76 research outputs found

    Low-Rank Channel Estimation for Millimeter Wave and Terahertz Hybrid MIMO Systems

    Get PDF
    Massive multiple-input multiple-output (MIMO) is one of the fundamental technologies for 5G and beyond. The increased number of antenna elements at both the transmitter and the receiver translates into a large-dimension channel matrix. In addition, the power requirements for the massive MIMO systems are high, especially when fully digital transceivers are deployed. To address this challenge, hybrid analog-digital transceivers are considered a viable alternative. However, for hybrid systems, the number of observations during each channel use is reduced. The high dimensions of the channel matrix and the reduced number of observations make the channel estimation task challenging. Thus, channel estimation may require increased training overhead and higher computational complexity. The need for high data rates is increasing rapidly, forcing a shift of wireless communication towards higher frequency bands such as millimeter Wave (mmWave) and terahertz (THz). The wireless channel at these bands is comprised of only a few dominant paths. This makes the channel sparse in the angular domain and the resulting channel matrix has a low rank. This thesis aims to provide channel estimation solutions benefiting from the low rankness and sparse nature of the channel. The motivation behind this thesis is to offer a desirable trade-off between training overhead and computational complexity while providing a desirable estimate of the channel

    Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

    Get PDF
    Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS)

    Deep Learning for Physical-Layer 5G Wireless Techniques: Opportunities, Challenges and Solutions

    Get PDF
    The new demands for high-reliability and ultra-high capacity wireless communication have led to extensive research into 5G communications. However, the current communication systems, which were designed on the basis of conventional communication theories, signficantly restrict further performance improvements and lead to severe limitations. Recently, the emerging deep learning techniques have been recognized as a promising tool for handling the complicated communication systems, and their potential for optimizing wireless communications has been demonstrated. In this article, we first review the development of deep learning solutions for 5G communication, and then propose efficient schemes for deep learning-based 5G scenarios. Specifically, the key ideas for several important deep learningbased communication methods are presented along with the research opportunities and challenges. In particular, novel communication frameworks of non-orthogonal multiple access (NOMA), massive multiple-input multiple-output (MIMO), and millimeter wave (mmWave) are investigated, and their superior performances are demonstrated. We vision that the appealing deep learning-based wireless physical layer frameworks will bring a new direction in communication theories and that this work will move us forward along this road.Comment: Submitted a possible publication to IEEE Wireless Communications Magazin
    • …
    corecore