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Máster en Ingenieŕıa de Sistemas e Informática
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RESUMEN

La mayor parte de las imágenes y videos existentes son de bajo rango dinámico (generalmente 
denominado LDR por las siglas del término en inglés,  low dynamic range).  Se denominan así 
porque, al utilizar sólo 8 bits por canal (R,G,B) para almacenarlas, sólo son capaces de reproducir 
dos órdenes de magnitud en luminancia (mientras que el sistema visual humano puede percibir 
hasta  cinco  órdenes  de  magnitud  simultáneamente).  En  los  últimos  años  hemos  asistido  al 
nacimiento y expansión de las tecnologías de alto rango dinámico (HDR por sus siglas en inglés), 
que utilizan hasta 32 bits/canal, permitiendo representar más fielmente el mundo que nos rodea. 

Paulatinamente  el  HDR  se  va  haciendo  más  presente  en  los  pipelines de  adquisición, 
procesamiento  y  visualización de imágenes,  y  como con  el  advenimiento  de cualquier  nueva 
tecnología que sustituye a una anterior, surgen ciertos problemas de compatibilidad. En particular, 
el presente trabajo se centra en el problema denominado reverse tone mapping: dado un monitor 
de alto rango dinámico, cuál es la forma óptima de visualizar en él todo el material ya existente en 
bajo rango dinámico (imágenes, vídeos...). Lo que hace un operador de  reverse tone mapping 
(rTMO) es tomar la imagen LDR como entrada y ajustar el contraste de forma inteligente para dar 
una imagen de salida que reproduzca lo más fielmente posible la escena original. Dado que hay 
información de la escena original que se ha perdido irreversiblemente al tomar la fotografía en 
LDR, el problema es intrínsecamente ill-posed o mal condicionado.

En este trabajo, en primer lugar, se ha realizado una serie de experimentos psicofísicos utilizando 
un monitor HDR Brightside para evaluar el funcionamiento de los operadores de  reverse tone 
mapping existentes. Los resultados obtenidos muestran que los actuales operadores fallan -o no 
ofrecen  resultados  convincentes-  cuando  las  imágenes  de  entrada  no  están  expuestas 
correctamente.  Los  rTMO existentes  funcionan  bien  con  imágenes  bien  expuestas  o 
subexpuestas, pero la calidad percibida se degrada sustancialmente con la sobreexposición, hasta 
el  punto  de  que  en  algunos  casos  los  sujetos  prefieren  las  imágenes  originales  en  LDR  a 
imágenes que han sido procesadas con rTMOs.

Teniendo esto en cuenta, el segundo paso ha sido diseñar un rTMO para esos casos en los que 
los algoritmos existentes fallan. Para imágenes de entrada sobreexpuestas, proponemos un rTMO 
simple basado en una expansión gamma que evita los errores introducidos por otros métodos, así 
como un método para fijar automáticamente un valor de gamma para cada imagen basado en el 
key de la imagen y en datos empíricos.

En  tercer  lugar  se  ha  hecho  la  validación  de  los  resultados,  tanto  mediante  experimentos 
psicofísicos como utilizando una métrica objetiva de reciente publicación.

Por  otro  lado,  se  ha  realizado  también  otra  serie  de  experimentos  con  el  monitor  HDR que 
sugieren que los artefactos espaciales introducidos por los operadores de reverse tone mapping 
son más determinantes de cara a la calidad final percibida por los sujetos que imprecisiones en las 
intensidades expandidas.

Adicionalmente, como subproyecto menor, se ha explorado la posibilidad de abordar el problema 
desde un enfoque de más alto nivel, incluyendo información semántica y de saliencia.

La  mayor  parte  de  este  trabajo  ha  sido  publicada  en  un  artículo  publicado  en  la  revista 
Transactions on Graphics (índice JCR 2009 2/93 en la categoría de Computer Science, Software 
Engineering, con un índice de impacto a 5 años de 5.012, el más alto de su categoría). Además, el 
Transactions on Graphics está considerado como la mejor revista en el  campo de informática 
gráfica.  Otra  publicación  que  cubre  parte  de  este  trabajo  ha  sido  aceptada  en  el  Congreso 
Español de Informática Gráfica 2010. Como medida adicional de la relevancia del trabajo aquí 
presentado, los dos libros existentes hasta la fecha (hasta donde sabemos) escritos por expertos 
en el campo de HDR dedican varias páginas a tratar el trabajo aquí expuesto (ver [2, 3]). Esta 
investigación ha sido realizada en colaboración con Roland Fleming, del Max Planck Institute for  
Biological Cybernetics, y Olga Sorkine, de New York University. 
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1. Prologue

When I entered this project, a collaboration between Roland Fleming from the Max Planck
Institute in Tübingen, Olga Sorkine from New York University, and Diego Gutierrez from Uni-
versidad de Zaragoza had already been established, and the whole of the project has been carried
out within this collaboration. The aim was to work on the field of reverse tone mapping, and
the starting point, the intuition that current algorithms would fail if the image was not correctly
exposed. The first steps were taken with a previous publication, by Miguel Martin and the three
already cited authors, where image exposure, and its possible correlation with different image
statistics, was analyzed [1]. I entered the project at that point, and we had the double objective
of: a) formally evaluating the current algorithms, and b) if there was room for improvement,
devising a new reverse tone mapping operator.

Two publications have spawned from this work, the initial objectives being widely covered.
The first of them, Evaluation of Reverse Tone Mapping Through Varying Exposure Conditions,
which covers most of the contents of this master thesis, was presented at SIGGRAPH Asia
2009 in Yokohama, Japan. A total of 70 out of 275 papers were accepted for the conference,
the acceptance rate being 25%. Articles accepted for this conference are also published in the
journal Transactions on Graphics, whose JCR 2009 index is 2/93 in the category of Computer
Science, Software Engineering (5-year impact factor 5.012, highest of its category). Transactions
on Graphics is regarded as the top journal in the field of Computer Graphics. The second pub-
lication, Selective Reverse Tone Mapping, a smaller sub-project which covers the work described
in Chapter 7, has been accepted for publication in Congreso Español de Informática Gráfica
2010.

As another representative measure of the impact of the work here presented, the only two
technical/scientific books (i.e. in academia, written by researchers in the field; there are many
divulgative books on HDR for photographers) which, to our knowledge, have been published on
high dynamic range imaging, dedicate several pages to the explanation of our work and findings
on reverse tone mapping. These books are High Dynamic Range Imaging, Second Edition:
Acquisition, Display, and Image-Based Lighting [2] and Advanced High Dynamic Range Imaging
Theory and Practice [3].

The present master thesis contains essentially the same information as both papers, adding
an explanation on the problem and its background and certain data and information which did
not appear in the articles, and merging them into one single work.

My interest in what the emergent high dynamic range technologies would bring lead me to
begin research in this field. With this master thesis I put an end to my work on reverse tone

1



1. Prologue

mapping, but my interest on image capture, processing and editing has continued to increase,
and I will be carrying on with research in the field of computational photography, hopefully
in successful collaboration with the Camera Culture Group from the MIT Media Lab (lead by
Ramesh Raskar).

2



2. Introduction

2.1 High Dynamic Range Imaging: background

The dynamic range of a scene is defined as the difference between the highest and the lowest
luminance values of the scene. The human visual system (HVS) can cope with lighting conditions
that range over up to 10 orders of magnitude in luminance. As an example, a dark night
with no moon and the stars as the only light would typically have luminance values of around
10−3cd/m2, while sunlight at noon on a clear bright day is around 105cd/m2. This is achieved
through adaptation, that is, the HVS can allocate its dynamic range at will. Adaptation is the
reason for well known phenomena like the fact that when we come out of the cinema or out
of a dark place into sunlight it takes us a few seconds to see properly. In a certain instant,
within the same scene, we can perceive up to five orders of magnitude in luminance. However,
our HVS does not adapt equally well to all conditions: in dark scenarios we perceive luminance
differences well, and color badly, while the opposite holds for bright scenarios.

Even though we can perceive up to ten orders of magnitude in luminance (five within the same
scene), traditional capture and display systems can deal with up to two log-units of luminance,
since they use 8 bits per channel. As a consequence, many times traditional images fail to
faithfully recreate the real world. An example of this is shown in Figure 2.1. None of the images
succeed in reproducing the real scene as a human observer would see it. Through the adjusting
of exposure, range can be allocated either to the foreground (left) or to the background (right),
but our HVS would be able to perceive both foreground and background simultaneously.

As a solution to this, Debevec and Malik proposed their multibracketing technique [4]. An
image of high dynamic range (HDR) can be obtained by combining several single low dynamic
range (LDR) photographs taken with different exposures (see Figure 2.2). The resulting images,
which are HDR, use 16 or 32 bits per channel. After this pioneer work, and during the last
decade, we have assisted to a great expansion of HDR technologies, not only for capturing
images, but also for displaying, storing and processing them.

It is now common believe that HDR technology will be commonplace in the near future.
However, as with any other big change in technology, there is a transition time during which
both technologies, LDR and HDR, coexist. The first issue that arised was how to display HDR
images in the LDR off-the-shelf displays that everyone had at home. This gave origin to the
problem of tone mapping, and dozens of algorithms have been developed in the last decade
which try to solve this problem in the best possible way. The opposite problem is called reverse
tone mapping: once HDR displays become common, what do we do with all legacy material,

1



2. Introduction

Figure 2.1: The problem of traditional LDR imaging. Being able to deal with only two orders of magnitude in
luminance, LDR images fail to recreate the real world as we perceive it. Through the adjusting of exposure the
dynamic range of the camera is either allocated to the foreground (left) or to the background (right), but both
cannot be faithfully captured at the same time.

our old photographs and videos? How do we display them in HDR monitors? The problem of
reverse tone mapping has been addressed by only a few works in the last years (see Chapter 3).

Figure 2.2: The multibracketing technique. Several low dynamic range photographs taken with different exposures
are combined to produce a high dynamic range image. Images from www.cambridgeincolour.com.

2.2 Reverse Tone Mapping: the problem

As previously stated, high dynamic range display devices are becoming increasingly common [5],
yet very large amount of existing low dynamic range legacy content and prevalence of 8-bit
photography persist. This presents us with the problem of reverse tone mapping. The aim
of reverse tone mapping operators (rTMOs) is to endow low dynamic range imagery with the
appearance of a higher dynamic range without introducing objectionable artifacts. Ideally, an
rTMO should take a standard LDR image as input and reconstruct as accurately as possible
the true luminance values of the original scene. As depicted in Figure 2.3, this is an ill-posed
problem. For most scenes and imaging devices, the image data is irreversibly distorted by
unknown nonlinearities, sensor noise, lens flare, blooming, and perhaps most importantly, sensor
saturation, which clips high intensities to a constant value. Reverse tone mappers must somehow
reconstruct the missing data, or boost the contrast in a way that does not cause the clipped

2



2. Introduction

regions to appear visually unpleasant.
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Figure 2.3: The reverse tone mapping problem. Standard imaging loses data by transforming the raw scene
intensities Iscene through some unknown function Φ, which clips and distorts the original scene values to create
the Iimage , shown in the bottom panel (values clipped from the original are shown in red). The goal of an rTMO
is to invert Φ to reconstruct the original scene data, or to convincingly “fake” it.

Existing rTMOs tackle this ill-posed problem in different ways, leading them to succeed and
fail in different conditions. For example, some reverse tone mapping strategies may handle small
clipped highlights well, but cause large saturated regions to appear unnatural. Conversely, other
rTMOs may avoid introducing artifacts in over-exposed conditions, but fail to enhance under-
exposed images sufficiently. The key is to understand which strategies produce the best possible
visual experience, for which a number of user studies have recently been conducted [6, 7, 8, 9].
These experiments have yielded many valuable insights which may guide future rTMO and even
HDR display design. However, they have been applied only to subjectively correctly exposed
images, usually with knowledge of the dynamic range of the original, real-world scene. A key
challenge in rTMO design is how to handle non-optimal LDR content, particularly images that
are incorrectly exposed.

2.3 Approach and contributions of this work

Our research is dedicated to finding non-intrusive ways to take advantage of the higher dynamic
range of the display medium, irrespective of the dynamic range of the original image. Reverse
tone mapping also sheds light on a general problem in signal processing: taking partial, distorted
or corrupted data and reconstructing the original as faithfully as possible. Here our quality
criterion is perceptual faithfulness rather than physical accuracy.

The vast amount of LDR legacy content spans a large range of exposures. Under- or over-
exposure may be due to different reasons, including bad choices by the photographer or pure

3



2. Introduction

artistic intentions. Legacy professional material may have been shot to make the most appro-
priate use of the dynamic range available at the time, very different from what is currently
available. Additionally, the information about the dynamic range of the real scene is typically
not recorded. It is therefore crucial to extend previous studies by taking into consideration
varying exposure conditions for a set of images without additional information.

We have performed a series of psychophysical studies assessing how rTMOs handle images
across a wide range of exposure levels (Chapter 4). We have found that, while existing rTMOs
perform sufficiently well for dimmer (under-exposed) images, their performance systematically
decreases for brighter (over-exposed) input images. This suggests that there is a need for an
rTM method that effectively deals with over-exposed content. We show that simply boosting
the dynamic range by means of an adaptive γ curve achieves good results that outperform the
current rTMOs, and propose a simple method to obtain a suitable value of γ for each image
(Chapter 6).

We additionally observe that artifacts produced by some rTMOs are also visible in low
dynamic range renditions of the images (Chapter 5). This is because many artifacts are not
simply due to inappropriate intensity levels, but also have a spatial component. We perform a
second user study to shed light on which type of inaccuracies introduced by reverse tone mapping
most hamper our perception of the final image. This information can further help future rTMO
design.

Finally, we explore reverse tone mapping strategies which allow the user to control dynamic
range expansion based on her own preferences or intended goal. We present an interactive
higher-level approach to reverse tone mapping (Chapter 7). Inspired by the Zone System used
in photography, it can also be used as an artistic tool where both the tonal balance and the
mood of the final depiction can be adjusted by the user.

4



3. Previous Work

3.1 Reverse tone mapping

Dynamic range expansion, along with related subsequent problems such as contour artifacts, has
been initially addressed by bit-depth extension techniques [10] and decontouring methods [11].
However, these techniques are designed for extension to bit-depths much lower than that of HDR
displays. More recently, a few works have looked at the problem of reverse tone mapping for the
display of LDR images and videos on HDR displays. The general approach of these reverse tone
mapping techniques has been to identify the bright areas within the image, and in particular
areas that have been clamped due to sensor saturation, such as light sources. Those areas are
typically significantly expanded, while the rest is left unchanged or mildly expanded, to prevent
noise amplification. We offer here a brief discussion on reverse tone mapping techniques, and
refer the reader to the work by Banterle and colleagues [12] for a comprehensive review on the
topic.

Banterle et al. [13, 14] apply the inverse of Reinhard’s tone mapping operator [15] to the
LDR image and detect areas of high luminance in the resultant HDR image. They then produce
a so-called expand-map by density estimation of the bright areas, and use this map to interpolate
between the LDR image and the initial inverse tone mapped HDR image, thus modulating the
expansion range. This framework has been extended to video by designing a temporally-coherent
version of the expand-map [16]. The ldr2hdr framework of Rempel et al. [17] is similar in spirit,
but their expand-map (which they term brightness enhancement function) can be computed in
real time using the GPU. The image intensity is first linearized, and a binary mask is computed
by thresholding the saturated pixels; the brightness enhancement map is computed as a blurred
version of the binary mask, combined with an edge stopping function to retain contrast of
prominent edges. The contrast of the LDR image is then scaled according to the enhancement
map. Note that the expansion is affected by the size of the bright objects: larger objects may
receive more brightness boost. Recently, Kovaleski and Oliveira [18] presented a reverse tone
mapping technique which is also based on real-time computation of a brightness enhancement
function, but substitutes a bilateral filter for the combination of a Gaussian blur and an edge
stopping function used by Rempel et al. [17].

Meylan et al. [19, 20] explicitly focus on specular highlight detection and apply a steep linear
tone mapping curve to the presumably clamped areas, whereas the rest of the image is expanded
by a mild linear curve. A more sophisticated segmentation and classification of bright areas in
the image is done in the work of Didyk and colleagues [21]: they segment the bright image
areas and label them as diffuse surfaces, light sources, specular highlights and reflections using

5



3. Previous Work

a trained classifier. Different expansion functions are designed for each class to reproduce the
dynamic range more accurately (in particular, the luminance of light sources and highlights is
expanded more than that of reflections, while bright diffuse surfaces are not expanded). The
method is suitable for high-quality video enhancement thanks to the temporal coherence of the
segmentation and the expansion function. Finally, Wang et al. [22] propose to fill in the texture
information of the clamped bright areas by transferring texture from other (well exposed) areas,
although the method may not be viable if a suitable region for transferring detail is not found
elsewhere. Both methods [21, 22] rely on user assistance to guide the process, whereas we are
interested in more automatic approaches.

3.2 User studies

It is now generally accepted that HDR displays provide a richer visual experience than their LDR
counterparts. However, different parameters such as luminance, contrast or spatial resolution
influence our visual experience, which makes it difficult to come up with an ideal combination.
Additionally, image content probably also affects our preferences. In computer graphics, several
researchers have performed a series of user studies, the findings of which may even influence
future hardware development.

Yoshida et al. [6] judged subjective preference (without a reference image) and fidelity (by
comparing to a real world scene) for a series of tone mapped images. Users could adjust bright-
ness, contrast and saturation for each individual image. Although their work was geared to-
wards the design of a forward tone mapping operator, their conclusions are also useful for rTMO
development: they found that, in general, brighter images were preferred over dimmer ones. In-
terestingly, however, in certain cases users would break this tendency and keep a significant
portion of the image dark, reducing overall brightness and giving more importance to contrast.

Influence of luminance, contrast and amplitude resolution of HDR displays, was analyzed by
Seetzen et al. [7] to guide future display designs. Their studies show that the preferred luminance
and contrast levels are related: for a given contrast, perceived image quality increases with peak
luminance, reaches a maximum and then slowly decreases.

Akyüz and colleagues [8] performed a series of psychophysical studies which revealed that a
linear range expansion of the LDR image could surpass the appearance of a true HDR image,
suggesting that simple solutions may suffice for reverse tone mapping. Recently, Banterle et
al. [9] have presented a psychophysical evaluation of existing reverse tone mapping techniques,
the results of which indicate that nonlinear contrast enhancement may yield better results overall.

These previous studies provide useful insight into the desirable behavior of tone mapping
operators. A key difference with our work is that they were performed on correctly exposed
images, whereas we are interested in analyzing reverse tone mapping across varying exposure
conditions. In this work, we define over-exposed pixels as those with values ≥ 254, and under-
exposed pixels as those with null values [17, 1].
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4. Experiment One: rTMO Evaluation

4.1 Introduction

To assess the overall performance of an rTMO, it is important to evaluate it across a range
of different imaging conditions. To this end, we have performed a user study in which sub-
jects directly compared the output of three reverse tone mapping schemes (plus standard LDR
visualization) across a range of exposures, from clearly under-exposed to clearly over-exposed
images. We asked subjects to rate the appearance of the reverse tone mapped images on a
calibrated Brightside DR37-P HDR monitor (32.26′′ wide and 18.15′′ high), with a black level of
0.015 cd/m2 and a peak luminance of over 3000 cd/m2. Calibration of the Brightside monitor
was performed to confirm linearity and stable performance during the experiment and to enable
comparison to specific intensities in cd/m2 should the need have arisen in the analysis, as per
standard practice in psychophysics. Temperature compensation was turned off to avoid changes
in intensity (this was possible thanks to the air conditioning in the room). The LDR versions
of the images were displayed by approximately matching the contrast to a typical desktop TFT
(Dell).

Ambient luminance was kept at about 20 cd/m2, and the participants were seated approx-
imately one meter away from the monitor. Based on the subjects’ ratings, we can infer which
rTMOs are most effective at recreating the experience of an HDR scene without visually objec-
tionable side-effects. As opposed to other studies, we do not provide a ground truth HDR image
for direct comparison, since it is almost always unavailable in the case of legacy content.

4.2 Stimuli and subjects

The stimuli consist of photographs of nine scenes with different lighting conditions, captured
with a Nikon D200 at an original resolution of 3872 by 2592 (down-sampled for visualization
purposes on the Brightside monitor, which has a 1920 by 1080 pixel resolution). Each scene was
captured with four different exposure times. Five scenes were made up of bright images (from
approximately correct exposure to clearly over-exposed), and the remaining four were made
up of dark images (from clearly under-exposed to approximately correct). Figure 4.1 shows a
representative image of each scene, while Figure 4.2 shows the four exposures for two example
scenes. The stimuli (please refer to Appendix A for the complete series of all the scenes) have
been obtained from a previous study on exposure perception [1], where the authors analyze basic
image data to try to obtain a correlation between image statistics and the perception of under-

7



4. Experiment One: rTMO Evaluation

Figure 4.1: Representative samples of the stimuli used in our tests. Top: bright images (Building, Lake, Graffiti,
Strawberries, Sunset), each showing a certain degree of over-exposure. Bottom: dark images (Car, Flowers,
Crayons, Pencils), with varying degrees of under-exposure.

Figure 4.2: The complete bracketed sequence for the Building and Flowers scenes.

and over-exposure.

From each exposure in the bracketed sequence, we obtained three candidate renditions for
display on the HDR monitor using a representative subset of reverse tone mapping algorithms:
ldr2hdr [17], Banterle’s operator [13] and linear contrast scaling [8]. Except for the straight-
forward linear scaling (in Yxy color space, and thus performed on linearized values) we obtained
the images from the authors of the original algorithms, in order to ensure accuracy in the imple-
mentation. For the ldr2hdr algorithm the parameters used were 150 pixels for the standard
deviation of the large Gaussian blur applied to the mask, a brightness amplification factor α = 4
and a gradient image baseline width for divided differences of 5 pixels, plus a 9×9-pixel kernel
for the antialiasing blur and a 4-pixel radius for the open operator used to clean up the final
edge stopping function (please refer to the original paper for a detailed explanation of these pa-
rameters). In the case of Banterle’s operator, when generating the expand-map, the parameters
of the density estimation were a radius ranging from 16 to 42 pixels (smaller radius for lower
exposures) and a threshold of 1 to 4 light sources (lower threshold for higher exposures), being
2048 the number of generated light sources for Median Cut sampling. In both cases, Banterle’s
operator and ldr2hdr, images were linearized using gamma correction (γ = 2.2). We also
added a fourth LDR rendition in which the original images are presented within a luminance
range matched to a typical desktop TFT monitor. The goal of this fourth image is to study
whether the established assumption that visual preference is given to HDR holds over a range
of exposures.

A gender-balanced set of twelve subjects with normal or corrected-to-normal acuity and
normal color vision were recruited to participate in the experiment. All subjects were unaware
of the purpose of the study, and were unfamiliar with HDR imaging.
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4. Experiment One: rTMO Evaluation

4.3 Procedure

Participants viewed the stimuli on the Brightside HDR display in a dark room. On each trial,
subjects were presented with all four renditions of a given exposure of a given scene in a 2×2
array (a stimulus quadruple). The positions of the four renditions within the array were random
across trials, and the order of the trials was random with the constraint that consecutive trials
did not present the same scene. The subjects’ task was to rate the quality of the four renditions
on a scale from 1 to 7, according to how accurately the images depicted how the scene would
appear to the subject if they were actually present in the scene. Thus the key criterion for
comparison was the subjective fidelity of the renditions. Subjects were given unlimited time for
each trial and could modify their rating of any of the renditions on a given trial before proceeding
to the next trial. Additionally, they were free to assign the same values to all four renditions on
a given trial, although they were instructed to try to use as much of the 1-7 scale as possible
within the experiment as a whole. To aid them in setting their scale, and to accustom them to
the experimental procedure, the subjects were presented with a number of practice trials before
the start of the experiment.

4.4 Results and Discussion

Several conclusions can be drawn from this test. First, for our images, there was a clear difference
in perceived quality between the bright and the dark series: subjects clearly preferred the reverse
tone mapped depictions of darker images over brighter ones. This can be seen in Figure 4.3: not
only is the overall mean value significantly higher in the former case, but it is relatively stable
across exposure as well. In contrast, for the bright images, there is a general downward trend
in ratings across the four exposure levels.

Note that this gradual decrease in performance does not correlate with the subjective per-
ception of quality of the original LDR image: in a previous pilot study, users picked different
exposures for each series as the subjective best, not necessarily the same as the objective best
(defined as the one with the smallest proportion of under- and over-exposed pixels [8]). The
trend instead correlates with the proportion of over-exposed pixels and the mean luminance,
which do increase with exposure.

Secondly, we can observe systematic differences between the rTMOs. On average, subjects
rated the ldr2hdr and the Linear rTMOs best (the difference between the two failed to reach
statistical significance), followed by the LDR images, and finally the output of the Banterle’s
rTMO (see Figure 4.3). Pairwise Wilcoxon rank sum tests (similar to a non-parametric version
of the t-test) reveal that these differences were significant to p < 0.05, except for ldr2hdr vs.
Linear in the bright series and Banterle’s operator vs. the LDR depiction in the dark series (see
Table 4.1 for the complete results).

It is important to note, however, that this ordering does not hold for all conditions. For
instance, the LDR depiction was systematically ranked lower than two of the rTMOs, suggesting
that indeed HDR visualization is still preferred over LDR, even for under- and over-exposed
images. Surprisingly, though, it ranked higher on average than Banterle’s rTMO for bright
images. The poor overall performance of Banterle’s rTMO with this data set is probably due
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4. Experiment One: rTMO Evaluation
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Figure 4.3: Top: bright images series. The blue bars represent the mean ratings across subjects for the four
rTMOs (ldr2hdr, Banterle’s, Linear and LDR) with increasing exposure levels. The last chart clearly shows
the downward trend in perceived image quality. Error bars represent standard errors on the mean. The red line
in the first four charts represents the mean ratings for our proposed γ-curve expansion (see Chapter 6). It can
be seen that it rates generally higher and is more stable. Bottom: same information for the dark images series,
showing higher overall means and a more stable perceived quality across exposures.

(i-j) pb(i, j) pd(i, j)

ldr2hdr - Banterle’s 2.0532e-21 2.8633e-7

ldr2hdr - Linear 0.5734 0.0283

ldr2hdr - LDR 1.7762e-6 1.4976e-11

Banterle’s - Linear 1.1739e-22 0,0013

Banterle’s - LDR 4.4489e-11 0.1938

Linear - LDR 1.4697e-7 2.0538e-6

Table 4.1: Results of the Wilcoxon rank sum tests for the bright and dark series (denoted by subindices b and
d respectively). Values of p < 0.05 are considered to indicate statistically significant differences between rTMOs.
Thus, all differences were significant except for ldr2hdr vs. Linear in the bright series and Banterle vs. LDR in
the dark series.

to the fact that it often exaggerates the errors in poorly exposed images, resulting in intrusive
artifacts. This becomes clear when we measure the extent to which each rTMO yields outlier
rating values for each image. We calculate the median rating for each image across rTMOs. We
then obtain the outlier index as the difference in rating for each rTMO relative to this median
value:

(Outlier index)rTMOi = (Rating)rTMOi − (Median rating across rTMOs) (4.1)

When an rTMO is neutral, simply reflecting the overall quality of the exposure of the image,
then the outlier index tends to be close to zero. However, when an rTMO stands out relative
to the others (for example due to the introduction of artifacts), then the outlier index tends
to deviate from zero. In Figure 4.4, we plot the histogram of the outlier index values for the
three rTMOs and the LDR depiction. It is notable that for ldr2hdr, Linear and LDR, the
distribution tends to be relatively tightly tuned, while for Banterle’s the spread is much broader.
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Figure 4.4: Distribution of outlier indices for all four rTMOs. Top: bright series. Bottom: dark series.

This means that on the one hand, when it performs well, it tends to equal or exceed the others.
However, it sometimes introduces substantial artifacts that cause the images to look worse than
if they were not reverse tone mapped at all.

Although this seems to contradict a recent study where Banterle’s operator actually outper-
formed other rTMOs [9], it is important to note that the experiments carried out in both cases
differ significantly: first of all, in the work by Banterle et al. [9] the LDR source images were
again well exposed, which is the regime within which Banterle’s rTMO performs well, as we
also found. However, when the source material is less flattering, we found that the algorithm
sometimes produces clearly visible artifacts, which leads to lower ratings. Second, in [9] the
authors used a 2AFC paradigm with direct ground truth comparison, whereas we propose a
rating approach, which allows users to report their relative subjective preferences. Both tasks
are valid ways of assessing fidelity. However, ours has the advantage that it is closer to the real
usage scenario: in general the ground truth is unknown and is not presented for comparison.
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5. Experiment Two: HDR vs. LDR Monitor

5.1 Introduction

We noticed that artifacts produced by ldr2hdr and Banterle’s rTMOs are typically visible
in low dynamic range renditions of the images. This is because they generally have a spatial
component: they are not simply due to inappropriate intensity levels for certain features, but
they also include fringes, visibly boosted noise and other artifacts. To analyze this, we performed
a second experiment with seven new subjects, which was identical to the first experiment, except
that on each trial, the 2×2 stimulus array was tone mapped using histogram adjustment1 [23].
The array was then presented on a standard TFT monitor (note that this means that the LDR
control condition now appears much darker than on a normal TFT).

5.2 Results and Discussion

In Figure 5.1, we plot the average ratings for each image in the LDR control condition against
the average ratings in the HDR condition. As can be seen from the scatter plot, the ratings in the
LDR control condition correlated extremely strongly with the ratings in the original experiment
on the HDR monitor (r2 = 0.9018). We found no significant difference between bright and dark
images.

This result does not imply that the images look the same in LDR as in HDR: the subjects
were not asked to compare these conditions directly, and previous studies have confirmed that
HDR depictions are preferred over LDR [8]. Indeed, none of the subjects saw both renditions.
However, it does demonstrate that the pattern of preferences is extremely well conserved. In
other words, the images that were less preferred on the HDR monitor were also less preferred
when tone mapped back down to LDR. This has two important implications. First, the strong
correlation found suggests that a reasonably predictive evaluation of a rTMO could be made
without directly testing on an HDR monitor. Second, as noted, the subjective ratings of HDR
images that have been generated from LDR images seem to depend more on the presence or
absence of disturbing spatial artifacts than on the exact intensities of different features. A similar
observation (confirmed by our test) was made by Aydin et al. [24]: they noted that the key issue
in image reproduction is to accurately maintain the important features while preserving overall
structure, whereas achieving an optical match becomes relatively less important. This becomes

1We have used the pcond program in Radiance to tone map the stimuli.
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Figure 5.1: Scatter plot showing a strong correlation between ratings on an HDR monitor and ratings when the
images were tone mapped back down to LDR and presented on a standard TFT monitor.

even more salient given that the dark-adaptation state of the observer is typically unknown,
making absolute intensities meaningless to the user.

The design philosophy that emerges from these considerations is that it is generally better to
apply simpler, less-aggressive rTMO schemes if the original image is imperfect. Failing to fully
recreate the HDR experience is less disturbing to users than unintended artifacts that can occur
when poorly-exposed images are adjusted too aggressively. In the following section we present
a simple and robust approach to boosting the dynamic range of over-exposed images, and show
that it is less prone to artifacts than other rTMOs.
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6. Expanding Over-exposed Content

6.1 Introduction

Our experiments have shown that the danger with computationally sophisticated reverse tone
mapping schemes is the potential to make the image appear worse than before processing,
through the introduction of objectionable artifacts. However, the goal of a rTMO is to make
the image content look better in general and avoid, under any circumstances, making it look
worse. Simple global reverse tone mappers, such as linear scaling and gamma boosting, never
cause polarity reversals, ringing artifacts or spuriously boost regions well beyond their context.
Our first experiment clearly indicates that there is room for improvement in devising an rTMO
for bright input images with large saturated areas, whilst darker images turn out much better.
We thus focus on the former in this section.

6.2 Gamma expansion

Examining the bright sequence in Figure 4.2 we observe that as exposure increases, more detail
is lost as pixel values become saturated, and colors fade to white. It thus seems reasonable to
attempt to depict the image in a way that the remaining details become more prominent, as
opposed to boosting saturated areas as existing rTMOs do. Note that we do not aim to recover
information lost to over-exposure, for which existing hallucination techniques may work [22],
but rather to increase perceived quality.

We make the following key observations, which have been confirmed by previous studies on
reverse tone mapping: on the one hand, darker HDR depictions are usually preferred for bright
input LDR images [19]; on the other hand, in many cases contrast enhancements improve per-
ceived image quality [17]. These suggest expansion of the linearized luminance values following
a simple γ curve, which has the desired effect of darkening the overall appearance of the images
while increasing contrast. Figure 6.1 shows how the expansion is performed, how the final HDR
luminance values relate to the input LDR luminances.

Linearization of the luminance values prior to the dynamic range expansion was done with
a gamma curve (γ = 2.2), following the findings by Rempel et al. [17] which note that simple
gamma correction can be used for linearization instead of the inverse of the camera response
without producing visible artifacts. To avoid amplifying noise, a bilateral filter [25] can be used
prior to expansion [17]. Gamma expansion may potentially boost noise; however, over-exposed
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6. Expanding Over-exposed Content

images tend to be significantly less noisy than under-exposed ones. Our psychophysical tests
confirmed that noise amplification did not affect the final perceived quality.

Figure 6.1: Expansion following a gamma curve. The x-axis shows luminance values in low dynamic range, while
the y-axis shows normalized high dynamic range luminance values. The curves show different gamma expansion
functions, with the value of γ ranging from 1.0 (straight line) to 6.0, at intervals of 0.25.

After the luminance expansion chromaticities are recovered according to the following equa-
tions [2]:

Rhdr = Lhdr(
Rldr
Lldr

)(1/s) (6.1)

Ghdr = Lhdr(
Gldr
Lldr

)(1/s) (6.2)

Bhdr = Lhdr(
Bldr
Lldr

)(1/s) (6.3)

where L accounts for luminance, and R,G,B for intensities in each of the channels. s is a factor
which accounts for saturation and can be manually adjusted (it ranges between 0 and 1) to
obtain the best depiction.

Obviously, the problem with the proposed expansion lies in automatically obtaining an image-
dependent suitable γ value, to avoid the cumbersome manual readjustment of the display settings
for each individual image to be shown. For this, we first obtain a measure of image brightness, for
which we compute its key value; this key acts as an indicator of whether the scene is subjectively
dark or light. Since overall brightness can be approximated with log-luminance [26, 15], we
estimate the key of an image as [27]:

k =
logLavg − logLm
logLM − logLm

(6.4)

where logLavg = (
∑

x,y log(L(x, y) + δ))/n. Lm and LM are the minimum and maximum image
luminances respectively, n is the number of pixels and L(x, y) is the pixel luminance. The small
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offset δ prevents singularities when L(x, y) = 0. We exclude 1% of the highest and lowest pixel
values following the suggestion in [27], to make the estimation less sensitive to outliers. We
asked users in a pilot study to manually adjust the value of γ in a set of images, and fitted
empirical data with a linear regression γ = a · k + b (with a = 10.44 and b = −6.282), which
relates γ as a function of the image key (r2 = 0.82). We have used this expression in this work
to compute the reverse tone mapped results in this paper. Table 6.1 shows the key and γ values
used for all the stimuli.

1 2 3 4

Building 0.697 / 1.22 0.762 / 1.5 0.816 / 1.75 0.845 / 2.6

Lake 0.7714 / 1.1 0.7453 / 1.2 0.7487 / 1.5 0.7830 / 2.25

Graffiti 0.7666 / 1.2 0.8193 / 1.35 0.8738 / 1.5 0.9184 / 1.75

Strawberries 0.6696 / 1.22 0.7218 / 1.35 0.7218 / 1.55 0.8479 / 1.9

Sunset 0.7022 / 1.1 0.8103 / 1.35 0.8016 / 1.4 0.8713 / 1.75

Table 6.1: Key and γ values for the five scenes and the four exposure levels.

6.3 Validation

To provide a subjective evaluation of the performance of this strategy, we repeated Experiment
One (Section 4), substituting the LDR depiction with our γ-expanded versions in order to
maintain the 2×2 stimulus array. The red line in Figure 4.3 shows the results.

Experiment One provides useful information about the subjective perception of image quality.
However, we are also interested in evaluating our approach from an objective point of view. The
problem is the fact that the intended comparison needs to be performed between an LDR and
an HDR image. Recently, Aydin and colleagues [24] have presented a novel image quality
metric which identifies visible distortions between two images, independently of their respective
dynamic ranges. The metric uses a model of the human visual system, and classifies visible
changes between a reference and a test image. The authors identify three types of structural
changes: loss of visible contrast (when contrast visible in the reference image becomes invisible
in the second one), amplification of invisible contrast (when invisible contrast in the reference
image becomes visible in the second one), and reversal of visible contrast (when contrast polarity
is reversed in the second image with respect to the reference). It is important to remember that,
as Rempel and colleagues noted [17], contrast enhancement tends to increase perceived quality,
and therefore is a desired outcome of the rTMO.

Figure 6.2 shows the results of this metric1 comparing two of the original LDR images (ref-
erence images) with the corresponding outputs using linear expansion, ldr2hdr, Banterle’s
operator and our proposed γ curve. Our method reveals more detail, shows no loss of contrast
and minimizes gradient reversals. Note that while our approach may fail to utilize the dy-
namic range to its full extent in some cases, it has the important and experimentally validated
advantage of avoiding objectionable and unpredictable artifacts.

1We have used the online implementation provided by the original authors of the paper: http://drim.mpi-
inf.mpg.de/generator.php
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LDR image Linear expansion ldr2hdr Banterle’s operator our γ curve

Figure 6.2: Objective validation. Comparing the results of several rTMOs with the image quality metric from
Aydin et al.[24]. The reference LDR images are Lake (top) and Building (bottom) as depicted in Figure 4.1 (which
correspond to the third and second exposure levels in the series. Please refer to Appendix B for all the exposures
in all the scenes). Green, blue and red identify loss of visible contrast, amplification of invisible contrast and
contrast reversal respectively. Our γ expansion does not lose any contrast, while minimizing gradient reversals.
More importantly, it reveals more detail in the most significant areas of the images (trees, grass, bushes and
buildings in the images shown).
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7. Selective Reverse Tone Mapping

7.1 Introduction

As we have seen in the previous chapters, to produce a pleasant HDR image from LDR input,
existing rTMOs work under the general assumption that highly saturated pixels need to be
expanded much more than the rest. As a result, bright image areas representing features like
highlights, or the sun in the sky, are largely boosted, thus counter-parting the clamping of
information in the LDR image and better representing the real-world experience.

Even though these techniques can produce appealing results for a wide range of LDR content,
there are some cases in which the general approach of boosting bright areas may not be the best
way to proceed, as demonstrated by our previous experiments (see Chapter 4). These cases
include images -such as those shown in Figure 7.1- which contain large saturated areas, either
because of artistic purposes or due to a bad exposure.

Figure 7.1: Examples of images containing large saturated areas.

As a response to this, in Chapter 6 we have presented an expansion operator based on a
simple gamma curve. In the current chapter we will explore another approach to the problem, an
interactive reverse tone mapping technique. We will show that a tailored, higher-level approach
to dynamic range expansion can be a good alternative in those cases which are unfavorable for
existing rTMOs.

We present two different techniques, one based in Ansel Adams’s Zone System [28] (Section
7.2), and another based on detection of salient features (Section 7.3), which allow the user to
control dynamic range expansion based on her own preferences or intended goal. The techniques
can also be used in combination with each other. This provides a new method for reverse
tone mapping and an artistic tool where tonal balance and mood of the final HDR image
can be adjusted by the user (in a similar manner to existing tools for LDR or HDR images
[29, 30, 31, 32, 33]).
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7. Selective Reverse Tone Mapping

7.2 Using the Zone System for rTM

The so-called Zone System was introduced by Ansel Adams as a guide to produce good pho-
tographs with correct tonal values [28]. Exposure is the main factor which determines the way
in which the luminance values of the scene are finally mapped to the limited range of values
which can be reproduced by the photograph; choosing the right exposure is therefore one of
the most important concerns of a photographer. Common exposure meters are designed to aid
in this task by measuring luminance values of the scene (or object of interest) and suggesting
the lens aperture and shutter speed values. However, irrespective of the scene -its lighting or
content-, the values provided by an exposure meter are always such that the object of interest
will appear as middle gray in the final image, which in many cases will not be the adequate
election. A simple example which illustrates this problem is that of photographing a black and
white checkerboard and a scene which is all black except for a white square: the same exposure
settings should be used in both of them, yet the reading of an exposure meter would give very
different exposure settings for each one. Ansel Adams’s Zone System provides a simple way of,
using this middle gray reading of exposure meters, choosing the best exposure settings.

IXVIIIVIIVIVIVIIIIII0

Figure 7.2: Division of luminance in zones according to Ansel Adams’s System.

This system is not only a tool for photographers still widely in use today [34, 35], but also
a formalization of sensitometry principles which provides deep insight into how mapping of
tonal values works. Reinhard et al. [15] already rely on it as a basis for their well-known tone
mapper, and posterior works on interactive tone management have also built on this system [32].
Following Adams’ technique the luminance values in a scene can be divided into ten different
luminance zones (0 through IX, see Figure 7.2) according to the equation given by Koren [36]:

p =

((
exp(v sin

(
π
zone− 1

16

)
− 1

)
/ (exp(v)− 1)

)ψ
, (7.1)

where p represents the zone limits in normalized pixel luminances and ψ is the encoding function
responsible for non-linearities in the LDR values (usually the inverse of a γ function). The value
v = 5.25 is set so that zone V on a properly calibrated monitor appears as middle gray [28],
defined as 21% of the maximum screen brightness level (this is similar to 18% reflectance refer-
enced to 90% white, which is pure white on good photographic paper). Equation 7.1 is designed
so that input values of zero and one map to zones 0 and IX respectively, while the sine function
is responsible for the compression required at high pixel levels. By working in XY Z or Y xy
space, color information remains unchanged [8].

Once the luminance range of the LDR input image is divided in zones according to Equation
7.1 (see Figure 7.3) the reverse tone mapping process is done by assigning different expansion
functions to the different zones. Although in theory these functions could be as complex as
desired, we choose to use linear functions for each zone, as they offer a good balance between
simplicity and control over the expansion. Thus, the resulting rTM function is piece-wise linear.
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IX0 I II III IV V VI VIIIVII

Figure 7.3: Left: Input LDR image. Right: The result of luminance decomposition for zone-based reverse tone
mapping.

The darkest and the brightest zones (0 and IX, respectively) of the LDR image are mapped
to the lowest and the highest luminance values of the HDR display. A second constraint is
that the rTM function must be monotonically increasing, as otherwise gradient reversals may
appear that spoil the final depiction. Adjusting the slopes of each of the zones may seem like an
involved process; however, in the end it somehow resembles what photographers constantly do,
as it translates to assigning ranges of the HDR image luminance to each zone of the LDR input
image. Besides, the calculation of the resulting HDR image is almost immediate, thus allowing
the user to try different curves before choosing the final one. As an example, Figure 7.4, right
shows an HDR image obtained by using a piece-wise linear curve on which only three values
were specified: Zone IV being assigned 10% of the HDR image luminance range, Zone VI 40% of
that range, and Zone VII 60% of it, which translates to adjusting three points of the LDR–HDR
curve shown. We can also appreciate how this simple tuning of the rTM function yields a more
appealing depiction than the linear scaling (shown to be on par in subject preference with the
HDR image itself by Akyüz and colleagues [8]). Additionally, this zone-based expansion can
also be used as part of a bigger rTM framework, as examples in Section 7.4 show.

Input Image

Zone-based ExpansionLinear Expansion

Input Image

Figure 7.4: Zone-based reverse tone mapping. Left: HDR image obtained by linearly expanding luminance values,
and corresponding expansion function. Top center: Original LDR image. Right: HDR image obtained with a
piece-wise linear expansion function based on the Zone System, and corresponding graph showing this expansion
function.
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7. Selective Reverse Tone Mapping

7.3 Content-aware rTM

As noted before, the general approach in rTM is to allocate most of the additional dynamic range
that an HDR display offers to saturated areas in the scene. However, this may not always be the
optimal choice. To our knowledge, none of the previous techniques have taken into consideration
the semantics of the scene. In an image where a large region of it is saturated, such as the leaf
in the snow in Figure 7.1, treating in a different way the object of interest (in this case the
leaf) and the saturated background (the snow) can lead to more visually appealing results than
boosting the saturated area while leaving the leaf nearly untouched. The same reasoning applies
to the rest of the images in Figure 1, and in general to images which, either as a result of the
artist’s choice, or because of wrong exposure, contain large saturated areas. Moreover, when
dealing with these type of images, linearly expanding the dynamic range (which in general terms
is the other rTM alternative offered by the literature) would result in a significant loss of visible
contrast, which is a crucial characteristic of these type of images.

We therefore propose to use a higher-level approach in these cases, taking into account the
content of the scene and detecting the object of interest in order to use different reverse tone
mapping functions for it and for the background. To separate the region of interest from the
background a saliency detector can be used.

7.3.1 Detecting salient features

Saliency detection techniques pursue the objective of detecting those regions where the viewer’s
attention concentrates when looking at the image. Even though it is an active field where
research continues to offer new and improved methods, a series of detectors exist which are
able to offer convincing results in a wide variety of images. In general, saliency detection is
performed by developing more or less complex models of the human visual system and using
them in combination with image metrics to obtain a saliency map, as does the well-known work
of Itti et al. [37]. However, for many purposes it is necessary to perform a third stage in which
object segmentation is applied to extract salient objects instead of just a map of salient locations.
In our case the need for this third stage in the saliency detection is obvious, as we look for an
accurate separation between the object of interest and the background. From within the saliency
detection techniques developed in the last years, we found two of them to meet our needs and
applied them to our content-aware reverse tone mapping framework. They are both outlined
below, while Appendix D contains a brief description of both methods.

The first of them, learning-based saliency detection [38], formulates the problem of, given
an input image I, obtaining a binary saliency mask A, as a Conditional Random Field, in which
the probability P (A|I) is inferred using a combination of salient features. Learning using a large
training database is used to determine the optimal linear combination of the computed salient
features. Figure 7.5 (bottom row) shows an example of the feature functions used and the final
saliency mask obtained from them.

The second method, namely Saliency Cuts [39], is essentially a combination of two techniques:
the use of graph cuts for object segmentation [40, 41] and the spectral approach to saliency
detection of Hou et al. [42]. Graph Cuts is a well-known segmentation algorithm which poses
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image segmentation into foreground and background as a minimal graph cuts problem. Seeds
for the background and the foreground have to be given as input. The idea behind Saliency
Cuts is that the seeds be provided by a saliency map previously obtained with the technique by
Hou and colleagues. This way, an accurate segmentation into object of interest and background
in the form of a binary saliency map is obtained. This binary saliency map, together with the
seeds used for the background and the salient object when performing the segmentation, can be
seen in Figure 7.5 (top right).

Figure 7.5: Saliency detection with the different methods. Top left: Input image. Top right: Saliency detection
using the Saliency Cuts algorithm. Bottom row: Saliency detection using the learning-based saliency detection
approach (images from the saliency database publicly available at http://research.microsoft.com/∼jiansun/).
Further details can be found in the text.

7.3.2 Expanding the dynamic range

Once the division in object of interest and background has been performed, different expansion
functions can be used for each. These expansion functions can be of any type. Given that we are
focusing on an interactive approach where the user guides the reverse tone mapping process, we
choose again to use piece-wise linear functions after a separation in luminance zones as explained
in Section 7.2. Resulting HDR images obtained with this rTM framework and the corresponding
saliencies and expansion functions are shown in the Results section.

7.4 Results and Discussion

Figure 7.6 shows an example of a complete pipeline using our rTM approach, combining the
two techniques described in the previous sections. The original image is segmented yielding a
binary mask containing the salient object, and a division in luminance zones of the input image
is performed. Next, the user can adjust the range of luminance in the HDR final image that
will be assigned to each zone, both for the seals and for the background independently. This
allows the user to easily manipulate the tonal balance of the image to get the best depiction.
In this case a non-linear curve (shown in blue in the graph) has been applied to the seals,
thus increasing their contrast and making them more salient; the snow has been just linearly
expanded. Segmentation has been performed using Saliency Cuts (seeds used for the foreground
and background are shown in blue and red, respectively). Even though both of the saliency
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Figure 7.6: Complete pipeline using our interactive rTM approach. From left to right: Input LDR image, auto-
labeling of salient object (blue) and background (red) and binary saliency mask, expansion functions for the salient
object (blue) and the background (red), and final HDR image. Original image copyright of National Geographic.

Figure 7.7: Reverse tone mapping using different zone-based expansion functions for the salient object and the
background. From left to right: Input LDR image, manually obtained saliency mask, expansion functions for the
salient object (blue) and the background (red) and final HDR image. Original image courtesy of Leandro Fessia,
all rights reserved.

detection methods presented produce segmentations accurate enough for our purposes given
input images which are not excessively complex, for increasing complexity (either morphological
or related to luminance values) manual segmentation may be necessary. The presence of more
than two salient objects in the image also requires a manual segmentation, as the methods
discussed cannot segment more than one object. In the results presented in Figure 7.7 the
object of interest was segmented manually and, again, different zone-based piece-wise linear
expansion functions were used for the salient object and for the background.

The interactive nature of the approach presented implies that the functions for reverse tone
mapping, which determine how the high dynamic range image will look, are adjusted and tuned
with low dynamic range renditions of the images as feedback. This is reasonable due to the fact
that recent psychophysical experiments have demonstrated that the subjective quality of HDR
images that have been generated from LDR images depends more on the presence of absence of
spatial artifacts than on the exact luminance values, and thus a reasonably predictive evaluation
of an HDR image can be done with an LDR depiction of it [43].

23



8. Conclusions and future work

8.1 Conclusions

Previous works on the perception of HDR images and rTM design have assumed that the input
images were, in general, correctly exposed. While these provide valuable knowledge that could
guide the development of both HDR display hardware and reverse tone mapping algorithms,
existing LDR legacy content actually covers a wide range of exposures, including material that
suffers from bad exposure. As currently designed, existing rTMOs tend to boost over-exposed
areas more than the rest of the image. The strategy works well for small areas such as light
sources or highlights if the rest of the image is correctly exposed, but no performance evaluation
on generally over-exposed imagery had been performed.

Experiment One shows that performance of rTMOs decreases for input images containing a
large number of over-exposed pixels, while they seem to perform significantly better for darker
images. This suggests that for bright images the consensual approach of boosting bright areas
could be improved. We have shown that a simple rTMO based on γ expansion, without the
need for explicitly detecting saturated areas, outperforms existing rTMOs in these cases, and
propose an empirical expression to automatically find a suitable γ as a function of the image’s
key, without user interaction. This rTMO has the desired properties of boosting contrast and
detail in non-saturated areas of the image, visually compensating for the lack of information in
the saturated ones.

We have performed two validation studies, both subjective and objective. The first one has
confirmed that our approach increases the perceived image quality for these kind of images.
Pairwise Wilcoxon rank sum tests revealed that the differences in rating were statistically signif-
icant with respect to all other rTMOs tested. Given that it produces darker overall images with
increased contrast, this result is in accordance with previous suggestions [19, 17]. The second
evaluation uses a recently published image quality metric which operates with arbitrary dynamic
ranges [24]. The metric concludes that our method reveals more detail in non-saturated areas,
does not reduce contrast and shows less gradient reversals than the other rTMOs tested. Thus,
the artists’ original intentions are better preserved.

In both experiments we used typical numbers of subjects for a within-subject design in
psychophysics, and the results were highly coherent across subjects. In Experiment One the
reported results are statistically significant to the p < 0.05 level, meaning that the chances that
the outcome of the pairwise comparisons would change after running more subjects from the
same population is less than 5%. Indeed, for many of the results, the probability is many orders
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of magnitude lower than this, which implies that the qualitative pattern of the results is well
conserved across subjects. Likewise, data from Experiment Two exhibit a correlation coefficient
of 0.9018, notably conclusive in statistical terms.

Our findings seem to indicate that superior rTMOs should take into account global statistics
about the image, and not just individual pixel values. We have derived a simple strategy based
on the key value of the images, but more sophisticated strategies could also be devised, possibly
including high-level semantics.

We also ran the same expansion on the images from the dark series: as expected, we found
no significant improvements over the tested rTMOs, given that our expansion is designed for
bright images (Figure C.1 in Appendix C shows the results of this evaluation).

The results from our second experiment confirm that spatial artifacts are more disturbing
than inaccuracy in reproduced intensity levels [24]. We found a very strong correlation in
the pattern of preferences when viewing images on HDR and LDR displays. This does not
mean that the images looked the same, but it does suggest that the artifacts that emerge with
poorly-exposed input images are spatial in nature and severe enough that HDR evaluation is
not necessary: they can also be clearly seen in LDR.

Our results complement those in the work by Akyüz et al. [8], where the authors show that,
for correctly exposed imagery, a simple linear expansion works well and suggest that sophisticated
treatment of LDR data may not be necessary. In fact, our work is consistent with that of Akyüz
et al. [8] in the sense that our proposed γ curves approach linear scaling when the image is
approximately correctly exposed.

In a second part of the work, we have presented an interactive approach to reverse tone
mapping which can be useful for a wide variety of images, especially those containing large
saturated areas. The basis of our method is inspired by photographer Ansel Adams’s well-
known Zone System, which allows us to divide the luminance range of the image into zones.
With the aid of this division in zones, and in an interactive process, a piece-wise linear function
to expand the LDR image can be provided by the user. Furthermore, our technique includes the
possibility of using higher-level information as a guide for the expansion, segmenting the image
in the object of interest and the background and using different expansion functions for each.
This interactive approach offers a tool to expand the dynamic range of a scene with significant
yet intuitive control over the final result. Besides, being able to freely adjust the luminance
ranges of the zones makes it possible to obtain very different HDR depictions of the same input
image, potentially providing an artistic tool for photographers and artists in general.

8.2 Future work

The conclusions drawn aim to be valuable for further development of HDR display technology,
HDR imaging in general and the development of future LDR expansion algorithms in particular.
However, further tests on LDR expansion are desirable. As the community investigates this
issue further, this and similar studies will surely be extended and updated. Future reverse tone
mapping strategies could involve the design of a contrast-based rTMO, following the findings of
the work by Mantiuk et al. [44], which shows promising results in the field of contrast processing
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of HDR images, working in visual response space.

Similarly, reverse tone mapping for video content is a key challenge in this field. In order
to develop operators that gracefully handle changes in exposure over time, it is crucial to first
understand how they fail in the static case, for which we hope this work stimulates future
research.

Regarding future work, adding a fitting step of the piece-wise linear rTM functions proposed
to smoother ones would be desirable. In the same sense, when dealing with content-aware
rTM, taking care of the luminance transitions in the boundary between the objects of interest
and the backgrounds would be necessary, either by somehow smoothing the binary mask or
by placing constraints to the relationship between both -the object’s and the background’s-
expansion functions. Besides, thorough comparison between the proposed rTM technique and
existing reverse tone mapping operators by means of psychophysical experiments would certainly
be interesting for the field. Additionally, salient object detection is an open field of research,
and our approach would definitely benefit from future advances in this field.

26



Bibliography

[1] Miguel Martin, Roland Fleming, Olga Sorkine, and Diego Gutierrez. Understanding expo-
sure for reverse tone mapping. In Congreso Español de Informática Gráfica, pages 189–198,
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