32,997 research outputs found

    Reverse tone mapping for suboptimal exposure conditions

    Get PDF
    La mayor parte de las imágenes y videos existentes son de bajo rango dinámico (generalmente denominado LDR por las siglas del término en inglés, low dynamic range). Se denominan así porque, al utilizar sólo 8 bits por canal (R,G,B) para almacenarlas, sólo son capaces de reproducir dos órdenes de magnitud en luminancia (mientras que el sistema visual humano puede percibir hasta cinco órdenes de magnitud simultáneamente). En los últimos años hemos asistido al nacimiento y expansión de las tecnologías de alto rango dinámico (HDR por sus siglas en inglés), que utilizan hasta 32 bits/canal, permitiendo representar más fielmente el mundo que nos rodea. Paulatinamente el HDR se va haciendo más presente en los pipelines de adquisición, procesamiento y visualización de imágenes, y como con el advenimiento de cualquier nueva tecnología que sustituye a una anterior, surgen ciertos problemas de compatibilidad. En particular, el presente trabajo se centra en el problema denominado reverse tone mapping: dado un monitor de alto rango dinámico, cuál es la forma óptima de visualizar en él todo el material ya existente en bajo rango dinámico (imágenes, vídeos...). Lo que hace un operador de reverse tone mapping (rTMO) es tomar la imagen LDR como entrada y ajustar el contraste de forma inteligente para dar una imagen de salida que reproduzca lo más fielmente posible la escena original. Dado que hay información de la escena original que se ha perdido irreversiblemente al tomar la fotografía en LDR, el problema es intrínsecamente ill-posed o mal condicionado. En este trabajo, en primer lugar, se ha realizado una serie de experimentos psicofísicos utilizando un monitor HDR Brightside para evaluar el funcionamiento de los operadores de reverse tone mapping existentes. Los resultados obtenidos muestran que los actuales operadores fallan -o no ofrecen resultados convincentes- cuando las imágenes de entrada no están expuestas correctamente. Los rTMO existentes funcionan bien con imágenes bien expuestas o subexpuestas, pero la calidad percibida se degrada sustancialmente con la sobreexposición, hasta el punto de que en algunos casos los sujetos prefieren las imágenes originales en LDR a imágenes que han sido procesadas con rTMOs. Teniendo esto en cuenta, el segundo paso ha sido diseñar un rTMO para esos casos en los que los algoritmos existentes fallan. Para imágenes de entrada sobreexpuestas, proponemos un rTMO simple basado en una expansión gamma que evita los errores introducidos por otros métodos, así como un método para fijar automáticamente un valor de gamma para cada imagen basado en el key de la imagen y en datos empíricos. En tercer lugar se ha hecho la validación de los resultados, tanto mediante experimentos psicofísicos como utilizando una métrica objetiva de reciente publicación. Por otro lado, se ha realizado también otra serie de experimentos con el monitor HDR que sugieren que los artefactos espaciales introducidos por los operadores de reverse tone mapping son más determinantes de cara a la calidad final percibida por los sujetos que imprecisiones en las intensidades expandidas. Adicionalmente, como subproyecto menor, se ha explorado la posibilidad de abordar el problema desde un enfoque de más alto nivel, incluyendo información semántica y de saliencia. La mayor parte de este trabajo ha sido publicada en un artículo publicado en la revista Transactions on Graphics (índice JCR 2009 2/93 en la categoría de Computer Science, Software Engineering, con un índice de impacto a 5 años de 5.012, el más alto de su categoría). Además, el Transactions on Graphics está considerado como la mejor revista en el campo de informática gráfica. Otra publicación que cubre parte de este trabajo ha sido aceptada en el Congreso Español de Informática Gráfica 2010. Como medida adicional de la relevancia del trabajo aquí presentado, los dos libros existentes hasta la fecha (hasta donde sabemos) escritos por expertos en el campo de HDR dedican varias páginas a tratar el trabajo aquí expuesto (ver [2, 3]). Esta investigación ha sido realizada en colaboración con Roland Fleming, del Max Planck Institute for Biological Cybernetics, y Olga Sorkine, de New York University

    Model-Based Image Signal Processors via Learnable Dictionaries

    Full text link
    Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP). Computational photography tasks such as image denoising and colour constancy are commonly performed in the RAW domain, in part due to the inherent hardware design, but also due to the appealing simplicity of noise statistics that result from the direct sensor readings. Despite this, the availability of RAW images is limited in comparison with the abundance and diversity of available RGB data. Recent approaches have attempted to bridge this gap by estimating the RGB to RAW mapping: handcrafted model-based methods that are interpretable and controllable usually require manual parameter fine-tuning, while end-to-end learnable neural networks require large amounts of training data, at times with complex training procedures, and generally lack interpretability and parametric control. Towards addressing these existing limitations, we present a novel hybrid model-based and data-driven ISP that builds on canonical ISP operations and is both learnable and interpretable. Our proposed invertible model, capable of bidirectional mapping between RAW and RGB domains, employs end-to-end learning of rich parameter representations, i.e. dictionaries, that are free from direct parametric supervision and additionally enable simple and plausible data augmentation. We evidence the value of our data generation process by extensive experiments under both RAW image reconstruction and RAW image denoising tasks, obtaining state-of-the-art performance in both. Additionally, we show that our ISP can learn meaningful mappings from few data samples, and that denoising models trained with our dictionary-based data augmentation are competitive despite having only few or zero ground-truth labels.Comment: AAAI 202

    Deep Bilateral Learning for Real-Time Image Enhancement

    Get PDF
    Performance is a critical challenge in mobile image processing. Given a reference imaging pipeline, or even human-adjusted pairs of images, we seek to reproduce the enhancements and enable real-time evaluation. For this, we introduce a new neural network architecture inspired by bilateral grid processing and local affine color transforms. Using pairs of input/output images, we train a convolutional neural network to predict the coefficients of a locally-affine model in bilateral space. Our architecture learns to make local, global, and content-dependent decisions to approximate the desired image transformation. At runtime, the neural network consumes a low-resolution version of the input image, produces a set of affine transformations in bilateral space, upsamples those transformations in an edge-preserving fashion using a new slicing node, and then applies those upsampled transformations to the full-resolution image. Our algorithm processes high-resolution images on a smartphone in milliseconds, provides a real-time viewfinder at 1080p resolution, and matches the quality of state-of-the-art approximation techniques on a large class of image operators. Unlike previous work, our model is trained off-line from data and therefore does not require access to the original operator at runtime. This allows our model to learn complex, scene-dependent transformations for which no reference implementation is available, such as the photographic edits of a human retoucher.Comment: 12 pages, 14 figures, Siggraph 201

    LHDR: HDR Reconstruction for Legacy Content using a Lightweight DNN

    Full text link
    High dynamic range (HDR) image is widely-used in graphics and photography due to the rich information it contains. Recently the community has started using deep neural network (DNN) to reconstruct standard dynamic range (SDR) images into HDR. Albeit the superiority of current DNN-based methods, their application scenario is still limited: (1) heavy model impedes real-time processing, and (2) inapplicable to legacy SDR content with more degradation types. Therefore, we propose a lightweight DNN-based method trained to tackle legacy SDR. For better design, we reform the problem modeling and emphasize degradation model. Experiments show that our method reached appealing performance with minimal computational cost compared with others.Comment: Accepted in ACCV202

    Redistributing the Precision and Content in 3D-LUT-based Inverse Tone-mapping for HDR/WCG Display

    Full text link
    ITM(inverse tone-mapping) converts SDR (standard dynamic range) footage to HDR/WCG (high dynamic range /wide color gamut) for media production. It happens not only when remastering legacy SDR footage in front-end content provider, but also adapting on-theair SDR service on user-end HDR display. The latter requires more efficiency, thus the pre-calculated LUT (look-up table) has become a popular solution. Yet, conventional fixed LUT lacks adaptability, so we learn from research community and combine it with AI. Meanwhile, higher-bit-depth HDR/WCG requires larger LUT than SDR, so we consult traditional ITM for an efficiency-performance trade-off: We use 3 smaller LUTs, each has a non-uniform packing (precision) respectively denser in dark, middle and bright luma range. In this case, their results will have less error only in their own range, so we use a contribution map to combine their best parts to final result. With the guidance of this map, the elements (content) of 3 LUTs will also be redistributed during training. We conduct ablation studies to verify method's effectiveness, and subjective and objective experiments to show its practicability. Code is available at: https://github.com/AndreGuo/ITMLUT.Comment: Accepted in CVMP2023 (the 20th ACM SIGGRAPH European Conference on Visual Media Production
    corecore