7

10101 10101, 1110101, 1101101, 111101, 10011, 1110011, 11111, 1111111,

1001111, 1100111

10

10100 10100, 1110100, 1101100, 111100 4

10101 10101, 1110101, 1101101, 111101, 1101011, 111011, 11111, 1111111,

101111, 110111

10

10010 10010, 1110010, 11110, 1111110, 101110, 110 6

10001 10001, 1110001, 10111, 1110111, 1111, 111111, 1011111, 11011, 1111011,

1001011

10

10000 10000, 1110000 2
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τNAF k Representations ϑ(k, 5)

10001 10001, 1110001, 10111, 1110111, 1101111, 111111, 11011, 1111011,

101011

9

10010 10010, 1110010, 11110, 1111110, 1001110, 1100110 6

10101 10101, 1110101, 1101, 111101, 1011101, 1011, 111011, 1011011, 11111,

1111111, 1001111, 110111, 1010111

13

10100 10100, 1110100, 1100, 111100, 1011100 5

10101 10101, 1110101, 1101, 111101, 1011101, 10011, 1110011, 11111, 1111111,

101111, 111

11

Table D.6: Representations of “positive” τNAFs of length 6.

τNAF k Representations ϑ(k, 6)

0 0 1

1 1, 111, 11111, 1111111, 10111111, 101111, 11101111, 1011, 111011,

11111011, 1011011

11

10 10, 1110, 111110, 11111110, 1011110, 10110, 1110110, 10110110 8

101 101, 11101, 1111101, 10111101, 101101, 11101101, 11011, 1111011,

10111011, 101011, 11101011, 1111, 111111, 11111111, 1011111, 100111,

11100111

17

100 100, 11100, 1111100, 10111100, 101100, 11101100 6

101 101, 11101, 1111101, 10111101, 101101, 11101101, 11, 1111, 111111,

11111111, 1011111, 10111, 1110111, 10110111

14

1010 1010, 111010, 11111010, 1011010, 110110, 11110110, 1010110, 11110,

1111110, 10111110, 1001110

11
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τNAF k Representations ϑ(k, 6)

1001 1001, 111001, 11111001, 1011001, 1111, 111111, 11111111, 1011111,

10111, 1110111, 10110111, 11

12

1000 1000, 111000, 11111000, 1011000 4

1001 1001, 111001, 11111001, 1011001, 1111, 111111, 11111111, 1011111,

100111, 11100111, 110011, 11110011, 1010011

13

1010 1010, 111010, 11111010, 1011010, 110, 11110, 1111110, 10111110,

101110, 11101110

10

10101 10101, 1110101, 10110101, 1101101, 10101101, 111101, 11111101,

10011101, 10011, 1110011, 10110011, 11111, 1111111, 10111111,

1001111, 1100111, 10100111

17

10100 10100, 1110100, 10110100, 1101100, 10101100, 111100, 11111100,

10011100

8

10101 10101, 1110101, 10110101, 1101101, 10101101, 111101, 11111101,

10011101, 1101011, 10101011, 111011, 11111011, 10011011, 11111,

1111111, 10111111, 101111, 11101111, 110111, 11110111, 10010111

21

10010 10010, 1110010, 10110010, 11110, 1111110, 10111110, 101110, 11101110,

110

9

10001 10001, 1110001, 10110001, 10111, 1110111, 10110111, 1111, 111111,

11111111, 1011111, 11011, 1111011, 10111011, 1001011

14

10000 10000, 1110000, 10110000 3

10001 10001, 1110001, 10110001, 10111, 1110111, 10110111, 1101111,

10101111, 111111, 11111111, 10011111, 11011, 1111011, 10111011,

101011, 11101011

16
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τNAF k Representations ϑ(k, 6)

10010 10010, 1110010, 10110010, 11110, 1111110, 10111110, 1001110, 1100110,

10100110

9

10101 10101, 1110101, 10110101, 1101, 111101, 11111101, 1011101, 1011,

111011, 11111011, 1011011, 11111, 1111111, 10111111, 1001111, 110111,

11110111, 1010111

18

10100 10100, 1110100, 10110100, 1100, 111100, 11111100, 1011100 7

10101 10101, 1110101, 10110101, 1101, 111101, 11111101, 1011101, 10011,

1110011, 10110011, 11111, 1111111, 10111111, 101111, 11101111, 111

16

101010 101010, 11101010, 11011010, 1111010, 100110, 11100110, 111110,

11111110, 10011110, 11001110

10

101001 101001, 11101001, 11011001, 1111001, 101111, 11101111, 11011111,

1111111, 11000111, 11010011, 1110011

11

101000 101000, 11101000, 11011000, 1111000 4

101001 101001, 11101001, 11011001, 1111001, 101111, 11101111, 11011111,

1111111, 110111, 11110111, 1010111, 100011, 11100011

13

101010 101010, 11101010, 11011010, 1111010, 11010110, 1110110, 111110,

11111110, 1011110, 1101110

10

100101 100101, 11100101, 111101, 11111101, 1011101, 1101, 100011, 11100011,

101111, 11101111, 11011111, 1111111, 110111, 11110111, 1010111

15

100100 100100, 11100100, 111100, 11111100, 1011100, 1100 6

100101 100101, 11100101, 111101, 11111101, 1011101, 1101, 111011, 11111011,

1011011, 1011, 101111, 11101111, 11111, 1111111, 10111111, 111

16
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τNAF k Representations ϑ(k, 6)

100010 100010, 11100010, 101110, 11101110, 11110, 1111110, 10111110, 110110,

11110110, 10010110

10

100001 100001, 11100001, 100111, 11100111, 111111, 11111111, 10011111,

11001111, 101011, 11101011, 11011011, 1111011

12

100000 100000, 11100000 2

100001 100001, 11100001, 100111, 11100111, 111111, 11111111, 1011111, 1111,

101011, 11101011, 11011, 1111011, 10111011

13

100010 100010, 11100010, 101110, 11101110, 11011110, 1111110, 110110,

11110110, 1010110

9

100101 100101, 11100101, 111101, 11111101, 10011101, 11001101, 111011,

11111011, 10011011, 11001011, 101111, 11101111, 11011111, 1111111,

11000111

15

100100 100100, 11100100, 111100, 11111100, 10011100, 11001100 6

100101 100101, 11100101, 111101, 11111101, 10011101, 11001101, 100011,

11100011, 101111, 11101111, 11111, 1111111, 10111111, 110111,

11110111, 10010111

16

101010 101010, 11101010, 11010, 1111010, 10111010, 10110, 1110110, 10110110,

111110, 11111110, 10011110, 1101110, 10101110

13

101001 101001, 11101001, 11001, 1111001, 10111001, 101111, 11101111, 11111,

1111111, 10111111, 110111, 11110111, 10010111, 100011, 11100011

15

101000 101000, 11101000, 11000, 1111000, 10111000 5

101001 101001, 11101001, 11001, 1111001, 10111001, 101111, 11101111, 11111,

1111111, 10111111, 111, 10011, 1110011, 10110011

14
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τNAF k Representations ϑ(k, 6)

101010 101010, 11101010, 11010, 1111010, 10111010, 100110, 11100110, 111110,

11111110, 1011110, 1110

11

D.2 Examples of kmax,l

Table D.7 presents kmax,l and ϑ(kmax,l, l) for 1 ≤ l ≤ 13.

Table D.7: “Positive” τNAFs with maximum number of representations

l kmax,l ϑ(kmax,l, l)

1 1 2

2 1 3

3 101 5

4 101 8

5 10101 13

6 10101 21

7 1010101 34

8 1010101 55

9 101010101 89

10 101010101 144

11 10101010101 233

12 10101010101 377

13 1010101010101 610



Appendix E

Nondeterministic Finite

Automata, Directed Graphs and

Adjacency Matrices

A nondeterministic finite automaton (NFA) Γ is a quintuple (Q,Σ, s0, F, δ) [HMU01],

where

• Q is a set of states,

• Σ is the alphabet (set) of input symbols,

• s0 ∈ Q is the initial state,

• F ⊂ Q is the set of final (or accepting) states,

• δ : Q×Σ→ P(Q) is the transition function, where P(Q) is the powerset of Q, that

is, the set of all subsets of Q (including the empty set).

221
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Let X be a string over the alphabet Σ, and ε be the empty string. Γ accepts the

string X if there exist both a representation of X of the form x1x2 . . . xl, xi ∈ (Σ ∪ {ε}),

and a sequence of states s0, s1, . . . , sl, si ∈ Q, meeting the following conditions:

• s0 is the initial state,

• si ∈ δ(si−1, xi), for 1 ≤ i ≤ l and

• sl ∈ F . [Sip97, Section 1.2, pp. 47-63]

An NFA can be represented by a directed graph where the vertices are the states of

the set Q, and the directed edges are determined by the function δ. That is, a directed

edge exists starting at vertex si and ending at vertex sj iff sj ∈ δ(si, x), for any x ∈ Σ,

and this edge will be labeled as x. The concatenation of directed edges encountered when

Γ is reading an accepted string form a directed path.

To each directed graph, we can associate the adjacency matrix, M = (mij) for

0 ≤ i, j ≤ |Q|, such that mij = 1 if there is a directed edge from vertex si to vertex

sj in Γ and 0 otherwise. From the definition of matrix multiplication and the concate-

nation of paths, the lth power of M , i.e., M l has the number of paths of length l from

vertex si to vertex sj as its ijth entry. This is obviously true for l = 1. Next observe

that any path of length l from vertex si to vertex sj decomposes into the initial path of

length l − 1 starting at si (to some intermediate vertex) followed by a path of length 1

ending at sj , these paths are counted for all possible intermediate vertices by the sum of

the vector product of the ith row of M l−1 with the jth column of M [Big93, Lemma 2.5].

Moreover, to an NFA Γ, we can associate an adjacency matrix, Mxi , for each input

symbol xi ∈ Σ, 1 ≤ i ≤ |Σ|. Hence the number of directed paths possibly traversed

when Γ reads an accepted string X = x1x2 . . . xl can be found as the (0, f)th entry of the
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product [Sha; Daw03]

Mx1Mx2 · · ·Mxl
,

for each f ∈ F possibly reached when xl was read.
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The following are the adjacency matrices corresponding to the automaton in Fig-

ure 5.1.

M =





































0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0





































M1 =





































0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




































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M0 =





































0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0





































M1 =





































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




































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