1,731 research outputs found

    Fault estimation and fault-tolerant control for discrete-time dynamic systems

    Get PDF
    In this paper, a novel discrete-time estimator is proposed, which is employed for simultaneous estimation of system states, and actuator/sensor faults in a discrete-time dynamic system. The existence of the discrete-time simultaneous estimator is proven mathematically. The systematic design procedure for the derivative and proportional observer gains is addressed, enabling the estimation error dynamics to be internally proper and stable, and robust against the effects from the process disturbances, measurement noise, and faults. Based on the estimated fault signals and system states, a discrete-time fault-tolerant design approach is addressed, by which the system may recover the system performance when actuator/sensor faults occur. Finally, the proposed integrated discrete-time fault estimation and fault-tolerant control technique is applied to the vehicle lateral dynamics, which demonstrates the effectiveness of the developed techniques

    Active fault-tolerant control for an internet-based networked three-tank system

    Get PDF
    This brief is concerned with the active fault-tolerant control (FTC) problem for an Internet-based networked three-tank system (INTTS) serving as a benchmark system for evaluating networked FTC algorithms. The INTTS has two parts located at Tsinghua University in China and at the University of South Wales in the U.K., respectively, which are connected via the Internet. With the INTTS as an experimental platform, the active FTC problem is investigated for a class of nonlinear networked systems subject to partial actuator failures. Once a specific actuator failure is detected and confirmed by a fault diagnosis unit, the control law is then reconfigured based on the information of the detected fault. Both the stability and the acceptable H∞ disturbance attenuation level are guaranteed for the closed-loop system using the remaining reliable actuators. Extensive experiments are carried out on the active FTC problem of the INTTS with partial actuator failures, and the effectiveness of the proposed scheme is illustrated.The work of X. He was supported in part by the Natural Science Foundation of China (NSFC) under Grant 61473163 and Grant 61522309 and in part by the Tsinghua University Initiative Scientific Research Program. The work of Z. Wang was supported by NSFC under Grant 61273156. The work of D. H. Zhou was supported in part by NSFC under Grant 61290324 and Grant 61490701 and in part by the Research Fund for the Taishan Scholar Project of Shandong Province of China. Recommended by Associate Editor L. Xie

    Review of selection criteria for sensor and actuator configurations suitable for internal combustion engines

    Get PDF
    This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited. Simple control metrics such as conditioning number are popular, mostly because they need fewer assumptions than closed-loop metrics, which require a full plant, disturbance and goal model. Overall, no clear consensus can be found on the choice of metrics to define optimal control configurations, with physical measures, linear algebra metrics and modern control metrics all being used. Genetic algorithms and multi-criterial optimisation were identified as the most widely used methods for optimal sensor selection, although addressing the dimensionality and complexity of formulating the problem remains a challenge. This review does present a number of different successful approaches for specific applications domains, some of which may be applicable to diesel engines and other automotive applications. For a thorough treatment, non-linear dynamics and uncertainties need to be considered together, which requires sophisticated (non-Gaussian) stochastic models to establish the value of a control architecture

    Fast-convergent fault detection and isolation in a class of nonlinear uncertain systems

    Get PDF
    The present work proposes a fast-convergent fault detection and isolation (FDI) scheme for linear systems affected by model uncertainties, such as unknown inputs or unbounded nonlinearities. The finite-time convergence is attained by transforming the I/O signals through Volterra operators with suitably designed kernel functions. A novel feature of the proposed approach is the exploitation of a system decomposition that allows removing the effect of intractable uncertainties while recasting the system dynamics in a form applicable for Volterra operators to achieve non-asymptotic estimation. Remarkably, the proposed approach can reconstruct the state variables of the system in an arbitrarily short time and the fault can be diagnosed efficiently by imposing detection and isolation thresholds on transformed signals. The detectability and isolability of the fault are also characterized. The proposed FDI scheme is applied in simulation to a web process system to diagnose the presence of actuator faults. Simulation results confirm the effectiveness of the proposed scheme in two scenarios with nonlinear uncertainties. Furthermore, comparisons are made between the proposed method and a Sliding Mode Control (SMC) method in terms of estimation performance and computational complexity

    Distributed Fault Detection in Formation of Multi-Agent Systems with Attack Impact Analysis

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are capable of performing a variety of deepwater marine applications as in multiple mobile robots and cooperative robot reconnaissance. Due to the environment that AUVs operate in, fault detection and isolation as well as the formation control of AUVs are more challenging than other Multi-Agent Systems (MASs). In this thesis, two main challenges are tackled. We first investigate the formation control and fault accommodation algorithms for AUVs in presence of abnormal events such as faults and communication attacks in any of the team members. These undesirable events can prevent the entire team to achieve a safe, reliable, and efficient performance while executing underwater mission tasks. For instance, AUVs may face unexpected actuator/sensor faults and the communication between AUVs can be compromised, and consequently make the entire multi-agent system vulnerable to cyber-attacks. Moreover, a possible deception attack on network system may have a negative impact on the environment and more importantly the national security. Furthermore, there are certain requirements for speed, position or depth of the AUV team. For this reason, we propose a distributed fault detection scheme that is able to detect and isolate faults in AUVs while maintaining their formation under security constraints. The effects of faults and communication attacks with a control theoretical perspective will be studied. Another contribution of this thesis is to study a state estimation problem for a linear dynamical system in presence of a Bias Injection Attack (BIA). For this purpose, a Kalman Filter (KF) is used, where we show that the impact of an attack can be analyzed as the solution of a quadratically constrained problem for which the exact solution can be found efficiently. We also introduce a lower bound for the attack impact in terms of the number of compromised actuators and a combination of sensors and actuators. The theoretical findings are accompanied by simulation results and numerical can study examples
    • …
    corecore