8,464 research outputs found

    Homeomorphic Image Registration via Conformal-Invariant Hyperelastic Regularisation

    Full text link
    Deformable image registration is a fundamental task in medical image analysis and plays a crucial role in a wide range of clinical applications. Recently, deep learning-based approaches have been widely studied for deformable medical image registration and achieved promising results. However, existing deep learning image registration techniques do not theoretically guarantee topology-preserving transformations. This is a key property to preserve anatomical structures and achieve plausible transformations that can be used in real clinical settings. We propose a novel framework for deformable image registration. Firstly, we introduce a novel regulariser based on conformal-invariant properties in a nonlinear elasticity setting. Our regulariser enforces the deformation field to be smooth, invertible and orientation-preserving. More importantly, we strictly guarantee topology preservation yielding to a clinical meaningful registration. Secondly, we boost the performance of our regulariser through coordinate MLPs, where one can view the to-be-registered images as continuously differentiable entities. We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.Comment: 11 pages, 3 figure

    A Hybrid Deep Feature-Based Deformable Image Registration Method for Pathology Images

    Full text link
    Pathologists need to combine information from differently stained pathology slices for accurate diagnosis. Deformable image registration is a necessary technique for fusing multi-modal pathology slices. This paper proposes a hybrid deep feature-based deformable image registration framework for stained pathology samples. We first extract dense feature points via the detector-based and detector-free deep learning feature networks and perform points matching. Then, to further reduce false matches, an outlier detection method combining the isolation forest statistical model and the local affine correction model is proposed. Finally, the interpolation method generates the deformable vector field for pathology image registration based on the above matching points. We evaluate our method on the dataset of the Non-rigid Histology Image Registration (ANHIR) challenge, which is co-organized with the IEEE ISBI 2019 conference. Our technique outperforms the traditional approaches by 17% with the Average-Average registration target error (rTRE) reaching 0.0034. The proposed method achieved state-of-the-art performance and ranked 1st in evaluating the test dataset. The proposed hybrid deep feature-based registration method can potentially become a reliable method for pathology image registration.Comment: 22 pages, 12 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Unsupervised Deformable Image Registration Using Cycle-Consistent CNN

    Full text link
    Medical image registration is one of the key processing steps for biomedical image analysis such as cancer diagnosis. Recently, deep learning based supervised and unsupervised image registration methods have been extensively studied due to its excellent performance in spite of ultra-fast computational time compared to the classical approaches. In this paper, we present a novel unsupervised medical image registration method that trains deep neural network for deformable registration of 3D volumes using a cycle-consistency. Thanks to the cycle consistency, the proposed deep neural networks can take diverse pair of image data with severe deformation for accurate registration. Experimental results using multiphase liver CT images demonstrate that our method provides very precise 3D image registration within a few seconds, resulting in more accurate cancer size estimation.Comment: accepted for MICCAI 201

    Attention for Image Registration (AiR): an unsupervised Transformer approach

    Get PDF
    Image registration as an important basis in signal processing task often encounter the problem of stability and efficiency. Non-learning registration approaches rely on the optimization of the similarity metrics between the fix- and moving images. Yet, those approaches are usually costly in both time and space complexity. The problem can be worse when the size of the image is large or the deformations between the images are severe. Recently, deep learning, or precisely saying, the convolutional neural network (CNN) based image registration methods have been widely investigated in the research community and show promising effectiveness to overcome the weakness of non-learning based methods. To explore the advanced learning approaches in image registration problem for solving practical issues, we present in this paper a method of introducing attention mechanism in deformable image registration problem. The proposed approach is based on learning the deformation field with a Transformer framework that does not rely on the CNN but can be efficiently trained on GPGPU devices also. Our method learns an artificially generated deformation map and be tested on a MINST dataset

    Learning the Effect of Registration Hyperparameters with HyperMorph

    Full text link
    We introduce HyperMorph, a framework that facilitates efficient hyperparameter tuning in learning-based deformable image registration. Classical registration algorithms perform an iterative pair-wise optimization to compute a deformation field that aligns two images. Recent learning-based approaches leverage large image datasets to learn a function that rapidly estimates a deformation for a given image pair. In both strategies, the accuracy of the resulting spatial correspondences is strongly influenced by the choice of certain hyperparameter values. However, an effective hyperparameter search consumes substantial time and human effort as it often involves training multiple models for different fixed hyperparameter values and may lead to suboptimal registration. We propose an amortized hyperparameter learning strategy to alleviate this burden by learning the impact of hyperparameters on deformation fields. We design a meta network, or hypernetwork, that predicts the parameters of a registration network for input hyperparameters, thereby comprising a single model that generates the optimal deformation field corresponding to given hyperparameter values. This strategy enables fast, high-resolution hyperparameter search at test-time, reducing the inefficiency of traditional approaches while increasing flexibility. We also demonstrate additional benefits of HyperMorph, including enhanced robustness to model initialization and the ability to rapidly identify optimal hyperparameter values specific to a dataset, image contrast, task, or even anatomical region, all without the need to retrain models. We make our code publicly available at http://hypermorph.voxelmorph.net.Comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) at https://www.melba-journal.or

    Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning

    Get PDF
    Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed. However, only a few studies have comprehensively compared medical image registration approaches on a wide range of clinically relevant tasks. This limits the development of registration methods, the adoption of research advances into practice, and a fair benchmark across competing approaches. The Learn2Reg challenge addresses these limitations by providing a multi-task medical image registration data set for comprehensive characterisation of deformable registration algorithms. A continuous evaluation will be possible at https://learn2reg.grand-challenge.org. Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient registration evaluation. We established an easily accessible framework for training and validation of 3D registration methods, which enabled the compilation of results of over 65 individual method submissions from more than 20 unique teams. We used a complementary set of metrics, including robustness, accuracy, plausibility, and runtime, enabling unique insight into the current state-of-the-art of medical image registration. This paper describes datasets, tasks, evaluation methods and results of the challenge, as well as results of further analysis of transferability to new datasets, the importance of label supervision, and resulting bias. While no single approach worked best across all tasks, many methodological aspects could be identified that push the performance of medical image registration to new state-of-the-art performance. Furthermore, we demystified the common belief that conventional registration methods have to be much slower than deep-learning-based methods
    corecore